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Abstract
We present the quantum programming language cQPL which is an extended version of
QPL [Sel04b]. It is capable of quantum communication and it can be used to formulate
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Dich sah ich, und die milde Freude
Floß von dem süßen Blick auf mich;
Ganz war mein Herz an deiner Seite
Und jeder Atemzug für dich.

Johann Wolfgang von Goethe, Willkom-
men und Abschied

1 Introduction
Although there is no formal proof that quantum computers offer greater computational
power than classical ones, there are a few quantum computer algorithms which provide
efficient solutions for problems which are up to now believed to be classically NP-hard, i.e.,
they cannot be solved in polynomial time. One of these problems – computing discrete
logarithms – is the cornerstone of basically every modern classical cryptographic algorithm,
so the increased interest in quantum computing is obvious, both from a fundamental and a
practical point of view.

How can quantum algorithms be described in an efficient, readable and precise manner?
Usually, this is done with quantum circuits which are combined into a quantum network, but
especially for larger programs, this is a very cumbersome and error-prone method. Much
research has been performed on the construction, implementation and conception of clas-
sical programming languages; therefore, a great amount of alternatives are available. The
situation is totally different in quantum computing: Only a handful of languages have been
proposed so far [AG04, BSC01, Öme98, SP00, Sel04b, vT04], and only two working imple-
mentations based on quantum computer simulators are available [Öme98, BSC01] (recently,
a third, but still rough implementation was presented in [AG05]). Both are based on impera-
tive/object oriented languages (C, Pascal, C++, . . . ), with quantum features as extensions,
whereas QPL [Sel04b] models a basically functional language.1

In this work, we present an extension of QPL with abilities to cover quantum communi-
cation, i.e., the transmission of quantum mechanical states and exploitation of their highly
non-classical properties like superpositions and entanglement. To distinguish our approach
from QPL, we call it cQPL for communication capable QPL. In contrast to quantum comput-
ers of which only some very elementary parts have been experimentally realised until now,
implementations of quantum communication are not only available in several laboratories
around the world, but can even be obtained commercially.

To provide some orientation where our approach can be located in contrast to work done
by other contributors to the field, Table 1.1 presents a comparison of quantum programming
languages and their features.

In a nutshell, the contribution of our work to the field of quantum programming languages
is twofold:

❏ We provide a compiler which can serve as a testbed for new ideas in quantum pro-
gramming, to teach concepts of quantum algorithms or act as an aid to the intuition

1We need to note, though, that the term functional should not be overestimated in this context. Im-
portant features like higher order functions, which are considered to be key elements of classical functional
languages, are missing in QPL. The most interesting part of the language from a physicist’s point of view is
the ability to guarantee freedom against runtime errors already at compile time, no matter how this goal is
achieved.

1



Chapter 1. Introduction

QCL Q Language qGCL QML QPL cQPL

Reference [Öme98] [BSC01] [SP00] [AG04] [Sel04b]
New language ✗ ✗ ✓ ✓ ✓ ✓
Respects physicsa ✗ ✗ ✗ ✓ ✓ ✓

Implemented ✓ ✓ ✗ ✓b ✓c ✓
Formal semantics ✗ ✗ ✓ ✓ ✓ ✓

Communication ✗ ✗ ✓ ✗ ✗ ✓
Universal ✓ ✓ ✓ ✓ ✓ ✓

aRespecting physics is meant in the sense that it is not possible to syntactically specify programs which
would create unphysical situations; of course, such a state will force the simulation to abort with an error
and needs thus to be avoided if possible.

bA partially finished implementation was available at the time of writing.
cIf we consider our cQPL compiler to be a QPL compiler as well.

Table 1.1: Comparison of quantum programming languages defined in other ap-
proaches to the problem, their features and their shortcomings.

of users who want to experiment (in the sense of goal oriented playing, not laboratory)
with quantum protocols.

❏ We present an alternate approach to the compositional semantics of QPL and provide
the possibility to include and formalise quantum communication as part of the lan-
guage. This is a necessary step towards the formalisation of open-world programs, but
may also prove itself useful in fields like quantum process calculi, automated protocol
analysis or similar – cf. Chapter 6 for further prospects.

The layout of this thesis is as follows: In Chapters 2 and 3, we provide an overview
about quantum programming, present the language cQPL and describe the compiler and
its implementation. Chapter 4 presents the mathematical tools and requisites necessary
for a denotational semantics of cQPL, and Chapter 5 develops the semantical description.
Chapter 6 finally provides some short remarks on possible further directions that may be
pursued based on the results of this work. All chapters are interlaced with short introductions
to topics, tools and techniques which are uncommon in physics, but necessary for our work;
Appendices A and B provide a list of symbols and a glossary, respectively. The formal
syntax is presented in Appendix C. To aid the reader in staying on track, we have provided
short summaries in grey boxes at some points along the way.

Since the topic dealt with does not only contain problems of physical nature, but also
touches the fields of computer science and mathematics, we have tried to make the text as
self-contained as possible for readers with any of these backgrounds.2 Obviously it was not
possible to present everything in as much detail as required without repeating the intro-
ductory textbooks, but numerous references to the literature are provided which hopefully
alleviates any arising problems.

2In this context, it is interesting to note that 48% of all entries in the bibliography are of physical nature
and 36% can be counted to computer science; the remaining 16% belong to mathematics or are of general
interest.
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When someone says, “I want a programming
language in which I need only say what I
wish done,” give him a lollipop.

Alan Perlis, Epigrams on Programming

2 Quantum programming with
QPL and cQPL

This chapter presents an overview about classical and quantum computers, the underlying
models of computation and some principal remarks on quantum programming languages.
Afterwards, a short introduction to QPL and cQPL is given. Note that this chapter is
intentionally kept as terse as possible to allow a more detailed coverage of other topics dealt
with in this thesis. Therefore, no attempt is made to to provide special rigour in this chapter.

2.1 Programming and quantum physics

2.1.1 Computability

Classical computers can be described by several models which are apt for different purposes
(for a more detailed description, cf., e.g., [AB02, Sch01]):

❏ Turing machines

❏ General recursive functions

❏ Register machines

❏ Lambda calculus

❏ Logical gates

❏ Universal programming languages

They can all be brought to a common denominator by showing that they are able to
compute respectively solve the same class of problems. They are computationally equivalent
because one model can be used to efficiently simulate any other model; a Turing machine is
normally taken to be the normative instance among them. The fact that a turing machine
can compute everything which is computable in principle is captured in the Church-Turing
thesis which is one of the fundamental axioms of computer science:1

Hypothesis 2.1.1 (Church-Turing). Every function which would naturally be regarded
as computable can be computed by a Turing machine.

This definition places computability in a purely abstract setting without regard to the
laws of physics. Deutsch [Deu85] realised that if the laws of (quantum) physics are used
as basis for computation, an improved version of the Turing machine might lead to greater
computational power. This requires an extended version of the Church-Turing thesis as well:

1To be precise, one would have to note that Church’s thesis states that “a function of positive integers
is effectively calculable only if recursive”. This is equivalent to Turing’s thesis, though, and the name
Church-Turing thesis is conventionally used in the literature.

3



Chapter 2. Quantum programming with QPL and cQPL

Hypothesis 2.1.2 (Church-Turing-Deutsch). Every physical process can be simulated
by a universal computing device.

Greater computational power is meant in the sense that there are some problems which
can be efficiently solved by a universal computing device according to Church-Turing-
Deutsch but which cannot be efficiently solved by a Turing machine, e.g., the simluation cost
for a universal computing device on a normal turing machine would be at least exponential
for the most general case.2

Until now, it has not been proven if quantum Turing machines have greater computa-
tional power than Turing machines or not; cf. Refs. [Cle99, Aha98] for further information
on this and related topics.

2.1.2 Characteristics of quantum computers

The basic building block for quantum computers are quantum bits (qbits), i.e., quantum
mechanical objects which can be represented by two different basis states, usually denoted
by |0〉 and |1〉. This can, e.g., be realised by two-spin systems such as electrons, with the
two different polarisations of a photon etc. In contrast to classical machines and models of
computation, quantum computing can draw from two additional resources:

❏ Superpositions: The state of a quantum bit can be in a superposition α |0〉 + β |1〉
with α, β ∈ C and |α|2 + |β|2 = 1. If every qbit of a quantum register consisting of n
elements is brought into a symmetric superposition with α = β = 2−1/2, the register
contains all numbers from 0 to 2n − 1 at the same time. Manipulations of the register
thus manipulate all these numbers in one step, whereas classically, the number of
required manipulations would grow exponentially with the register size. This feature
is conventionally referred to as quantum parallelism.

❏ Entanglement: Two parts of a quantum system can be in an entangled state such that
manipulations on one part of the system influence the other system although they may
be spatially separated.

While superpositions are useful for computational problems, entanglement is suitable for
tasks like secret key growing, but is for example also necessary to connect input with output
registers for quantum function application.

In general, there are several equivalent models for quantum computers which are ab-
stracted from their physical realisation:

❏ Quantum Turing machines

❏ Quantum gates

❏ Universal quantum programming languages

All these models are equivalent, cf., e.g., Refs.[NC00, Aha98, Pre99] for more detailed ex-
planations.

2Note that there is a very prominent problem which illuminates this field: Factorising integers is possible
at polynomial cost on a quantum computer, but the currently best known algorithms require exponential cost
on a classical computer. This does not prove, though, that quantum computers are per se more powerful than
classical ones because there is, for example, no proof that there is no classical polynomial-time factorisation
algorithm.
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2.1.3 Static typing, functionality and runtime errors

Selinger proves in [Sel04b] that QPL has the ability to avoid runtime errors by detecting
them at compile time (and can thus reject the program) which is not possible in other
language proposals presented at the time of writing. He argues that this must be attributed
to the static type system of the language. Although the proof for this is solely based on
properties of the static type system, the functional style of QPL does have its merits in this
respect in our opinion, too: It restricts the language to elements which allow to express
universal programs, but do not allow constructions that can produce runtime errors that
cannot be detected at compile time.3

When work on this thesis was started, one of the points we wanted to investigate was if
and how principles of functional languages could be advantageous for quantum languages.
This did not reach fruition, though, because we could not find a simple way to transfer any
advanced functional method like higher-order functions, recursively defined data types etc.
to the quantum case.4

From a physical perspective, the absence of runtime-errors is much more interesting than
any computer science related question like the type system or functionality. In this thesis,
we thus concentrated on preserving the possibilities of static checking provided by QPL as
far as possible while enhancing usability of the language and providing means to handle
commuication.

2.2 Introduction to QPL and cQPL

This section presents a very short introduction to cQPL; some of the things stated in the
following also hold for a (regularised version) of block QPL5 as presented in [Sel04b] which
is used as basis for cQPL. Note that cQPL is explicitely meant to be an experimental
compiler. Only very modest effort was made to make the compiler easy to use (the error
messages provided can, for example, often only be understood if the user is familiar with the
inner working of the compiler), and only very few classical operations which are considered
standard components of programming languages (e.g., numerical operations like sin, cos etc.)
were implemented to save time since this is purely routine work. Nevertheless, care has been
taken to design the compiler for easy extensibility.6

2.2.1 Model of computation

Although quantum gates are the most widespread model in the literature on quantum al-
gorithms, the QRAM model suggested by Knill [Kni96] is more apt as basis for quantum
programming languages. The model consists of two components: A classical computer for
conventional tasks like program flow control, classical calculations etc., and a quantum mem-
ory controlled by the classical computer that can not only store quantum states, but also
apply any unitary operator and perform measurements. Figure 2.1 visualises the approach.

3A static type system is in general not enough to ensure this property: Just think of the many possible
ways to generate runtime-errors in C, which is statically typed as well. This is partially caused by the fact
that typing in C is weak; nevertheless, even strongly typed languages as, e.g., Java and C# still cannot
prevail runtime errors. Thus, static typing alone is not sufficient to avoid all possible runtime errors.

4To our knowledge, no fully satisfying mechanism for any of these problems has been found until now
although the topic is addressed in several papers.

5The variant of QPL with a textual structure that includes blocks; alternatively, there is a textual variant
without blocks and a flow diagram representation.

6For example, integration of the n-qbit Fourier gate could be accomplished by adding only 8 lines of code
to the compiler and 10 to the runtime library.
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Chapter 2. Quantum programming with QPL and cQPL

Figure 2.1: Hybrid architecture for a quantum computer which consists of a classi-
cal computer and a quantum memory with the ability to apply unitary
operators and perform measurements at the disposal of the classical
system (image taken from [Öme03]).

cQPL is centred on the assumption that the control flow of a program can be described
by classical means. Although this is considered to be a loss of generality by some authors
(most notably [Öme03]), it does not represent a real restriction because all known quantum
algorithms can be expressed in this framework. Data is, of course, quantum mechanical,
and can be modified by unitary operators which are equivalently called gates in analogy to
the gate model of quantum computation.

2.2.2 Language elements

The following remarks provide an introduction to cQPL for ordinary users; a formal version
of the syntax will be presented in Appendix C. The compiler distribution provides some
example programs which demonstrate all features.

2.2.2.1 Identifiers and variables

Identifiers for variables can be denoted by strings consisting of the characters A–Z, a–z,
and 0–9, where no digit must be at the beginning. Allocation of new variables is done with
the operator new:

new int loop := 10;

new qbit b1 := 1;

Note that it is mandatory to provide an initial value both for classical and quantum data
types. By default, the data types bit, int, float, qbit and qint are available.

Assigning values to classical variables is possible using the operator :=:

loop := loop - 1;

6



2.2. Introduction to QPL and cQPL

2.2.2.2 Arithmetic and logical expressions

Arithmetic expressions can be given as in most programming languages (e.g., 7+3*x-5).
The operators +, -, * and / are available, they are overloaded to work with any classical
numerical data type.

Operators resulting in a logical value (true or false) are <, >, <=, >=, = and !=; logical
negation is available using !, and predicates can be combined using & (and) and | (or).
Operator priority is defined as usual in arithmetic and logic; parentheses can be used to
explicitely modify this.

2.2.2.3 Procedures

Procedures can take an arbitrary number of input parameters (including none) which are
specified as name:type tuples. Declarations take the following form:

proc test: a:int, b:bit, c:float, d:qbit {

...

}

Procedure calls are achieved with the keyword call:

(eins, zwei, drei) := call test(a0, a1, a2, b1);

Note that the parameters are passed by value so that modifications of the classical
variables given to the procedure (in this case a0, a1 and a2) are not visible in the caller’s
scope. This means that no matter what test does, these variables have the same values
before and after the procedure is called. This is not the case with b1 because it is a quantum
variable and cannot be cloned to implement call-by-value; any modifications performed by
test on the state ofb1 are visible for the caller after test returns.

The result of a procedure is a tuple containing the values the classical parameters had at
the end of procedure execution; the example stores these in the local variables eins, zwei
and drei. Note that the result of a procedure call may be ignored as well by the caller, so
the following variant is also possible:

call test(a0, a1, a2, b1);

The example program proc test.qplwhich accompanies the compiler further illustrates
the described behaviour, so we refer the reader to it.

2.2.2.4 Gates

Gate application is performed using the operator *= as in the following example:

q *= Not;

A small number of elementary gates is built into the language core (remember that additional
ones can be added with really little effort as we already mentioned before):

❏ H Hadamard transformation on a qbit.

❏ FT(n) Fourier transformation on n qbits, i.e., the n-fold tensor product of Hadamard
transforms.

7



Chapter 2. Quantum programming with QPL and cQPL

❏ NOT Logical negation on one qbit.

❏ CNot Controlled Not on two qbits.

❏ Phase Phase shift gate on one qbit; the desired shift is given as parameter.

The dimension of the gate and the destination must match. Variable tuples where
identifiers are combined with commas (,) can be used to combine several quantum variables
as in the following example:

new qbit test1 := 0;

new qbit test2 := 1;

test1, test2 *= CNot;

test1 *= Phase 0.5;

User-defined gates can be defined by enclosing a list of (complex) numbers in [[ and ]]

as in the following example:

test1,test2 *= [[0.5, 0.5, 0.5, 0.5,

0.5, 0.5i, -0.5, -0.5i,

0.5, -0.5, 0.5, -0.5,

0.5, -0.5i, -0.5, 0.5i]];

2.2.2.5 Control flow

If-then-else and While are available for directing the control flow.

new int loop := 10;

while (loop > 5) do {

print loop;

loop := loop - 1;

};

if (loop = 3) then {

print "3";

}

else {

print "Nicht 3";

}

The meaning of these operations is the same as in classical languages.

2.2.2.6 Other features

Several more features which do not fit into any of the above categories are available:

❏ dump takes one or more quantum variable identifiers as argument and provides a dump
of the current probability spectrum in the canonical basis |0〉 , |1〉:

dump eins, zwei;

To demonstrate the effect of this command, consider the following example:

8



2.2. Introduction to QPL and cQPL

new qbit a := 0;

new qbit b := 0;

print "State before FT:"; dump a, b;

a, b *= FT(2);

print "State after FT:"; dump a, b;

The program fragment produces the following output when run:

State before FT: 1 |00>

State after FT: 0.25 |00>, 0.25 |01>, 0.25 |10>, 0.25 |11>

Note that there is a fundamental difference between dumping the state of quantum
variables and measuring the state and printing the result, as the following example
shows:

measure a then { print "a is |0>"; } else { print "a is |1>"; };

print "State of b:"; dump b;

print "State of (a,b):"; dump a,b;

If the fragment above is supplemented by these lines, running the program either yields
this

a is |0>

State of b: 0.5 |0>, 0.5 |1>

State of (a,b): 0.5 |00>, 0.5 |01>

or that output (the output of the statements before is omitted):

a is |1>

State of b: 0.5 |0>, 0.5 |1>

State of (a,b): 0.5 |10>, 0.5 |11>

The result of the command dump b never changes, no matter how often the program is
run. The result of the measure command, however, will change so that every output
appears with probability 0.5 for a large number of executions.

❏ skip does nothing, but can be used to fulfil syntactic requirements if, for example,
one branch of an if-then-else-statement is supposed to do nothing:

if (condition) then {

skip;

}

else {

...

}

❏ print prints the value of a variable or an arithmetic expression (e.g., print 5+7;

print a;), but can also be used to output text strings enclosed in quotation marks
to the console (e.g., print "Hello, world!";).

9
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❏ measure measures a quantum variable and returns a classical result. The result is
governed by a probability distribution according to the state the quantum variable
is in; thus, successive program runs will in general return different results when the
function is called. Note that the measurement is always performed in the standard
basis |0〉 , |1〉 for each contributing qbit.

2.2.3 Modelling quantum communication with cQPL

Although quantum communication has already been implemented with several physical
schemes at the time of writing, cQPL does not consider any of these solutions. Instead,
the model presented in Section 2.2.1 is extended in such a way that the peculiarities of
communication can be replaced by reasonable simulation alternatives. In a real physical
setting, communication between two parties can be implemented by using whatever kind
of quantum channel which allows to transfer quantum states. Since this is not quite easy
to implement experimentally (quantum states are very fragile objects), diverse effects like
channel loss, decoherence etc. need to be taken into account in a real-world setting. This is
accounted for by a channel model which describes these effects mathematically.

2.2.3.1 Quantum channels

Obviously, no spatial transmission of quantum states is performed in the simulation.7 A
quantum channel is thus replaced with a label on each qbit present in the simulation which
denotes the respective owner. Sending a qbit is thus equivalent to changing the label of
it. Note that this definition differs from the definition of a channel which is used in some
contributions to the literature, e.g. [Key02]. Here, a channel is seen as something that mod-
ifies the state, for example by decoherence, loss or the influence of eavesdroppers, whereas
our definition captures the notion of a channel as a means of unambiguous quantum state
transfer. Inclusion of eavesdroppers (or any modification of the quantum state) is possible
if a quantum channel is replaced by two quantum channels which are connected by a third
module (which we E for Eve following the usual convention) which receives quantum states
from Alice, performs appropriate modifications and resends the states to Bob. Obviously,
Eve can collect multiple qbits that pass the channel and manipulate them collectively to pur-
sue different attack strategies, so this is in no way a restriction to intercept-resend attacks.
Figure 2.2 provides a visualisation of the communication model.

2.2.3.2 Modules and communication primitives

Communicating systems are specified in terms of modules which contain the code the par-
ticipants execute. Every module is identified by a unique label which identifies it among the
participants. Note that module definitions must only occur at the top-level; modules must
not contain other module definitions. Two parties which are named Alice and Bob can be
implemented by this structure:

module Alice {

...

};

module Bob {

7It would be possible, for example, to consider networked computers between which simulated quantum
states can be transferred. This would add no new physical insights to the problem, but only add technical
difficulties, so we did not implement such a scheme.
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Figure 2.2: Model of communication used in cQPL. Transmission of quantum data
is replaced by a quantum heap shared by the communicating parties;
all qbits have a unique label that identifies to whom they belong at
the moment. Sending and receiving can be modelled by changing the
label, the channel itself is modelled by a third party.

...

};

Channels for sending and receiving are implicitly opened between all participants. The
send command is provided for sending variables. Two parameters need to be supplied: A
list of variables (which may be classical or quantum) and the identifier of the receiver. For
example, the following code can be placed in module Alice:

new qbit q1 := 0;

new qbit q2 := 1;

...

send q1,q2 to Bob;

Receiving works similar; consider for example the following code which might be located
in module Bob:

...

receive var1:qbit, var2:qbit from Alice;

...

// Do something with var1, var2

Note the a receive commands implicitly introduces new variables into the present frame,
in this case var1 and var2. The data type of the received quantities must be specified after
the variable name where a colon is used as separator.

2.3 Example programs

We present three small, but complete examples together with their output generated by
executing them to allow a look at the cQPL syntax without resorting to program fragments.

11
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2.3.1 Random coin tossing

This simple algorithm puts a quantum bit into a symmetric superposition and measures it
to simulate the effect of tossing a perfect coin:

new qbit q := 0;

q *= H;

measure q then { print "Tossed head"; } else { print "Tossed tail"; };

The output is with equal probability either Tossed head or Tossed tail, obviously.

2.3.2 Distribution of an EPR pair

Distributing EPR pairs is one possible method to establish a secret key between Alice and
Bob that can, e.g., be used for a Vernam cipher. The following cQPL program shows how
to do this for a single EPR pair:

module Alice {

proc createEPR: a:qbit, b:qbit {

b *= Not;

b *= H;

a,b *= CNot;

} in {

new qbit first := 0;

new qbit second := 0;

call createEPR(first, second);

send second to Bob;

measure first then { print "Alice’s qbit is |1>"; }

else { print "Alice’s qbit is |0>"; };

};

};

module Bob {

receive q:qbit from Alice;

measure q then { print "Bob’s qbit is |1>"; }

else { print "Bob’s qbit is |0>"; };

};

Running the program creates one of the following two outputs with equal probability:

Alice’s qbit is |0>

Bob’s qbit is |0>

Alice’s qbit is |1>

Bob’s qbit is |1>

Note that the order of Alice and Bob’s output may be inverted as well because after
and before the send/receive synchronisation, the execution order of the threads representing
Alice and Bob is indeterministic.8

8To be precise: The execution order depends on how the computer used for the simulation implements
threads and their parallel execution, so it is effectively indeterminate. On machines with at least two CPUs
and assuming that each thread runs on one of them, the indeterminism is real.
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2.3.3 Quantum teleportation

Quantum teleportation is an algorithm that enables to transfer an unknown quantum state
between two parties if both of them share one part of an EPR state (in this case, |β00〉) and
can communicate classically. An easy calculation as is, for example, given in [NC00, p. 27]
or any other quantum information text shows how this works, so we will not repeat it here.
The implementation in cQPL is as follows:

module Alice {

proc createEPR: a:qbit, b:qbit {

a *= H;

b,a *= CNot; /* b: Control, a: Target */

} in {

new qbit teleport := 0; /* Apply unitary operations to set the qbit

to any other desired state */

new qbit epr1 := 0;

new qbit epr2 := 0;

call createEPR(epr1, epr2);

send epr2 to Bob;

teleport, epr1 *= CNot; /* teleport: Control, epr1: Target */

new bit m1 := 0;

new bit m2 := 0;

m1 := measure teleport;

m2 := measure epr1;

/* Transmit the classical measurement results to Bob */

send m1, m2 to Bob;

};

};

module Bob {

receive q:qbit from Alice;

receive m1:bit, m2:bit from Bob;

if (m1 = 1) then {

q *= [[ 0,1,1,0 ]]; /* Apply sigma_x */

};

if (m2 = 1) then {

q *= [[ 1,0,0,-1 ]]; /* Apply sigma_z */

};

/* The state is now teleported */

print "Teleported state:";

dump q;

};
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Denn was wir tun müssen, nachdem wir es
gelernt haben, das lernen wir, indem wir es
tun.

Aristoteles, Nikomachische Ethik

3 A compiler for cQPL
A compiler for cQPL was implemented as part of this thesis; since no quantum computers
are available yet, it is obviously targeted at simulators for such. This chapter presents a very
short overview about the compiler’s implementation and the limitations which arise from the
experimental nature of it. Note that this chapter is intentionally kept as terse as possible;
it is not supposed to be a detailed description of the techniques used in implementing the
compiler nor is its intention to go down to the source code level.

3.1 Structure and implementation

Since the initial intention when work on the thesis started was to examine the aptness
of functional methods in programming languages for quantum computers, we decided to
implement the compiler for cQPL in a functional language as well (observe the remarks in
Section 2.1.3 why functionality was realised not to be the important factor). The choice after
testing several alternatives fell on Objective Caml (OCaml) which is, for example, described
on http://caml.inria.fr. One of the reasons for this choice was that very good automated
generators for lexers and parsers are available as part of the compiler distribution which
considerably reduce routine work. As simulation backend, we used the routines supplied
with Ömer’s QCL compiler [Öme98] because this library was the most advanced one at that
time. In the meanwhile, a number of other libraries appeared and existing ones matured,
so most likely, we would have chosen a different simulation backend now because the QCL
library comes effectively without any documentation for the programmer (only the QCL
compiler built on top of the library is documented) which resulted in quite a few technical
obstacles.

A simple compiler for a simple classical language was implemented as part of this thesis
to provide an example for explaining compiler technique and to get used to the OCaml
language and the associated tool-chain.

3.1.1 Compiler technique

As usual in compiler technique, the work is separated into several passes which are shown
in Figure 3.1.

Lexical analysis is performed by a lexer generated with OCamllex. The lexer transforms
the input stream of characters into a stream of tokens where tokens are, for example, key-
words like int, measure and so on. This simplifies the parsing process because it does not
need to deal with a program representation at the level of single characters, but can already
work with less elementary units. A more interesting part is the syntactical analysis where
the parser determines if the program is valid according to the rules given in Section C. The
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Figure 3.1: Structure of the cQPL compiler

syntax for cQPL is specified as a LALR(1) grammar which is a special kind of an LR(1)
grammar which, in turn, is a variant of a context free grammar as introduced in Defini-
tion 5.1.1. We do not want to go into more technical details here, but refer to Appendix B
and the usual literature on the topic, e.g.. Refs. [ASU86, App04, GBJL02, WM95] for the
exact definitions of such grammars.

After the syntactical correctness of a program has been ensured, the compiler can analyse
the generated parse tree to infer the meaning of the program and perform compile time
checks. These try to find as many errors in the program as possible to ensure that they
will not appear at runtime and lead to abortion of the program with an error. Such checks
include, for example:

❏ Making sure that all variables were declared before use.

❏ Checking that procedures are called with proper arguments.

❏ Matching the dimension of quantum gates with the dimension of variables they are
applied to.

❏ Ensuring that tuples of quantum variables are disjoint.

Many more checks of this kind can be found in the source code. Some (e.g., the first
mentioned two) appear in classical programming languages as well, whereas others (e.g., the
last mentioned two) are specific to quantum languages or necessary only for our approach.
The goal of the analysis phase is to provide a representation of the program that is augmented
with everything necessary so that the code-generation backend can produce its result directly
from this representation. An additional advantage of this strategy is that the code generation
can be replaced by a variant targeting a different simulator.1 The structure of the annotated
parse tree which is passed from the parser to the code generation backend is documented in
the source code.

1For a very early version of the compiler, a code generation backend for the Fraunhofer simulator
[RAMK+04] was provided as well, but we dropped support for this to not spend too much time on im-
plementation issues.
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3.1.2 The implementation

We do not want to go into any implementation details here, but just provide an overview
about the source files which constitute the compiler. Every detail of the implementation can
obviously be found there.

❏ lexer.mll is an input file for OCamllex which generates the lexical analyser for QPL
from the rules given in the file.

❏ parser.mly is an input file for OCamlyacc which is used to transfer the rules (and
code) given in the file into a parser for cQPL syntax.

❏ parser defs.ml defines the data structures used by the parser to build the abstract
syntax tree. For every element of the grammar, a separate data structure is defined.
Most of them can be augmented with additional information which is inferred during
analysis, e.g., lists of type conversions.

❏ cqpl.ml plays a twofold role: On the one hand, it implements the user interaction
part which handles command line processing and directs the different passes of the
compiler. On the other hand, it implements the semantic analysis where for every
grammar production, a corresponding function is available to perform the appropriate
checks.

❏ gen qcl.ml implements the code generation backend for the QCL library. The gen-
erated code depends on the C++ code in qpl_runtime.{cc,h} which provides the
runtime environment for programs. This handles, for example, quantum memory man-
agement and provides implementations of standard operators. qpl runtime temp-

late.h contain the implementation of runtime routines which use templates and thus
cannot be compiled to a static object; the routines to implement the communica-
tion operations (i.e., thread handling, data exchange and locking) can be found in
qpl\_runtime\_comm.{cc,h}.

❏ type.ml contains the type checker and routines to perform lossy and non-lossy con-
version between different data types. Especially interesting here is the conversion
between classical and quantum variables. The routines provided by this file are much
more general than required by the compiler and would in principle be able to handle
mixed data types as well.

❏ stacked env.ml provides a stackable environment for the semantic analysis.

Since the compiler is only one part of this thesis, we deliberately accepted some limi-
tations which would have to be removed for a production quality compiler. None of them
would present a problem in principle, but would require some tedious effort that does not
justify the gain:

❏ Error messages are not detailed, and no effort is made to continue translation as far
as possible or perform error recovery after a mistake was spotted.

❏ No specific error productions are provided. Syntactical errors are therefore in general
reported by the lexer and not properly by the parser.

❏ There is absolutely no optimisation for execution speed.
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❏ Communication was not too intensively tested because we concentrated more on the
formal aspects of this. Additionally, it uses big locks instead of finer-grained solutions
which reduces performance.

❏ There is no set of standard routines or a standard library of any kind which would be
required for real-world applications.

3.1.3 Implementation of communication

Since we do not use a real network of quantum and classical computers to simulate commu-
nicating parties, but only a single system, it is necessary to find an approach that emulates
the characteristic properties of real-world systems in the simulation environment. It has
already been shown that the QRAM model can – together with an appropriate labelling
mechanism for the qbits – provide a suitable replacement for a quantum channel. The re-
maining issue that needs to be addressed is how the model the independent execution of
the parties together with the synchronisation when send/receive operations take place is to
be implemented. This is, obviously, a problem of the backend, so the solution presented is
specific to the QCL backend.

For every module defined in a program, a separate thread2 is created which has access to
the global memory management routines and communication channels. Quantum memory
management is performed by the main process; appropriate locking techniques ensure that
no race conditions can occur when quantum bits are allocated by the modules. Sending
quantum data can in this scheme be performed by exchanging pointers to the respective
positions on the quantum heap; the static analysis of the compiler guarantees that no more
than one process is in possession of a given qbit at a time. Again, appropriate mechanisms in
the form of mutexes are used to provide the required synchronisation between the modules
which is required to implement send and receive operations. For every pair of modules, a
separate bi-directional queue is provided to handle the exchange of quantum and classical
data.

3.2 Using the compiler

As all well behaved programs, the compiler can provide a list of its options:

wolfgang@meitner> ./cqpl --help

Quantum Programming Language v1.0

Usage: qpl [<input>] [<output>] [--debug] [--nonative] [--norun]

[--backend qcl] [--qheap size]

<input>: Input filename

<output>: Output filename

--debug Print debug messages

--backend Simulation backend (Only qcl is supported at the moment)

--nonative Generate only backend code, don’t create a native executable

--norun Do not execute the generated native code

--qheap Size of quantum heap (default: 200 qbits)

2A thread is – depending on the implementation by the underlying library and the operating system
kernel – a lightweight process that shares most ressources he has with other threads that execute in parallel,
but has its own control flow.
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-help Display this list of options

--help Display this list of options

❏ <input> and <output> provide the names of the input and output file. If no input file
is specified, the compiler reads from the stdin channel. If no output if specified, the
filename of the input file together with some appropriate extension according to the
output mode is used.

❏ --debug reports lots of debug messages. Console output is really noisy with this
option enabled, but provides some insight into what the compiler does. Obviously
mainly useful for debugging the compiler itself.

❏ --nonative specifies that no native code is generated, i.e., the program is not trans-
formed into machine code by the backend. For the QCL backend, this means that
only a C++ version of the quantum program is generated, but the C++ compiler is
not called to generate a native executable.

❏ --norun does not execute the generated program, but only leaves the executable file
which can be run later.

❏ --qheap size sets the size of the quantum heap to size qbits.

The compiler source code will be made available in the near future on http://kerr.

physik.uni-erlangen.de/qit/qpl.html once the remaining changes to make the source
code ready for public distribution have been performed.
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A mathematician is a device for turning
coffee into theorems.

Pál Erdős

4 Mathematical structures
Because our work involves the theoretical parts of physics and computer science, many dif-
ferent notations and conventions enter the game. To eschew obfuscation, it behoves to define
a consistent notation to be used in this work, which we shall do in the following sections. Ad-
ditionally, this chapter introduces some mathematical structures and their properties which
are required for the description of the denotational semantics of cQPL.

4.1 Algebraic structures

4.1.1 Fundamentals

The concept of an algebra is convenient to cover the properties of quantum mechanics in an
abstract setting, so we remind the reader of two elementary definitions for terms that are
often used sloppily in physics.

Definition 4.1.1 (Algebra). Let K be a field. An associative K-algebra A over K is a
nonempty set A together with three operations called addition +, multiplication × and scalar
multiplication · (the last two operations are usually denoted by juxtaposition of symbols) for
which the following properties hold:

❏ A is a linear space under addition and scalar multiplication.

❏ A is a ring under addition and multiplication.

❏ If r ∈ K and a, b ∈ A, then r · (a× b) = (r · a)× b = a× (r · b).

Definition 4.1.2 (Subalgebra). S ⊆ A is subalgebra of an algebra A if it has the properties
of an algebra and is closed under operations of A.

4.2 Linear operators

4.2.1 General

Much of our work is based on the grounds of linear operators, so we present some fundamental
definitions and cite a theorem from the literature which will be useful for us later on.

Remark 4.2.1. Note that we use only linear operators in this work, so operator is used as
a synonym for linear operator without mentioning this explicitely in the following chapters.
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Definition 4.2.1 (Linear operator). A linear operator T from a normed space X to
another normed space Y is a linear map from D(T ) ⊆ X (the domain of T ) to Y with the
following property for x, y ∈ D(T ), α, β ∈ K:

T (αx+ βy) = αT (x) + βT (y). (4.1)

Definition 4.2.2 (Bounded operator). An operator is called bounded if ∃C ≥ 0, C ∈ R
so that

||Tx|| ≤ C · ||x|| (4.2)

for all x ∈ D(T ) with ||x|| ≤ 1.

Theorem 4.2.1. Let X,Y be normed spaces. For a linear operator T : X → Y , the
following properties are equivalent:

❏ T is continuous in every point of D(T ).

❏ T is continuous at 0.

❏ T is bounded.

Proof. Cf. Ref. [Wei00, Theorem 2.1].

4.2.2 Hilbert-Schmidt operators

Let X,Y be Hilbert spaces. An operator K ∈ B(X,Y ) is called Hilbert-Schmidt-operator
if there exists an orthonormal basis {eα : α ∈ A} (where A is some index set) with
∑

α∈A ||Keα||2 < ∞. In a more physical notation, this means that trK†K < ∞. This
is obviously fulfilled if K ∈ B(H) and dim(H) < ∞.

Theorem 4.2.2 (Hilbert space of Hilbert-Schmidt operators). For Hilbert-Schmidt
operators K,L of a Hilbert space X to a Hilbert space Y , ||·||

HS
is a norm on this space

induced by the scalar product

〈K,L〉
HS

:=
∑

α

〈Keα, Leα〉 . (4.3)

Physicists generally write this as:

〈K,L〉
HS

= trK†L. (4.4)

Proof. If K is a Hilbert-Schmidt operator, aK is a Hilbert-Schmidt operator as well for
every a ∈ K. If K,L are HS operators, then for every orthonormal basis {eα}, the following
equation holds:

∑

α

||(K + L)eα||2 ≤ 2 ·
∑

α

(

||Keα||2 + ||Leα||2
)

< ∞, (4.5)

i.e., K + L is a Hilbert-Schmidt operator as well. By 〈·, ·〉, we denote the scalar product

in the space of Hilbert-Schmidt operators, and ||K||HS = 〈K,K〉1/2HS (as usual, the scalar
product induces a metric).

A comparison of both spaces can be found in Table 4.1.1

1Note that there would be many other different choices how the norm for Hilbert spaces could be defined
which all fulfil the required properties of a norm that can, e.g., be found in [AG81].
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Hilbert space Hilbert space of Hilbert-Schmidt operators

State |f〉 ∈ H D̂ : H → H
Operator H → H: D̂ |x〉 = |x′〉 Λ : D̂ → D̂ ≡ (H → H) → (H → H)

Norm ||f〉| =
√

〈f |f〉 ||D̂||HS =
√
trD†D

Operator
norm

||D̂||sup = sup
|f〉∈H
|f |≤1

|D̂ |f〉 | ||Λ|| = sup
D̂∈H

||D̂||≤1

Λ(D̂) = sup
D̂∈H

||D̂||≤1

tr Λ(D̂)†Λ(D̂)

Table 4.1: A comparison between general Hilbert spaces and Hilbert spaces with
Hilbert-Schmidt operators as basis.

4.3 Connection with quantum mechanics

Quantummechanics is one of the most advanced theories in physics; most research performed
today is centred around it. There are many ways to describe the theory mathematically;
for our purposes, an abstract algebraic formulation based on the principles and structures
introduced in the previous part seems to be most apt. In the following, we present a concise
overview about the central elements of the theory, following the structure of the review given
in Ref. [Key02]. More elaborate introductions can be found in the usual textbooks on the
topic, e.g., [Sak94]. For those especially interested on the impact of quantum mechanics on
information theory, Refs. [NC00, Pre99, Key02] can be especially recommended.

Probabilistic processes lie at the very heart of quantum mechanics: Predictions made by
the theory hold only in the sense that probabilities for outcomes of measurements can be
provided. A large number of repeated experiments with the same preparation parameters
results in a distribution that states how many times a certain outcome will appear. Exactly
this distribution can be predicted by theory. The outcome of a single measurement can in
general never be forecast with certainty.

4.3.1 States and effects

Ideally, an experiment resulting in a probability distribution can be carried out by repeating
the following two processes until a sufficient amount of statistics has been gathered:

❏ Preparation of a quantum mechanical state according to some fixed procedure that
can be repeated a sufficient number of times.

❏ Measurement of some observable quantity, e.g., spin, energy, etc. Effects are a special
class of measurements which can result in either the answer “yes” or “no” according
to some probability distribution.

Note that we do not only deal with purely quantum mechanical states, but may also
encounter a mixture between classical and quantum mechanical properties (which are usually
termed hybrid systems) that our formalism must be able to account for. Measurement results
fall into the classical category since gauges in the macroscopic world are used to infer them
from the quantum system.2

Every quantum system can be completely characterised by its observable quantities which
in turn are characterised by self-adjoint operators. These operators form an algebra A as

2The problem of how measurements of a quantum system are to be interpreted (or even how the whole
process can be described consistently) has been and still is one of the fundamental philosophical problems
of quantum mechanics. We take a pragmatic point of view here and do not consider the problem in greater
detail, but refer to the literature, e.g., [Aul00].

23



Chapter 4. Mathematical structures

introduced in Section 4.1.1; since we do only deal with finite-dimensional Hilbert spaces
here, we can restrict ourselves to subalgebras of B(H), i.e., A ⊂ B(H). A is called the
observable algebra of the system and is often identified with the system itself because it is
possible to deduce all properties of the system from its observable algebra. The dual algebra
of A is denoted by A∗ and is the algebra defined on the dual space.

To capture the notions of state and effect mathematically, we introduce two sets accord-
ing to the following definition:

S(A) = { ̺ ∈ A∗ ̺ ≥ 0 ∧ ̺(1) = 1 } (4.6)

E(A) = {A ∈ A A ≥ 0 ∧ A ≤ 1 } (4.7)

S represents the set of states, while E contains all effects. For every tuple (̺,A) ∈ S×E , there
exists a map (̺,A) → ̺(A) ∈ [0, 1] which gives the probability p = ̺(A) that measuring
an effect A on a (system prepared in the) state ̺ results in the answer “yes”. Accordingly,
the probability for the answer “no” is given by 1 − p. ̺(A) is called the expectation value
of a state A; states are thus defined as expectation value functionals from an abstract point
of view. These expectation value functionals can by uniquely connected with a normalised
trace-class3 operator ̺ such that ̺(A) = tr(̺A). In principle, it would be necessary to
introduce two different symbols for the expectation value functional and the operator, but
for simplicity, we omit this complication.

We have to distinguish between two different kinds of states: Pure and mixed ones. This
is a consequence of the fact that both S and E are convex spaces: For two states ̺1, ̺2 ∈ S(A)
and λ ∈ R, 0 ≤ λ ≤ 1, the convex combination λ̺1 + (1 − λ)̺2 is also an element of S(A).
The same statement holds for the elements of E(A). This decomposition provides a very nice
insight into the structure of both spaces. Extremal points in this space cannot be written
as a proper convex decomposition, i.e., x = λy + (1 − λ)z → λ = 1 ∨ λ = 0 ∨ x = y = z.
These can be interpreted as follows:

❏ For S(A), they are pure states with no associated classical uncertainty.

❏ For E(A), they describe measurements which do not allow any fuzziness as is, e.g.,
introduced by a detector which detects some property not with certainty, but only up
to some finite error (alas, all real-world detectors).

4.3.2 Observables

Until now, we have only been talking about effects, i.e., “yes”/“no” measurements, but not
about measurements with a more complicated result range which are necessary to describe
general observables. Although we would have to consider an infinite (even uncountable)
number of possible outcomes for a general description of quantum mechanics, it is sufficient
to consider only observables with a finite range for our purposes.4 Such observables are
represented by maps which connect elements x of a finite set R to some effect Ex ∈ E(A);
this in turn gives rise to a probability distribution px = ̺(Ex). More formally, we can put
it as in the following:

A family E = {Ex}, x ∈ R of effects Ex ∈ A if called a positive operator valued measure-
ment (POVM) on R if

∑

x∈REx = 1.

3For trace-class operators, the trace is independent of the basis chosen to evaluate the trace.
4This is justified because quantum computers process states of the type (|0〉 , |1〉)⊗n. Although quantum

computers can possess an arbitrary number of qbits, it is still a fixed and (which is most important) finite
number; additionally, we do not care for any continuous quantum properties of these objects.
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4.3. Connection with quantum mechanics

Note that the Ex need not necessarily be projectors, i.e., E2
x = Ex. Should this never-

theless be the case ∀x, the measurement is called a projective measurement.
Observables of this kind can be described by self-adjoint operators of the underlying

Hilbert space H which can (without any claim of formal correctness or even a proof) be
seen as follows: Every self-adjoint operator A on a Hilbert space H of finite dimension can
(because of the spectral theorem, cf., e.g., [AG81, Wei00]) be decomposed into the form
A =

∑

λ∈σ(A) λPλ where σ(A) denotes the spectrum of A and Pλ the projectors onto the

corresponding eigenspace. The expectation value
∑

λ λ̺(Pλ) of P for a given state ̺ can
equivalently be calculated by ̺(A) = tr(̺A). Since this is the standard way of formulating
the expectation value of an operator, both points of view coincide.

4.3.3 Classical components

Systems consisting solely of quantum components are generally not to be found: At the
latest after a measurement has been performed, classical probabilities need to be accounted
for. Therefore, we need to pay attention to hybrid systems composed from quantum and
classical parts as well. Obviously, we have to orient ourselves along the lines of Section 4.3.1
to provide proper grounding for both possibilities. Consider a finite set X of elementary
events, i.e., all possible outcomes of an experiment. Again, S(A) and E(A) define the set of
states and effects, respectively, but this time, the observable algebra is given by all complex
valued functions from the set X to C as defined by

A = C(X) = { f : X → C } . (4.8)

By identifying the function f with the operator f̂ given by

f̂ =
∑

x∈X

fx |x〉 〈x| (4.9)

where |x〉 denotes a fixed orthonormal basis, the probability distribution can be interpreted

as an operator algebra similar to the quantum mechanical case because f̂ is obviously an
element of B(H). Thus, C(X) can be used as an observable algebra A along any other
quantum mechanical or classical constituent of a multipartite composite system.

4.3.4 Composite and hybrid systems

Since quantum mechanical and classical systems can be described with very similar struc-
tures, the presented formalism is obviously well suited for the presentation of composite
systems. Let A ⊂ B(H) and B ⊂ B(K) be systems given in terms of their observable
algebras; the composite system is then given by

A⊗ B ≡ span {A⊗B A ∈ A, B ∈ B } . (4.10)

Three cases for the choice of H,K can be distinguished:

❏ If both systems are quantum, then A⊗ B = B(H⊗K).

❏ If both systems are classical, then A⊗ B = C(X × Y ) with C as defined by Eqn. 4.8

❏ If A is classical and B is quantum mechanical, we have a hybrid system; the composite
observable algebra is then given by C(X)⊗B(H) which cannot be simplified any further.
Observables are operator-valued functions in this case, as expected.
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Chapter 4. Mathematical structures

4.4 Domain theory

The definition of a proper and sound mathematical semantics for a programming language
necessitates apt structures which can be used as a solid ground underlying the work. The
method we use – denotational semantics – is conventionally based on semantic domains,
which in turn rely on partial orders and recursion theory. The purpose of this section is to
introduce the elements required for the semantic description of cQPL which will be given in
Chapter 5; more details are available, e.g., in [GS90, Win93].

4.4.1 Basic definitions

Definition 4.4.1 (Partial order). A partial order (P,⊑)is a set P on which there is a
binary relation ⊑ for which the following properties hold ∀p, q, r ∈ P :

❏ p ⊑ p (reflexive)

❏ p ⊑ q and q ⊑ r ⇒ p ⊑ r (transitive)

❏ p ⊑ q and q ⊑ p ⇒ p = q (antisymmetric)

Definition 4.4.2 (Upper bound). For a partial order (P,⊑) and a subset X ⊆ P , p ∈ P

is an upper bound of X if and only if ∀q ∈ X : q ⊑ p.
The element p is a least upper bound if:

❏ p is an upper bound of X

❏ For all upper bounds q of X, p ⊑ q

Remark 4.4.1. Note that it follows from the definition that the least upper bound is unique.

Definition 4.4.3 (ω-chain). Let (D,⊑D) be a partial order. An ω-chain of the partial
order is an increasing chain d0 ⊑D d1 ⊑D · · · ⊑D dn ⊑ · · · of elements of the partial order.
Note that ω represents the increasing chain of natural numbers N0.

Definition 4.4.4 (Complete partial order). The partial order (D,⊑D) is a complete
partial order (cpo) if it has least upper bounds of all ω-chains, i.e., any increasing chain
{dn|n ∈ ω} of elements in D has a least upper bound ⊔{dn|n ∈ ω}, written as ⊔n∈ωdn.
(D,⊑D) is a cpo with bottom if it is a cpo which has a bottom element (often also called
least element) ⊥D for which ⊥D⊑ d ∀d ∈ D holds.

Definition 4.4.5 (Directed-complete partial order). A partial order (D,⊑) in which
every directed subset has a supremum is called directed-complete partial order (dcpo).

Definition 4.4.6 (Monotone function). A function f : D → E between cpos D and E

is monotonic if and only if ∀d, d′ ∈ D:

d ⊑ d′ ⇒ f(d) ⊑ f(d′). (4.11)

Definition 4.4.7 (Continuous function). A function f : D → E between cpos D and E

is continuous if and only if it is monotonic and for all chains do ⊑ d1 · · · ⊑ dn ⊑ · · · in D

there holds

⊔

n∈ω

f(dn) = f (⊔n∈ωdn) . (4.12)

26



4.4. Domain theory

4.4.2 A fixed point theorem

Definition 4.4.8 (Fixed point). Let f : D → D be a continuous function on a cpo D

with bottom ⊥D. A fixed point of f is an element d ∈ D such that f(d) = d. A prefixed
point of f is an element d ∈ D such that f(d) ⊑ d.

Theorem 4.4.1 (Fixed-point theorem). Let f : D → D be a continuous function on a
cpo with a bottom D. Define

fix (f) =
⊔

n∈ω

fn(⊥). (4.13)

Then fix (f) is a fixed point of f and the least prefixed point of f , i.e.:

❏ f(fix (f)) = fix (f)

❏ If f(d) ⊑ d then fix (f) ⊑ d

Consequently, fix (f) is the least fixed point of f .

Proof. It follows from continuity of f that

f(fix (f)) = f (⊔n∈ωf
n(⊥)) =

⊔

n∈ω

fn+1(⊥) (4.14)

=
⊔

n∈ω

{
⊥ ∪

{
fn+1(⊥)|n ∈ ω

}}
=
⊔

n∈ω

fn(⊥) (4.15)

= fix (f) . (4.16)

Thus fix (f) is a fixed point because f(fix (f)) = fix (f) is exactly the required property
of a fixed point (adding ⊥ in step 4.15 is justified because the least upper bound is not
influenced by this). Suppose d is a prefixed point. Certainly, ⊥⊑ d. By monotonicity,
f(⊥) ⊑ f(d). But d is a prefixed point, i.e., f(d) ⊑ d, so f(⊥) ⊑ d, and by induction
fn(⊥) ⊑ d ∀n ∈ ω. Thus, fix (f) = ⊔n∈ωf

n(⊥) ⊑ d

Remark 4.4.2. Note that it is customary to define

YD f ≡
⊔

n∈ω

fn(⊥) (4.17)

such that YD is obviously a function (D → D) → D which maps functions to their fixed
points; it is thus termed the fixed point combinator.

Definition 4.4.9 (Scott topology5). 6 Let D be a dcpo. A subset A is called Scott closed
if it is a lower set7 and is closed under suprema of directed subsets.8 Complements of closed
sets are called Scott open; they are the elements of σD, the Scott topology on D.

Theorem 4.4.2. A function f : Dn → Dm is continuous in the sense of definition 4.4.7
(i.e., Scott continuous) if it is topologically continuous with respect to the Scott topology.

Proof. Cf. Ref. [AJ94, Theorem 2.3.4]

The last definition and theorem are quite technical, but we need them for the proof of
Theorem 4.5.4 later on.

5This definition is taken from [AJ94].
6A topological space is a set X together with a collection T of subsets where the empty set and X are in

T , the union of any collection of sets in T is in T and the intersection of any pair of sets in T is also in T .
7A lower set is a finite, non-empty downward-closed subset of a partial order, i.e., {x|x ⊑ y}.
8A subset A of a poset is directed if it is nonempty and each pair of elements has an upper bound in A.
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Chapter 4. Mathematical structures

4.4.3 Constructions on domains

We will use the following constructions on dcpos to create new dcpos:

❏ D1×D2× · · ·×Dn denotes n-tuples respectively cartesian domains. The weaker-than
relation is defined such that

(x1, x2, . . . , xn) ⊑D1×D2×···×Dn
(y1, y2, . . . , yn) ⇔ xi ⊑Di

yi (4.18)

for i = 1, . . . , n and xi ∈ Di, yi ∈ Di.

❏ D1⊗D2⊗· · ·⊗Dn represents the smash product which identifies all tuples that contain
one or more ⊥-elements. Example: (d1,⊥2), (⊥1, d2) and (⊥1,⊥2) are all identified
with a new bottom element ⊥D1⊗D2 for di ∈ Di Formally, the new domain D ⊗ E is
the set

{(x, y) ∈ D × E|x 6= ⊥ and y 6= ⊥} ∪ {⊥D⊗E}. (4.19)

❏ D1 +D2 + · · ·+Dn is the separated sum domain which consists of all elements in Di

together with a new bottom symbol ⊥D1+D2+···+Dn
(usually abbreviated to ⊥D).

❏ The coalesced sum D1 ⊕D2 ⊕ · · · ⊕Dn is similar to the separated sum, but the new
bottom element ⊥D is gained by identifying all elements d1 + d2 + · · ·+ dn (di ∈ Di)
which contain one or more of ⊥Di

.

❏ Lifting is the operation that adds bottom element to a domain D; the result is denoted
by D⊥; continuity is not influenced by this.

We have provided the basic framework required to build the denotational seman-
tics of cQPL. This framework is composed of two parts: On the one hand, we
need an abstract representation of quantum mechanics to account for the phys-
ical properties of the programming language. On the other hand, the concept
of partial orders builds the basis for defining semantic domains, i.e., the space
which will be used to place the equations describing the semantics of cQPL in.
The choice of partial orders for that is especially justified by the fact that fixed
points can be constructively obtained in them. These in turn are required to solve
recursive domain equations that will be needed to give a denotation for several
language constructs of cQPL, most important the communication features.

S
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4.5 cp-Maps and their representation

In quantum mechanics, time evolution is described by transformations of density matrices
with an operator Λ that is called a superoperator [Pre99, NC00, Key02].

Definition 4.5.1 (Superoperator). A superoperator Λ : B(H) → B(H) has the following
properties for all density operators ̺ ∈ D with ̺′ = Λ(̺):

❏ Λ is linear.

❏ ̺† = ̺ ⇒ ̺′† = ̺′ (hermeticity is preserved).

❏ tr ̺′ = 1 if tr ̺ = 1 (trace preserving).
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4.5. cp-Maps and their representation

❏ Λ⊗1 is semidefinite positive (∀n ∈ N : Λ⊗1n ≥ 0), i.e., Λ is a completely positive map.
In other words, this means that Λ is not only semidefinite positive (̺′ is nonnegative
if ̺ is nonnegative) on HA, but also on any possible extension HA ⊗HB.

Note that if dissipative processes (e.g., postselection of observed events) are considered,
the second condition is loosened to tr(̺′) ≤ 1.

4.5.1 Operator-sum representation

Kraus [Kra83] proved a result about the decomposability of completely positive maps which
is ubiquitous in quantum information theory:

Theorem 4.5.1 (Kraus representation theorem). A superoperator Λ as defined in

Def. 4.5.1 can be written as a partition of 1 =
∑N

k=1 A
†
kAk where Ak are linear operators

acting on the Hilbert space of the system such that

̺′ = Λ(̺) =
N∑

k=1

Ak̺A
†
k ∀̺ ∈ D (4.20)

for any density matrix ̺ that represents a mixed or a pure state.

Proof. Cf. Ref. [NC00, Pre99, Kra83]

To illustrate this representation, consider the situation that the system under considera-
tion is in contact with a much larger environment, a common situation for physical problems.
Together, both systems form a closed quantum system. State transformations in this com-
bined system can be described by a unitary transformation U ∈ U(dim(H) · dim(Henv))
where H denotes the Hilbert space of the system under consideration and Henv the Hilbert
space of the environment. Assume that the environment is in a pure state |e0〉 〈e0|.9 The
density operator of the system under consideration after the unitary operation was applied
to the total system can be recovered by tracing out the environment:

̺′ = Λ(̺) = tr(U̺⊗ |e0〉 〈e0|U †) (4.21)

=
∑

k

〈ek|U(̺⊗ |e0〉 〈e0|)U † |e0〉 (4.22)

=
∑

k

〈ek|U |e0〉 ̺ 〈e0|U † |ek〉 (4.23)

=
∑

k

Ak̺A
†
k. (4.24)

In the last step, Ak is defined by Ak ≡ 〈ek|U |e0〉.

Remark 4.5.1. We say that a set of Kraus operators {Ak} implements a cp-map Λ if

∀̺ ∈ D :
∑

k Ak̺A
†
k = Λ(̺). This simplifies the further description.

Theorem 4.5.2. The operation elements of a given superoperator Λ are not unique: If {Ej}
is a set of Kraus operators, then a different set of Kraus operators {Fk} describes the same

9This assumption holds without loss of generality because it can be shown that a system can be purified
by introducing extra dimensions which do not have any physical consequences.
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Chapter 4. Mathematical structures

operation if and only if there exists a unitary matrix U ∈ U(n) with n = card({Ek}) (where
card(X) is the cardinality of the set X) such that

Fk =
∑

j

UkjEj . (4.25)

Note that the shorter set may be padded with zero elements until the cardinality of both
matches.

Proof. Cf., e.g., Ref. [NC00, Theorem 8.2] or Ref. [Pre99].

Remark 4.5.2. Let {Ak} be a set of Kraus operators that represents the cp-map Λ. Note
that if any number of elements Ai is taken from {Ak}, the set still remains a completely
positive map, but is not trace preserving any more.

Remark 4.5.3. Note that superoperators are elements of B(H) which makes it possible to
apply many theorems of linear operator algebra to superoperators. In fact, superoperators can
be used as elements of a Hilbert space as defined in Section 4.2.2. The distinction between
operators and superoperators in physics is therefore in general superfluous.

Remark 4.5.4. It can be shown that the number of Kraus elements needed to express any
arbitrary completely positive map T : B(H1) → B(H2) is bounded by dim(H1) · dim(H2),
confer, e.g., [Pre99, p. 102]).

4.5.2 Equivalence of Kraus operators

The unitary connection between two sets of Kraus operators defined in Equation 4.25 gives
rise to an equivalence relation between such sets. Two sets {Aj} and {Bk} are members of
the same equivalence class if there is a unitary matrix which connects both representations:

A ∼= B ⇐⇒ ∃U ∈ U(n) : Ai =

n∑

j=1

UijBj with i = 1, . . . , n. (4.26)

The set of all sets of Kraus operators inducing the same map Λ is defined in the obvious
way:

K(Λ) ≡
{

{Ak}
∣
∣
∣

∑

k

Ak̺A
†
k = Λ(̺) ∀̺ ∈ D

}

. (4.27)

If we talk about a set of Kraus operators or simply Kraus operators in the following, we
always mean an arbitrary set which is an element of the equivalence class inducing the same
cp-map (i.e., an element of K(Λ)), but will not mention this explicitly every time.

4.5.3 A partial order for Kraus operators

The Löwner partial order [Löw34] for two density operators A, B : B(H1) → B(H2) is given
by

A ⊑ B ⇐⇒ (B −A) > 0. (4.28)

This partial order can be extended to sets of Kraus operators by defining

{Ai} ⊑ {Bi} ⇐⇒∀̺ ∈ D ∀n ∈ N :
(
∑

i

(Bi ⊗ 1n)̺(Bi ⊗ 1n)† −
∑

k

(Ak ⊗ 1n)̺(Ak ⊗ 1n)†
)

> 0. (4.29)
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4.5. cp-Maps and their representation

Partial orders are often interpreted as approximations: If an element A is weaker than
B (A ⊑ B), then A is said to approximate B. This point of view will come handy when we
consider solutions of fixed point equations in the denotational description.

It is necessary for our work to see that Kraus operators form a complete partial order.
For this, observe first the following theorem:

Theorem 4.5.3. The partial order on all density operators ̺ ∈ D given by the Löwner
partial order ⊑ is complete.

Proof. Cf. Ref. [Sel04b, Proposition 3.6]

From this, we can deduce the required statement:

Theorem 4.5.4. The partial order for cp-maps defined by the extended Löwner partial order
given by Eqn. 4.29 is complete, i.e., it forms a cpo.

Proof. Let {A1} ⊑ {A2}, . . . be an increasing chain of topologically continuous (and therefore
monotone because of 4.4.2, 4.4.7 and 4.4.6) Kraus operators. Because of Definition 4.29, the
relation ̺1 ⊑ ̺2 is preserved by applying {A1}, {A2} with {A1} ⊑ {A2} to ̺1, ̺2. An ω-
chain of density operators is conserved if an increasing chain of Kraus operators is applied to
it. Because of Theorem 4.5.3, the fact that the previous consideration applies to all density
operators in D and the uniqueness of the least upper bound, the extended Löwner partial
order is complete as well.

4.5.4 Kraus aggregations

We mentioned that superoperators applied to density matrices describe quantum mechan-
ical processes. Operations performed one after another can therefore be described by the
consecutive application of the corresponding superoperators:

̺′ = Λ1(̺), ̺
′′ = Λ2(̺

′) ⇒ ̺′′ = Λ2(Λ1(̺)) (4.30)

If the sets {A1
k} and {A2

k} implement Λ1 and Λ2, then the same state transformation is
given by

̺′′ =
∑

k

∑

l

A2
kA

1
l ̺A

1
l
†
A2

k
†
. (4.31)

We call a collection of sets of Kraus operators that are to be applied subsequently an
aggregation of (sets of) Kraus operators or simply Kraus aggregation; the Kraus sets involved
are written as a list of the form

Γ = {A1
k}, {A2

k}, . . . , {An
k} (4.32)

The list Γ gives rise to the following quantum mechanical operation:

Γ(̺) = ̺′ =
∑

k1

∑

k2

· · ·
∑

kn

An
kn

· · ·A2
k2
A1

k1
̺A1

k1

†
A2

k2

† · · ·An
kn

† (4.33)

List concatenation is formally described by the operator ◦:

Γ1 = {A1
k}, {A2

k}, . . . , {An
k}, (4.34)

Γ2 = {B1
k}, {B2

k}, . . . , {Bm
k } (4.35)

⇒ Γ1 ◦ Γ2 ≡ {A1
k}, {A2

k}, . . . , {An
k}, {B1

k}, {B2
k}, . . . , {Bm

k } (4.36)
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i.e., the effect of Γ1 ◦ Γ2 on a state ̺ is the same as if first Γ1 and then Γ2 would have been
applied. Note (since this is a potential source of confusion) that the list is “processed” from
left to right, not from right to left!

A Kraus aggregation can also consist of multiple sub-aggregations which are prefixed by
some scalar. Formally, we use the operator + to denote this:

Γ′ = p1 · Γ1 + · · ·+ pn · Γn. (4.37)

If the pi ∈ R are to be interpreted as probabilities, the normalisation condition10 is
∑

n pn ≤ 1. Γ′ can thus be seen as a formal combination of lists. The interpretation of such
an aggregation is straightforward: With probability pk, the Kraus aggregation Λk is selected
whenever Λ′ acts on a density operator. Obviously, lists of this form are apt to introduce
mixed states into the Kraus list formalism. Consider, for example, the aggregation

∆ =
1

2
· {NOT}+ 1

2
· {1}. (4.38)

The effect of it is to apply the unconditional not-operation (which maps |0〉 → |1〉 and
|1〉 → |0〉 and may, for example, be implemented with σ̂x) with probability 0.5 and to leave
the state unchanged with the same probability. If this aggregation is applied to, e.g., the
following (pure) density operator

̺ = |0〉 〈0| , (4.39)

the resulting state is the impure density operator given by

̺′ = ∆(̺) =
1

2
{NOT}(̺) + 1

2
{1}(̺) (4.40)

=
1

2
|1〉 〈1|+ 1

2
|0〉 〈0| = 1

2
{|1〉}+ 1

2
{|0〉} (4.41)

which describes an impure mixture between {|0〉} and {|1〉}.

Remark 4.5.5. Note that we will use Kraus lists prefixed with probabilities to describe
different measurement outcomes when we provide the semantics of cQPL in Chapter 5. The
physical way to think about such operations is to take a density operator ̺ and apply the
Kraus elements for the projective measurements on it; this results in the state

̺′ =
∑

k

Mk̺M
†
k =

∑

k

Em(̺) (4.42)

where Mk are the projection operators and Em(̺) ≡ Mk̺M
†
k . The probability to obtain the

measurement outcome k is given by

p(m) = tr(Em(̺)). (4.43)

The probability factors in Kraus aggregations can be calculated in exactly this way; both
points of view therefore provide the same information.

Note that we allow the pre-factors of the sub-aggregations to depend on parameters which
make the complete aggregation dependent on the disjoint union of the set of parameters used
for the sub-aggregations. This is necessary to describe Kraus aggregations dependent on
probability distributions which are unknown before a initial state is given or the outcomes

10The sum can be smaller than 1 to account for the possibility of non-termination which will happen with
probability 1−

∑
pi. It also allows to describe non trace-preserving effects.
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of some measurements are known. The following example shows a Kraus aggregation where
the first sublist depends on the parameters a1 and a2 and the second on a1 and a3; the
complete aggregation obviously depends on a1, a2 and a3:

Γ(a1, a2, a3) = p(a1, a2) · Γ1 + p(a1, a3) · Γ2. (4.44)

For a Kraus aggregation of the most general form (where {ai} denotes the set of parameters
for the ith sub-aggregation) given by

Γ(∪i{ai}) =
∑

i

pi({ai})Γi, (4.45)

the normalisation condition is obviously still given by

∑

i

pi({ai}) ≤ 1 (4.46)

which necessitates that 0 ≤ pi ≤ 1 ∀i (this is supposed to hold for all p used in the following).

It is possible to contract Kraus (sub-)aggregations which consist of more than one element
to a shorter form because two Kraus sets {Ai} and {Bi} can be contracted to a new set
{Ck} which describes the subsequent application of both initial sets, as the following simple
calculation shows:

({Ak}, {Bi})(̺) = {Bi}({Ak}(̺)) =
N∑

k=1

N∑

i=1

B̂kÂi̺Â
†
i B̂

†
k (4.47)

=
N2
∑

n=1

Ĉn̺Ĉ
†
n (4.48)

with

Ĉn ≡ B̂⌈n/N⌉Ân mod N . (4.49)

Recall that different set cardinalities can be compensated by adding an appropriate number
of zero operators to the smaller set. Since the calculation is valid ∀̺ ∈ D, the new single
element aggregation {Ci} is a unique replacement for the aggregation {Ai}, {Bi}.

Based on this contraction, it is possible to define a standard representation for Kraus
aggregations which is easier to handle formally when aggregations must, for example, be
compared.

With

P ≡
{

{pi({ai})}
∣
∣
∣aik ∈ R∀i, k, 0 ≤ pi({ai}) ≤ 1,

∑

i

pi({ai}) ≤ 1
}

(4.50)

being the set of all possible parametrised probability distributions and

K ≡ { Λ Λ is a cp-map } (4.51)

being the set of all unparametrised Kraus aggregations contracted to the normal form given
by Eqn. 4.48, we can finally define the set of all possible Kraus aggregations formally by

A ≡
{∑

i

piΛi

∣
∣
∣{pi} ∈ P ∧ Λk ∈ K

}

. (4.52)
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4.5.4.1 A partial order for Kraus aggregations

For a Kraus aggregation of the contracted normal form Λ = {Ck}, the definition for a
partial order can be directly transferred from Equation 4.28. If the aggregation contains
sub-aggregations, ⊑ is formally a function dependent on the parameters of the aggregation:
For Γ1 = Γ1(A1, . . . , An) and Γ2 = Γ2(B1, . . . , Bn), the partial comparison Γ1 ⊑ Γ2 be-
comes a function (A1, . . . , An, B1, . . . , Bn) → {true, false}, i.e., the comparison depends on
the parameters of both sets of parameters involved. Note that this does not concern Kraus
aggregations where all coefficients have defined scalar values. Basically, the parametrised
comparision is nothing else than a comparision of all elements of an unfolded Kraus aggre-
gation as defined in Section 5.3.6.2 followed by folding everything back afterwards.

4.5.4.2 Equivalence of Kraus aggregations

One possible task of denotational semantics is to decide wether two programs which look
different perform the same actions, i.e., if their semantics coincide. This question is in
general complicated to answer constructively. Nevertheless, it is possible for some cases. We
will consider this problem in more detail in Chapter 5. At this point, we are interested in
the question when two Kraus aggregations are semantically equivalent, i.e., induce the same
physical operations. The method used for this is almost identical to the method used for
Kraus sets. Consider two aggregations Γ1 and Γ2 given in the contracted normal form, i.e.,

Γ1 =

N∑

k=1

p1kΛ
1
k (4.53)

Γ2 =

N∑

k=1

p2kΛ
2
k. (4.54)

Let Sym(M) by the symmetric group over the finite set M . Both lists are equivalent if
(but not only if) the following condition holds:

Γ1
∼= Γ2 ⇔∃ϕ ∈ Sym([1, . . . , N ])∀k ∈ [1, N ]∀̺ ∈ D : (4.55)

p1k(A
1
k) = p2P(k)(A

2
P(k)) ∧ Λ1

k(̺) = Λ2
P(k)(̺). (4.56)

Note that this equivalence requires that the same Kraus operators are used in both lists; it is
nevertheless possible that a different set of Kraus operators prefixed by another probability
distribution induces the same action. The criterion given here is thus sufficient, but not
necessary.

The set E of all aggregations that are equivalent in this sense can be defined analogous
to Eqn. 4.27:

E(Λ) ≡ { Λi ∈ A Λi
∼= Λ } . (4.57)

This definition is not very satisfying from a constructive point of view: There is no
simple way to systematically decide if the effects of two aggregations coincide. This can be
improved by giving an explicit criterion for the equivalence between two Kraus aggregations.
We consider the special case of two lists which are composed of the same operators, but are
ordered differently. This happens, for example, when statements in a program are reordered.
With the method given below, we can thus get a criterion to decide if such reorderings
preserve the semantics of programs which is a very important case.

Unparametrised Kraus aggregations can always be written in the standard form given
by Eqn. 4.48 and are thus equivalent to a Kraus set; this again is equivalent to some cp-
map Λ. Because we have seen in Section 4.2.2 that such cp-maps form a Hilbert space, it
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is reasonable to define a commutator (analogous to the case of regular operators) for two
Hilbert-Schmidt operators Λ1,Λ2 by setting:

[Λ1,Λ2] ≡ Λ1Λ2 − Λ2Λ1. (4.58)

The following theorem provides a condition for the identity between a list of operators and a
permutation of it which is based on elementary commutators of the elements. Unfortunately,
this is not a general solution since the effect of the theorem might just be to rephrase the
problem in different terms if the structure of the commutators is not apt.

Theorem 4.5.5. Let A1, A2, . . . , An be operators and let ϕ ∈ Sym(n) be a permutation of
the index set. Then the difference between the commuted product Aϕ(1) ·Aϕ(2) · · ·Aϕ(n) and
A1 ·A2 · · ·An can be written as11

Aϕ(1) · Aϕ(2) · · ·Aϕ(n) = A1 · A2 · · ·An +
∑

(s,t)

Xs,t · [As, At] · Ys,t · Zs (4.59)

where (s,t) runs over all inversions of ϕ, i.e., 1 ≤ t < s ≤ n and ϕ−1(s) < ϕ−1(t) and where

Xs,t =
∏

1≤i≤n

ϕ(i)<s, i<ϕ−1(t)

Aϕ(i), Ys,t =
∏

1≤i≤n

ϕ(i)<s, i>ϕ−1(t)

Aϕ(i), Zs =
∏

s<k≤n

Ak. (4.60)

Proof. We prove this statement by induction on the list length. The cases n = 0 and n = 1
are trivial. The induction step n → n+ 1 can be seen as follows. Let j ∈ [0, . . . , n+ 1] such
that ϕ(j) = n+ 1. Then,

Aϕ(1) · Aϕ(2) · · ·Aϕ(j) · · ·Aϕ(n+1) =

Aϕ(1) · · ·Aϕ(j−1) ·Aϕ(j+1) · Aϕ(j) · Aϕ(j+2) · · ·Aϕ(n+1)+

Aϕ(1) · · ·Aϕ(j−1) · [Aϕ(j), Aϕ(j+1)] · Aϕ(j+2) · · ·Aϕ(n+1) = ... =

Aϕ(1) · · ·Aϕ(j−1) · Aϕ(j+1) · · ·Aϕ(n+1)
︸ ︷︷ ︸

I.H.

Aϕ(j)
︸ ︷︷ ︸

A(n+1)

+
∑

n+1,t

Xn+1,t · [An+1, At] · Yn+1,t (4.61)

where 1 ≤ t < n+ 1, ϕ(n+ 1) < ϕ−1(t),

Xn+1,t =
∏

1≤i≤n+1

ϕ(i)<n+1, i<ϕ−1(t)

Aϕ(i), Yn+1,t =
∏

1≤i≤n+1

ϕ(i)<n+1, i>ϕ−1(t)

Aϕ(i)

and n + 1 is obviously fixed. The final resulting equation thus resembles exactly the form
given by Eqn. 4.59, but we have not used the induction hypothesis yet. Now, by using the
induction hypothesis, it follows that

Aϕ(1) · · ·Aϕ(j−1) ·Aϕ(j+1) · · ·Aϕ(n+1) = A1 · · ·An +
∑

(s′,t′)

Xs′,t′ · [As′ , At′ ] ·Ys′,t′ ·Zs′ (4.62)

11This representation (which is much more elegant than the one derived by the author) was provided by
Volker Strehl.
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where the primed identifiers are defined by 1 ≤ t′ < s′ ≤ n, and ϕ−1(s′) < ϕ−1(t′). By
placing this into the part of Eqn. 4.61 marked by I.H., we see that

Aϕ(1) · · ·Aϕ(n+1) =



A1 · · ·An +
∑

(s′,t′)

Xs′,t′ · [As′ , At′ ] · Ys′,t′Zs′



 ·An+1+

∑

(n+1,t)

Xn+1,t · [An+1, At] · Yn+1,t

= A1 · · ·AnAn+1 +
∑

(s′,t′)

Xs′,t′ · [As′ , At′ ] · Ys′,t′ Zs′An+1
︸ ︷︷ ︸

Zs

+
∑

(n+1,t)

Xn+1,t · [An+1, At] · Yn+1,t

= A1 · · ·An+1 +
∑

(s,t)

Xs,t[As, At]Ys,tZs (4.63)

where the unprimed variables are now given by 1 ≤ t < s ≤ 1 and ϕ−1(s) < ϕ−1(t); the
condition for k in Zs is now obviously s < k ≤ n+ 1. The resulting Equation 4.63 has thus
the form for n+ 1 as required by the statement.

To illustrate this theorem (note, additionally, that a little program to calculate all ele-
ments of the commutator sum is available), consider the permutation given by

(
1 2 3 4 5
5 2 3 1 4

)

. (4.64)

The inversions (s, t) are all pairs of elements in the permuted list where a bigger element
is on the left side of a smaller element, in this case: (5, 2), (5, 3), (5, 1), (5, 4), (2, 1), (3, 1).
Note that the inversions characterise the list completely, cf., e.g., [Knu98, Section 5.1.1].
The method defined above is a variant of insertion sort which is a standard sorting method,
covered, e.g., in [SF96]. This can be seen by inspecting the conditions imposed by the
products defining X , Y and Z:

❏ For Xs,t, ϕ(i) < s, i < ϕ−1(t) selects all i such that the corresponding elements in the
permuted list are smaller than the element s of the inversion and are placed on the
left hand side of the element t in the permuted list. For (5, 1), the condition would
select i = 2, 3.

❏ The conditions for Y make sure that again only elements which are smaller than s are
selected. This time, they additionally have to be on the right hand side of t in the
permuted list.

❏ Z specifies all elements which are on the right hand side of s in the unpermuted list.

By applying these rules, we can calculate the following sets for each inversion:

(5, 1) → X : i = 2, 3;Y : i = 5

(5, 2) → Y : i = 3, 4, 5

(5, 3) → X : i = 2;Y : i = 4, 5

(5, 4) → X : i = 2, 3, 4

(3, 1) → Z : k = 4, 5

(2, 1) → Z : k = 3, 4, 5
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This leads to the following identity that is provided by Eqn. 4.59 (note that we use i instead
of Ai to simplify the notation):

52314 = 12345 + 231[5, 4] + 2[5, 3]14 + [5, 2]314 + 23[5, 1]4 + 2[3, 1]45 + [2, 1]345

= 12345 + 23154− 23145 + 25314− 23514 + 52314− 25314 + 23145−
23145 + 23145− 21345 + 21345− 12345

= 12345− 12345 + 23154− 23154 + 25314− 25314 + 23145− 23145+

21345− 21345 + 23514− 23514 + 52314

= 52314

It it also instructive to observe the following two identies because they illuminate the
induction step:

14532 = 12345 + 14[5, 3]2 + 143[5, 2] + 1[4, 3]25 + 13[4, 2]5 + 1[3, 2]45

1432 = 1234 + 1[4, 3]2 + 13[4, 2] + 1[3, 2]4

Remark 4.5.6. Because the proof has only made use of general properties of permutations
and of the definition of the commutator, it is not only applicable to Hilbert-Schmidt-operators
as we need, but also for any other objects fulfilling the mentioned properties.

We have explained how to represent quantum operations by cp-maps and these in
turn by a sum of Kraus operators. The Löwner partial order defined for density
matrices was generalised to Kraus operators; this order is complete and is therefore
a cpo as introduced in the beginning of this chapter. Since the denotational
semantics of cQPL will require lists of Kraus operators, we have introduced Kraus
aggregations to handle this formally. Since it is one of the problems of denotational
semantics to decide whether two given programs are equal or not, we have also
derived general and specific criteria for the equivalence of Kraus aggregations.
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A map is not the territory.

Alfred Korzybski, Science and Sanity – An
Introduction to Non-Aristotelian Systems
and General Semantics

5 Formal denotational semantics
In this chapter, we are going to define a denotational semantics for cQPL, the communication
capable version of QPL [Sel04b]. Before we get into the details, we will give an overview
about the ideas of denotational semantics in general, present a survey of the denotational
semantics of QPL (because we reuse some ideas for the semantics of cQPL) and show why
the approach of annotation-based QPL must fail for communicating programs.

5.1 Fundamentals of denotational semantics

Denotational semantics is a well-understood standard method of theoretical computer sci-
ence which is used to assign precise and mathematically sound and rigorous semantics to syn-
tactically specified programs; introductions are, e.g., given in Refs. [Mos90, Win93, Rey98].
In this section, we will try to present an elementary introduction to the field. We align our
description along the lines of [Mos90, Section 1–3].

Computer programs are (usually) specified in the form of a textual description; this
description must follow certain rules defined by a grammar. Usually, context-free grammars
are used for this purpose because they are the most apt choice for that kind of problem.
They are defined as follows regarding to [AB02, Sch01]:

Definition 5.1.1 (Context-free grammar). A context-free grammar G is a four-tuple
(N, T, P, s0) where N is a finite set of nonterminal symbols, T is a finite set of terminal
symbols with T ∩N = ∅, P ⊆ N × (N ∪ T )∗ is a finite set of productions and s0 ∈ N is the
start symbol.

As a very simple example, consider a grammar for binary strings of the form 0, 01,
100110, . . . which is recursively given by1

B ::= ’0’ | ’1’ | B’0’ | B’1’. (5.1)

The terminal symbols2 are 0 and 1, the non-terminal3 symbol is B, and the start symbol is
1In general, one has to distinguish between abstract and concrete syntax respectively grammars defining

these. The latter is used to specify a representation of programs that can be processed with parsers;
for that, some syntactical elements for disambiguation of certain constructions needs to be introduced.
Additionally, the capabilities and, especially, limitations of different parsing techniques need to be considered
when specifying a concrete grammar. Abstract syntax, on the other hand, is a representation of a program
stripped down to the bare minimum that is able to include all available information; additionally, the
structure of the syntax can be chosen such that it is not most suited for parsing, but for further analysis and
processing of the program. Usually, data structures in the form of trees are used to realise abstract syntax.

2A constant symbol which cannot be resolved any further, cf. Appendix B.
3A symbol whose definition consists of a chain of terminal and (at least one) non-terminal symbols and

can thus be resolved further.
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Chapter 5. Formal denotational semantics

obvious because there is only one non-terminal. The productions are defined by Equation 5.1;
explicitely, they are given by{B × 0, B × 1, B ×B0, B ×B1}.

This grammar defines the syntactical representation of binary numerals. The really
interesting thing, however, is not how numerals look like, but instead what they mean – in
other words, the semantics of numerals. Obviously, the meaning of a binary numeral is some
natural number, so finding semantics for a binary string is equivalent with constructing a
method which assigns the appropriate natural number to a given syntactical representation
of a binary numeral. The constitutional parts of which the grammar is made up of are called
phrases. In our case, these are given by the strings 0 and 1 and the productions B0 and B1.

Denotational semantics assigns a meaning to sentences constructed according to a given
grammar by assigning a meaning to every elementary phrase of a grammar. The meaning of
phrases which are constructed from multiple sub-phrases (e.g., B0 in the example grammar)
is given by the meaning of these sub-phrases. The meaning of a complete program is thus
determined by the meaning of its constituents. The denotational approach is – in a nutshell
– characterised by the following points:

❏ Denotational semantics assigns some appropriate semantic object to every phrase of
the grammar; the object is called the denotation of the phrase.

❏ Valuation functions are used to connect syntactical objects with their semantical coun-
terparts. For example, BIN is a valuation function that maps text strings consisting
of a series of ’0’ and ’1’ to a natural number.

❏ The denotation of compound phrases must only depend on the denotations of the
sub-phrases, i.e., JA1, . . . , AnK = f(JA1K, . . . , JAnK). This is also known as the compo-
sitionality principle.

The valuation functions for binary numerals can be represented by the following equa-
tions:

BIN J0K = 0 BIN J1K = 1
BIN JB0K = 2 · (BIN JBK) BIN JB1K = (2 · (BIN JBK)) + 1

The double brackets JK are used to distinguish between the realms of syntax and seman-
tics, while the valuation function BIN is used to map the phrases in these brackets to natural
numbers, their denotations. Thus, the domain of this function is the semantic domain N.
In Chapter 4, the required material for the specification of domains suitable to support the
denotational semantics of cQPL has been presented; it will be put to use in this chapter.
Especially note that the denotations of the composite phrases B0 and B1 are defined only in
terms of the denotations of their sub-phrases as required by the compositionality principle.

To clarify the effect of the denotational definitions, consider how the meaning of the
numeral 101 is denoted; the abstract syntax generates the tree shown in Figure 5.1 as
representation. This leads to the following denotation (observe that the Bs used in the
equations are not identical):

BIN JBK = BIN JB1K = 2 · BIN JBK + 1

= 2 · BIN JB0K + 1 = 2 · 2 · BIN JBK + 1

= 2 · 2 · BIN J1K + 1 = 2 · 2 · 1 + 1 = 5

Since B = 101, the final denotation is given by BIN J101K = 5. This is precisely the
expected result.
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Figure 5.1: Derivation tree for the binary numeral 101 generated by the abstract
grammar given in Equation 5.1.

5.2 Survey of QPL

The semantics of QPL is based on the idea of annotating a flow graph that represents a
quantum program with density matrices for the quantum mechanical parts and tuples of
probabilities covering the classical components. Additionally, a typing context is used to
keep track of all variables together with their types that are in use at a certain stage of a
program.

Since our work is based on QPL, it seems appropriate to summarise its central concepts.
The original definition of QPL [Sel04b] provides a more detailed description than given
here; an alternative review can be found in [Sch04]. We align our summary on both sources.
Note that it is nevertheless useful to have some familiarity with the paper introducing QPL
because we can obviously not repeat everything here.

5.2.1 Notational conventions

QPL operates on finite-dimensional quantum states represented by vectors over C. The
basis states for qbits are defined as |0〉 = (1, 0)t and |1〉 = (0, 1)t. Combination of multiple
qbits are as usual represented by tensor products of these states. Density matrices are used
as basis for any manipulations performed by the language. If a state is defined by some
vector u ∈ C2n , the corresponding density matrix is given by ̺ = uu† and may also be
denoted by {u}. Mixed states are represented by linear combinations of pure states, e.g.,

λ1u1u
†
1 + · · ·+ λnunu

†
n. Given four matrices A1, A2, A3, A4 of identical dimension, they can

be concatenated horizontally and vertically by

(
A1 A2

A3 A4

)

(5.2)

which is used to specify composite density matrices. This notation is used to specify the
semantics of actions possible in QPL which will be introduced in the following sections.

5.2.2 Language elements

QPL programs are given in terms of quantum flow charts4 where each edge is supplemented
with all the information necessary to unambiguously specify the meaning of a program.
Every edge is augmented with

❏ a typing context, i.e., a mapping from identifiers of variables to the types of these. It
is written as a list of identifiers followed by their type, e.g., a, b, c : bit, d : int. Typing

4There is also a textual representation for programs, but this is only considered as an aside in the
definition of QPL.
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contexts encapsulating variables which are not related to the present considerations
are denoted by Γ.

❏ an annotation, i.e., a tuple of density matrices which specifies the state of the system.

The annotation of a classical bit is given by (A,B) where A + B = 1 and A represents
the probability that the value of the bit is 0, whereas B is the probability that the value is
1. The annotation for a quantum bit is of the form given by Eqn. 5.2.

All classical operations possible with QPL and their flow graph representations are shown
in Figure 5.2. Figure 5.3 depicts the quantum mechanical parts.

Figure 5.2: Summary of all classical operations of QPL, taken from [Sel04b]. Note
that the symbol “=” is used to separate typing context and the anno-
tation, which can be confusing at times because it is not associated
with Γ alone.

5.2.3 Semantics

The semantics of a QPL program can be directly inferred from the flow graph representation.
The explicit transformation of a density matrix given in the annotation of the edges serves
as a unique representation of the meaning of a program. [Sel04b] proofs that this approach
is indeed well-defined and also works for recursion and loops, which can be included into the
language. Categorical structures that allow to accommodate superoperators and morphisms
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Figure 5.3: Summary of all quantum mechanical operations of QPL, taken
from [Sel04b].

to manipulate these according to the possibilities of QPL are used as a formal basis for the
definition of the semantics. This categorical superstructure5 is not too interesting for our
purposes. It suffices to know that the valuation functions for the diverse language elements
are defined as shown in Figure 5.4 and that they indeed fulfil everything which is necessary
for a sound and well-defined interpretation. Note that the way how the semantics is specified
in Figures 5.2 and 5.3 is not equivalent to the method of Figure 5.4: While the first one
relies on explicit transformations of density matrices, the second one uses a more abstract
representation in form of superoperators and is almost completely identical to the basis of
our approach (the functions computed by both approaches of Ref. [Sel04b] are nevertheless
identical except for loops and recursion). Especially, the second variant is compositional,
which is a necessary condition to describe multipartite systems in such a way that the
description of one part is independent of other parts.

5.2.4 Limitation: Quantum communication

Before we lay out the denotational semantics of cQPL, it is advisable to sketch in which sense
the different approaches used in QPL do not work for programs dealing with communication.

5Note that we are only referring to category theory here, not to the compositional semantics presented
by Selinger.

43



Chapter 5. Formal denotational semantics

Figure 5.4: Valuation functions which define the denotational semantics of QPL,
taken from [Sel04b].

First of all, let ̺AB denote the density matrix of the state shared by Alice and Bob.
The information available for each party can be inferred by calculating the partial trace:
̺A = trB(̺AB) and ̺B = trA(̺AB). The bipartite density matrix can never be recovered
from these partial density matrices because there are many bipartite density matrices which
give rise to the same partial density matrices.

One of the goals of denotational semantics is to assign sufficient information to every edge
of a quantum flow graph such that the complete semantics of a program can be reconstructed
by combining only the information given by the edges constituting the program. The deno-
tation of a statement composed of several sub-statements must be completely determined
only by a function of the denotations of the sub-statements.

This is impossible in the annotation-based semantics of QPL because transformations
between explicit density matrices are considered. Since a combination of the partial density
matrices ̺A, ̺B which were manipulated by Alice and Bob does not restore the total bi-
partite state ̺AB, the QPL annotation would obviously not comply with the physical state
afterwards.

A possible solution is the annotation of the complete flow graph, i.e., of both paths
representing the control flow for Alice and Bob. In this case, the operations performed
by Alice and Bob would be written as tensor products of the type Â ⊗ 1B and 1A ⊗ B̂

which act on the complete density matrix ̺AB. This way, we could assign semantics to the
program as a whole, but would loose the ability to construct the denotation of a phrase from
the denotations of its subphrases. This means that the semantics of the complete program
could not be constructed from the denotation of Alice’s and Bob’s program alone which is
in contrast to the key idea of denotational semantics.

Therefore, we need to seek a solution that does not characterise quantum operations by
showing transformations of explicit density matrices, but uses something that captures the
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notion of a transformation in a more abstract sense. Completely positive maps represented
by a set of Kraus operators fulfil this need as we will show in Section 5.3.1; this is basically
the same approach as used for the compositional semantics of QPL. Nevertheless, QPL does
not provide any means of parallel composition, communication and other details which are
necessary to describe quantum communication as we will do in the remaining parts of this
thesis.

We have presented a quick summary of QPL and the associated denotational
semantics which is based on partial orders of density operators. Additionally, we
have shown why this approach is not suitable to describe quantum communication
respectively the interaction of spatially separated systems where the combined
density matrix is not available as whole in the framework of the annotation-based
semantics.
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5.3 Denotational semantics of cQPL

cQPL is an extended variant of QPL with the ability to express and formalise quantum com-
munication, i.e., the ability to describe multiple parallel flow graphs that exchange quantum
and classical information at well-defined points, but do otherwise know nothing about each
other. To achieve this, we have to base the semantic description on three components in
contrast to the two components (typing context and tuples of density matrices) of QPL:

❏ A Kraus aggregation K as defined in Section 4.5.4 which is used to keep track of the
quantum operations performed on the qbits of the system.

❏ A typing context T used to specify which quantum and classical variables are allocated
at a given moment and which data type they have. This is also important to describe
communication because it allows to uniquely determine to which party a variable
belongs at a given stage of a program.

❏ A probabilistic environment mapping identifiers to values. Since the interaction be-
tween quantum and classical parts of the system introduces probability, the values of
classical variables are subject to such a distribution. In general, only the range of
possible values together with the fact that it is governed by a probability distribution
is known in the semantical description.

We refer to these three elements as the three-tuple (K,T,E).
A Kraus aggregation K specifies a quantum mechanical operation which has the same

effect for all density matrices ̺ (in the sense that the application of a Hadamard gate will
yield different effects according to the state it was applied to. Nevertheless, it is still a
Hadamard gate in every case, and this is the really important thing). Thus, the operation
is completely characterised without the need to specify any density matrix at all. This is
exactly what is required when spatially separated operations performed by several parties
on multipartite states are to be described, as we will see later in greater detail.

To realise the benefits of this approach, consider how the generation of a new qbit in
state |0〉 subsequently followed by the application of a Hadamard gate is described in QPL
(we do not show the complete flow graph, but only the relevant parts of the annotation):

Γ = A
create new qbit q−−−−−−−−−−−→ q : qbit,Γ =

(
A 0
0 0

)
apply H on q−−−−−−−−→ q : qbit,Γ =

1

2

(
A A

A A

)
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Although only the newly created qbit is concerned, the state of the remaining system is
still implicitly present in A. This is more than needed: It suffices to consider the application
of two operations given by the following Kraus sets:

{Ci}#q; {Hi}#q (5.3)

where {Ci}#q stands for “create a new qbit with label q” and {Hi}#q for “apply a Hadamard
gate on q”. With these, we can describe the same operation without resorting to a density
matrix or any other part of the system unconcerned by the operation at all.

The typing context T is basically adopted from QPL. An extension to the framework
used by QPL is the probabilistic environment. For every allocated classical variable in the
current frame, it is used to specify a probability distribution that maps the variable name to
the range of possible values. This distribution is parametrised by density operators because
it depends on the initial conditions of the program fragment and on the path taken in the
flow graph (an example explaining this will follow in the next section). The probabilistic
environment could in principle be replaced by the tuples for classical states as used in QPL,
but this works only well for data types with a very low number of bits. Because of this
reason, QPL tries to hide these tuples most of the time, so we eliminate them completely
and replace them by the probabilistic environment.

The probabilistic environment also deals with quantum variables: For every such variable,
the position of the allocated qbits in the global quantum heap is given by the probabilistic
environment. This is necessary because quantum variables cannot be characterised by a
value as it is possible for classical variables because they do not have a state as such. The
state is replaced by the series of operations which have been performed on the variables;
since these operations need some location to act on, every quantum variable needs to have
a unique position on the quantum heap, i.e., where the qbits are stored.

Note that this approach is somewhat contrary to the spirit of functional programming
because it introduces stateful global variables, but a closer examination reveals that QPL
implicitly uses the same model and that compile-time checking (and thus the protection
against runtime errors) is not affected by this.

In addition to allocated variables, branches in programs are also present in the proba-
bilistic environment. They are identified by a unique ID which is assigned to every branching
node.6 This is necessary because the branching conditions – being based on comparisons of
probability distributed quantities – are in general not represented by some fixed values, but
represented by a probability distribution as well.

5.3.1 Formal definitions

In this section, we will present some methods to characterise and describe the semantic
components of cQPL. Note that in the following, we use Dn to denote the set of all density
operators of dimension n, dropping the subscript if the exact dimension is not important or
can be deduced from the context.

5.3.1.1 Typing context

Let σ be a list of numbers ni ∈ N+, i = 1, . . . , k as given by σ = nτ
1 , n

τ
2 , . . . , n

τ
k. σ is also

called the signature of a data type. An associated Hilbert space Hσ is given by

Hσ ≡ H1 ⊗ · · · ⊗ Hk (5.4)

6To be precise: Which is assigned whenever the branching node is transversed because we need to account,
e.g., for branches in loops where the same branch might be traversed multiple times.
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where Hi is either B(H) for quantum or C(X) for classical data (cf. Section 4.3.3) where
both are distinguished by the index τ : τ = q for quantum variables and τ = c for classical
variables. The dimension of the i-th space is given by 2n

q
i for quantum mechanical and nc

i

for classical variables. Since we restrict ourselfs to finite-dimensional Hilbert spaces, this
means that we can use Hi = C

ni for quantum mechanical and X = [0, 1, . . . , ni − 1] for
classical data. To distinguish between both cases, we define the function q : nτ

i → [0, 1]
given by

q(nτ
i ) =

{

1 if τ = q

0 otherwise
(5.5)

Note that although our formalism allows to define data types which consist of both quantum
mechanical and classical components, we do not exploit this possibility because we could
not find any reasonable application for this in our work. To keep the formalism as general
as possible, we will nevertheless still retain the possibility as long as no noteworthy effort is
necessary to do so.

We can define a function tq : σ → N to compute the total number of qbits necessary for
a given signature (card(σ) denotes the cardinality of σ):

tq(σ) =

card(σ)
∑

i=1

q(nk
i ) · nk

i (5.6)

The analogous function tc for the classical components is given by

tc(σ) =

card(σ)
∑

i=1

(1− q(nk
i )) · nk

i (5.7)

Finally, two functions q(σ) and c(σ) to check if a given data type is purely classical or purely
quantum are necessary:7

q(σ) =

{

1 tc(σ) = 0 ∧ tq(σ) > 0

0 otherwise
(5.8)

c(σ) =

{

1 tq(σ) = 0 ∧ tc(σ) ≥ 0

0 otherwise
(5.9)

For simplicity, we label data types required for practical use with special mnemonics; some
examples can be found in Table 5.1. Note that the type void can, for example, be used to
formally describe statements which return no value and thus have no type.

Since two finite-dimensional Hilbert spaces H1 and H2 are isomorphic if the sum over
the dimensions of their subsystems is equal (this is, e.g., proved in [Wei00, Theorem 2.62]),
i.e.,

⊗

k

H1k = H1
∼= H2 =

⊗

l

H2l ⇐⇒
∑

k

dim(H1k) =
∑

l

dim(H2l), (5.10)

the description of types is not unique. For example, the types given by (2q, 2q, 2q, 2q) and
qshort = 8q are identical and provide only different aspects of the same thing. This

7Note that we define a data type consisting of 0 quantum and 0 classical bits, i.e., void, as classical.
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Mnemonic Signature
bit 2c

qbit 2q

short 8c

qshort 8q

int 16c

qint 16q

void 0(c)

Table 5.1: Signatures and the mnemonics commonly used in programming lan-
guages for data types supported by cQPL.

equivalence can also be extended to mixed data types:

nτ
1 , . . . , n

τ
K

∼= mτ
1 , . . . ,m

τ
L ⇐⇒

∑

k

q(nτ
k) · nτ

k =
∑

l

q(mτ
l ) ·mτ

l

∧
∑

k

(1− q(nτ
k)) · nτ

k =
∑

l

(1− q(mτ
l )) ·mτ

l (5.11)

This creates an equivalence class for data types which will be useful in Section 5.3.8. The
class of all data types equivalent to σ is given by

T (σ) ≡







tq(σ)⊕

i=1

inϕ(i)(Ξ#i)q ⊕
tc(σ)⊕

i=1

inϕ(i+tq)(Ω#i)c






(5.12)

such that Ξ ∈ S(tq(σ)),Ω ∈ S(tc(σ)), ϕ ∈ Sym([1, . . . , tq(σ) + tc(σ)])

where M#i denotes the ith element of the ordered set M and S(k) is the decomposition of
the scalar value k into all possible sums given by

S(k) ≡
{

Z is a set with members ∈ N
∣
∣
∣

card(Z)
∑

i=1

Z#i = k
}

. (5.13)

If σ2 ∈ T (σ1), we write σ1
∼= σ2.

To illustrate the effect of Eqn. 5.12, consider a data type which consists of 3 quantum
and 3 classical bits. Structurally, it does not make any difference how these components
are ordered, e.g., (1q, 1c, 2q, 2c) is identical with (3q, 3c) in this sense.8 Eqn. 5.12 is a
generalisation of this idea: The scalar 3 can be decomposed as 1 + 1 + 1, 2 + 1 and 3
as given by S(3), so there is no difference between any of these groupings. Additionally,
it is not interesting how the components are ordered, e.g., (2 + 1) is equivalent to (1 + 2).
Finally, the quantum and classical components can be arbitrarily interchanged, so we have
to consider this as well. The effect of Eqn. 5.12 is to construct all equivalent representations
of a data types following these considerations.

Note that QPL uses a Cartesian product of complex vector spaces given by Cn1×n1 ×
· · ·×Cnk×nk for both classical and quantum mechanical signatures (the set of complex d×d

8Note that there is a difference between these orderings from the compiler’s point of view because the
different components are located at different locations in memory if different orderings are used. The
semantics is nevertheless unconcerned by this.
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matrices is used to represent the complex Hilbert space of dimension d). This does not
reflect the relationship between corresponding quantum and classical objects directly. For
example, the data type for bits is given by bit = (1, 1), whereas for qbits, the definition
is qbit = 2). This leads to appropriate spaces for these objects, but does not present the
relation between them directly.

We thus used a different approach that makes correspondences more clear which is im-
portant when, for example, quantum variables are measured and the result is stored in
a classical variable. Besides, it fits better into the more abstract description of quantum
mechanics as introduced in Section 4.3.

Let Σ be the set of finite strings over the alphabet α. With this and the notion of types,
we can define the typing context used in the semantic description of cQPL.

Definition 5.3.1 (Typing context). A typing context τ is a three-tuple τ = (ι, θ, χ) where
ι is a set of identifiers in Σ, θ is a set of types and χ : ι → θ is a surjective mapping which
assigns a type to every identifier. Identifiers starting with # must not be used by programs.

Because cQPL is strongly and statically typed (i.e., the type of an expression is com-
pletely determined by the types of its components and the type of an elementary component
cannot be changed after it has been declared, cf. Appendix B), information contained in
the typing context cannot be modified any more once it has been introduced. Note that this
does not hinder the possibility of overshading entries. This happens when, e.g., a variable
declared in an inner block has the same name as a variable declared in an outer block.
Although both have identical names, their types do not need to match because they are
otherwise completely unconnected.

Typing contexts are modified when new variables are declared (and thus added to the
context) or when variables are removed from the scope (and thus have to be removed from
the typing context). Since it is obvious how this influences a given context τ , we only note
that it is easy to define appropriate morphisms τ → τ ′ which perform the desired job.

Formally, we use the notation

τ → τ ′ = τ ⊕ (ξ → qbit) (5.14)

to introduce some new identifier ξ with type qbit into the context τ . Equivalently, the
notation τ ⊖ ξ is used to remove ξ which is needed to describe sending quantum variables.

5.3.1.2 Probabilistic environment

The probabilistic environment can be defined formally as follows:

Definition 5.3.2 (Probabilistic environment). Let π be a probability distribution on a
finite set X with probabilities pi for every element of X such that

∑

i pi = 1. Let ι be a set of
identifiers, P be a set of probability distributions and M be a surjective map M : ι → P ∪⊥.
Then E = (ι, P,M) is a probabilistic environment.

As usual in denotational semantics, the symbol ⊥ is used to denote an undefined iden-
tifier, i.e., a variable which is not present in the environment. To specify components of a
probabilistic environment, we use the notation

x
πx−→ range(x) (5.15)

to denote an element of the probabilistic environment where x is the identifier, πx the
associated probability distribution and range(x) the set of possible values which obviously
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depends on the data type of x. Adding a new binding to a given environment E is once more
done with the operator ⊕ which is formally a morphism E = (ι, P,M) → (ι′, P ′,M ′) = E′:

E′ = E ⊕ x
πx−→ range(x) (5.16)

Note that multiple inclusion of variables overrides the previous definition. Thus, the
meaning of

E′ = (E ⊕ x
πx−→ range(x)) ⊕ x

π′

x−→ range(x) (5.17)

is to create a probabilistic environment which contains π′
x as probability distribution for

the variable x. The previous distribution πx can then not be recovered any more in E′.
In direct analogy to Kraus aggregations, probabilistic environments can be combined

with +; the summands are prefixed by some constraint that states which one has to be
chosen with which probability:

p1({c1}) · E1 + p2({c2}) · E2 + · · · (5.18)

where {ci} are the conditions which determine the values of p and
∑

i pi = 1. This construc-
tion is necessary for the description of, e.g., if-conditions when it is not a priori determined
which path will be selected. If both paths of an if-condition perform a modification on the
same variable that already existed before the branch, then the variable will have different
values after the merge point. The entries of the probabilistic environment which record this
assignment are then prefixed by the branching probability. This is also one of the reasons
why the branching probability needs to be kept even after the branched paths are merged
again.

Definition 5.3.3 (Distributivity of ⊕ over +). The operation ⊕ is defined to be distribu-

tive over +, i.e., (E1 +E2)⊕ x
πx−→ range(x) = E1 ⊕ x

πx−→ range(x) +E2 ⊕ x
πx−→ range(x).

This ensures that adding a new binding to a sum of environments results in adding the
binding to all contributing environments automatically.

Remark 5.3.1. This formalism is not equivalent with the functionality introduced by stores
(cf. e.g., [Mos90, Rey98]). It does still not make use of stateful variables per se, but rather
updates the binding of a variable, i.e., the value it is associated with.

Observe that the probabilistic environment is only necessary for classical, but not for
quantum variables: The state (or, rather: the history of all operations performed until the
present moment) of the quantum mechanical constituents of the computation can be recon-
structed with the aid of the Kraus aggregation. Nevertheless, the probabilistic environment
is necessary to keep track of quantum variables in a different way which will be introduced
in a moment.

Note that the view on quantum variables differs slightly from that on classical ones: It
is not only necessary to keep track of the structure of a variable (as is done by the typing
context), but also of the position within the quantum heap – this is necessitated by the
underlying model of computation as introduced in Section 2.2.3.9 The environment can be
used to provide this kind of information by supplying a map

# : ι ∋ v → (i1, i2) (5.19)
9The value of a quantum variable can obviously not be directly stored in an environment because the

state might be in a superposition. The operations performed on the quantum bit are recorded in the Kraus
aggregation and unambiguously specify the state.
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where ik are integer numbers with 0 ≤ ik < Q and Q is the size of the quantum heap. The
tuple i1, i2 denotes the interval [i1, i2] which contains i2 − i1 + 1 quantum bits. Obviously,
the number of qbits allocated in the quantum heap must agree with the number of qbits
necessary for the type of the variable as given by the typing context.

In theory, it is possible to assume that the quantum heap can always be partitioned into
consecutive intervals; we do not need to take care of issues like fragmentation which does
obviously appear in implementations and simulations. We assume that the hardware of the
quantum memory take care of this issue by acting like a memory management unit.10 Note
that if the user is allowed to directly address the components of the quantum heap, it is
possible to cause run-time errors as in QCL. Therefore, we do not allow this.

Consider a subset M = [0, n] of N. The set of all interval partitions is given by11

I(M) ≡ {m ⊆ P(M)|∀n ∈ [1, . . . , card(m)− 1] :

((m#n)#0 − (m#(n− 1))#(card(m#(n− 1))− 1)) = 1} (5.20)

where we suppose that the contents of all sets m#i is sorted in ascending order. This
can be used to formally define how the probabilistic environment can be adapted to the
requirements for quantum variables:

Definition 5.3.4 (Quantum part of the probabilistic environment). Let (ι, P,M) be
a probabilistic environment. It can be extended to fulfil the requirements for the description
of quantum variables by the following construction:

❏ P is extended to P ⊕ (I([0, Q − 1]) ∪ Σ∗) where Q is the total number of quantum
bits present in a system. The set of intervals is used to represent quantum variables
which reside on the local quantum heap, i.e., which were allocated in the module the
probabilistic environment belongs to. Σ∗ is used to denote the originating module for
variables which were received from some other party.12

❏ Let Q = { v ∈ ι q(χ(v)) = 1 } be the set of all identifiers for variables with quantum
data type. Then, M ′ is an injective morphism Q → I for which

⋂
range(M ′) = ∅

(this ensures that quantum variables do not overlap on the quantum heap) must hold.
Then M is replaced by M ⊕M ′ in the previous definition.

Note that this definition reflects a fundamental difference between classical and quantum
variables: While a classical variable is nothing else than a mapping between an identifier
and a value that can be governed by a probability distribution, such a mapping is in gen-
eral impossible for quantum variables because they do not have a value per se, but only a
certain quantum state. To describe this quantum state precisely (disregarding the principal
impossibility of implementing a measurement that delivers this information by inspecting

10This component of a processor creates a view of the available memory such that every application –
roughly – thinks that it would have an own linear address space which is as big as the the one available for
the whole system.

11An example might illustrate this definition: Consider the set {[0, 1], [2], [3, 4]}. This is a proper partition
since no elements overlap and the boundaries are adjacent. These conditions can be ensured by considering
the last element of the ith set given by (m#i)#(card(m#n) − 1) and the first element of the (i + 1)th set
given by (m#(i + 1))#0. If the difference between these is +1, then both the adjacency and no overlap
conditions are fulfilled. If this holds for all subsets, we have a proper partition.

12We have to make sure that every quantum bit in the system belongs to exactly one place in a quantum
heap. This is simple for single-party programs, but gets more complicated when communicating programs
are considered because the case of sending the same quantum bit back and forth between participants must
be taken into account.
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a single copy of a quantum system), one would need an infinite amount of classical infor-
mation because even a simple system such as a qbit takes values in a continuous space as
a consequence of quantum superpositions. This makes the classical approach of mapping
the identifier to a probability distribution of values impossible. Nevertheless, the quantum
variable is completely characterised if its location on the quantum heap together with the
operations performed on its initial state are known.

Remark 5.3.2. Although we retain the name probabilistic environment also for the version
of the environment extended to quantum variables, there are no probabilities involved in the
connection between variable names and the allocated positions on the quantum heap. The
convention just simplifies the notation.

Remark 5.3.3. Support for mixed quantum/classical types would require a little more effort
compared to the case of full separation because with the introduction of such types, the direct
decomposability of the probabilistic environment would not be feasible any more. Neverthe-
less, no fundamental difficulties would be associated with this.

Adding a new quantum variable with name ν which occupies the quantum heap positions
given by (q1, . . . , qn) is written as

E ⊕q ν : (q1, . . . , qn) (5.21)

Removing a quantum variable is denoted by ⊖q; this is required when qbits are trans-
mitted and thus cannot be accessed any more (we drop the index if there is no danger of
confusion). Note that there is no need for a corresponding operation for classical variables
because overlays provide the required functionality, as will be shown later.

5.3.1.3 Kraus aggregations

We can directly adopt the definition of Kraus operators as given in Section 4.5.4. Nothing
needs to be modified for our purposes (note that the composition of two Kraus aggregations
was denoted by ◦ instead of ⊕ as used for the other elements of the three-tuple (K,T,E) to
avoid confusion with the symbol + used to combine sub-aggregations).

It is possible to show that this semantic framework can be used to formalise standard
QPL, but we omit the details here.

We have introduced the structures which are necessary to specify the denota-
tional semantics of cQPL; they fulfil the required properties as described in Chap-
ter 4. The semantic framework consists of three components: A Kraus aggregation
which is used to store all quantum mechanical operations performed by commands
of cQPL, a probabilistic environment which maps identifiers to values (possibly
governed by a probability distribution) and provides mechanisms to ensure that
quantum variables do not interfere with each other, and a typing context whose
information is the basis for compile-time correctness checks of programs. These
are grouped in a (K,T,E) tuple which will be omnipresent in the following. Ad-
ditionally, we have derived some criteria for the identity of data types.

S
u
m
m
ar
y

5.3.2 Some examples

Before we commence to extend the formal definitions for multipartite systems, we want to
demonstrate the introduced concepts with some examples which should aid the reader to
see the rationale behind their definition.
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5.3.2.1 Semantics of sequential programs

Consider the following program fragment which applies a Hadamard matrix to the quantum
variable p or q depending on the result of a branch based on a comparison of two classical
variables x and y:

if (x > y) {

q *= H;

}

else {

p *= H;

};

The flow graph representation of the fragment is given in Figure 5.5. To shorten the anno-
tation of the edges and to avoid repeating the same information over and over, we introduce
the injection functions ini. ini are 0-based injections into the ith element of an n-tuple. If we
want to add the contribution {U} to the element K of the tuple (K,T,E) = ξ, we can write
this as ξ ⊕ in0({U}). The initial (K,T,E) tuple of the example flow graphs is abbreviated
by ξ; modifications derived from this are denoted by ξ′, ξ′′, . . ..

{{Γ}} ; {τ ;x, y : int; p, q : qbit} ;
n

E ⊕ x
πx−−→ range(x); y

πy

−−→ range(y)
o

≡ ξ

x > y Unique node ID #42

ξ′ ≡ ξ ⊕ in2(#42 → true)
⊕ in1(#42 : bit)

p∗ =H

ξ′ ⊕ in0

`

{H}#p

´

ξ′′ ≡ ξ ⊕ in2(#42 → false)
⊕ in1(#42 : bit)

q∗ =H

ξ′′ ⊕ in0

`

{H}#q

´

Implicit merge for branch #42

n

p (val(#42) = true) ·
“

{Γ} ; {H}#p

”

+ p (val(#42) = false) ·
“

{Γ} ; {H}#q

”o

;

{τ ;x, y : int; #42 : bit; p, q : qbit} ;
n

E ⊕ x
πx−−→ range(x); y

πy

−−→ range(y); #42
π#42
−−−−→ range(#42)

o

Figure 5.5: Flow graph of a simple branching operation to demonstrate the ele-
ments of the semantic framework: A 3-tuple (K,T,E) is used to an-
notate every edge of the graph; K is a list (or aggregation) of Kraus
operators, T is the typing context and E the probabilistic environment.
Note that the annotation of the graph uses several abbreviations as
defined in the text.

The initial configuration of the 3-tuple (K,T,E) is given by Γ (initial list of Kraus
operators), E (probabilistic environment) and τ (typing context). We don’t care about
their contents in detail, they can represent the semantics of any valid program fragment that
might be placed before our example. Things which are of interest for our code fragment are:
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❏ The two classical variables x and y, both of type int.

❏ The probability distributions πx, πy which map the variables x and y to a value con-
tained in [0, 2bits per int − 1].

The probability distribution for classical variables arises because we work with Kraus op-
erators describing quantum operations instead of density matrix transformations. Consider
the measurement of a single qbit whose result is stored in a classical bit variable: We know
that the range of the measurement outcome is {0, 1}, but we don’t know with which proba-
bility the “0” and the “1” will appear because we do not have an explicit density matrix to
describe the qbit. This piece of information can only be gained when the final semantics of
the program (in form of a total set of Kraus operators) is “applied” to a well-defined initial
configuration; only then quantitative statements about the distribution are feasible. All we
know is that the measurement result x will be governed by a probability distribution πx

with a certain well-defined range, so we preserve that information.
Since the values of x and y are given by a probability distribution, the result of the

comparison x > y (with outcome range {true, false}) can only be specified by another
probability distribution which can be deduced from πx and πy. Since we need to reference
the outcome of the comparison at a later point in the flow graph (when the two edges of the
branch are merged), a unique identifier for the node is created (#42 in this case) and the
probabilistic environment is extended accordingly.

Depending on the outcome of the comparison, a Hadamard gate is applied on either p or
q. This does not change the probabilistic environment or the typing context, but is recorded
by placing an appropriate Kraus operator in the Kraus aggregation (#p and #q denote the
position of the quantum bits in the quantum heap).

After every if-then-else construction, an implicit merge operation which unites the two
branches takes place. The probability distribution of the branching condition is preserved
in the probabilistic environment under the label assigned to the branch statement; the
Kraus aggregation is transformed into a sum that formally resembles a mixed state: With
probability val(#42) == true (which is the probability that x > y evaluated to true),
the operation {Γ̂}; {H}#p was performed, while with probability val(#42) == false, the

operation was {Γ̂}; {H}#q.

5.3.2.2 Communication with EPR pairs

Consider the following (pseudo-)code which describes how Alice creates an EPR pair and
transmits half of it to Bob:

module Alice {

new qbit p := 0;

new qbit q := 0;

createEPR(p,q);

send q to Bob;

new bit b := measure(p);

if (b) { ... } else { ... };

};

module Bob {

receive m from Alice;

new bit b := measure(m);

if (b) { ... } else { ... };

};
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The corresponding flow diagram is given in Figure 5.6.

new qbits p, q := 0

createEPR(p, q)

n

{Γ} ; {C}p ; {C}q {EP R}#p,#q

o

;

{τ; p, q : qbit} ; {E}

send q

nn

Γ′
oo

;

{τ; p : qbit} ; {E}

measure p
ID: #23

receive m
nn

Γ′′
o

; {R}#m

o

;
n

τ′; m : qbit
o

;
n

E′
o

measure m

ID: #42

Figure 5.6: Flow diagram which describes the creation of an EPR pair by Alice;
she keeps the first half, while the second half is sent to Bob. Af-
terwards, both of them measure their qbit. {Γ′} is a shorthand for
{Γ}; {C}p; {C}q; {EPR}#p,#q, {Γ′′} is the initial Kraus aggregation
of Bob, τ and E respectively τ ′ and E′ are the initial typing contexts
and probabilistic environments of Alice and Bob.

Note that the labelling formalism is reduced to the basic necessities in this example
in order to emphasise the central elements. Because Kraus operators are used to describe
the quantum mechanical operations, it is possible to perform spatially disjoint actions by
parties who do not know the total state. When the edges are merged together, the operations
performed by Alice and Bob can (as was mentioned before) be factorised as Â⊗1B, 1A⊗ B̂

for the combined semantics of both branches; the total density matrix is not involved in this,
contrary to annotation-based QPL. The framework to generate the semantics of the total
system from the semantics of the components will be introduced in the following section.

5.3.3 Extension to multipartite systems

Since we want to consider the formal semantics of programs which deal with communication,
we need to extend the previous definitions to the multi-party case. For this, observe that
the number of participants can naturally be assumed to be finite which makes it possible to
label each party with a unique identifier of finite length. For formal simplicity, we assume
that the set of labellings for participants Lc is disjoint with the standard labels used for
variables, i.e., Lc ∩Σ∗ = ∅. Let Lc(i) denote the unique label given by the ith entry of Lc.

Assume that we have n communicating parties which are labelled with l1, . . . , ln ∈ Lc.
According to the principle of compositionality (we will explain this for the context of com-
munication in more detail in Section 5.3.6.4 on Page 70), there is a three-tuple (K,T,E)
for every participant, i.e., (K1, T1, E1), . . . , (Kn, Tn, En). The combined three-tuple for the
complete system is then given by

(⊗n
i=1Ki,⊗n

i=1Ti,⊗n
i=1Ei) (5.22)
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We will consider how the tensor product needs to be defined for each component to
provide a sound basis for our further needs.13

5.3.3.1 Kraus Aggregation

Consider, for simplicity, two Kraus aggregations

Λ1 = {A1
k}, {A2

k}, . . . , {An
k} (5.23)

Λ2 = {B1
k}, {B2

k}, . . . , {Bm
k } (5.24)

(in case of n 6= m, the shorter list can be padded with zero elements so that m = n can
be assumed, but note that it is only for notational convenience). If both lists operate on a
disjoint set of qbits, i.e., no send/receive (pseudo-)operations are contained in the lists, then
∀i, j : [{Ai

k} ⊗ 1B,1A ⊗ {Bj
k}] = 0 holds. The Kraus aggregation for the composite system

can be written as:
Λ1 ⊗ Λ2 = {A1

k} ⊗ {B1
k}, . . . , {An

k} ⊗ {Bn
k } (5.25)

Note that members of type {Ak} ⊗ {Bk} can be written as {A} ⊗ 1B + 1A ⊗ {B}. If this
is done for all list elements, we see that all combinations of A ⊗ 1 with 1 ⊗ B commute;
this induces many equivalent orderings of the lists – in addition to the normal commutative
equivalences as given by Eqn. 4.57 for the sublists – which needs to be considered when
multi-party aggregations are tested for semantic equality in Section 5.3.5.

Formally, the equivalence class of compatible Kraus aggregations for two independent
parallel systems is given by

{
n⊕

i=1

inϕ(i){Ai
k} ⊗ 1B ⊕

n⊕

i=1

inϕ(n+i) 1A ⊗ {Bi
k}
}

(5.26)

with ϕ ∈ Sym(2n) : ϕ(i) < ϕ(i + 1)∀i ∈ [1, . . . , n] ∧ ∀i ∈ [n+ 1, . . . , 2n]

where the additional constraints on the permutation make sure that the order of {Ai
k}

and {Bi
k} is preserved. We can generalise this approach to n Kraus aggregations given

in the contracted normal form (padding is applied as usual to compensate for different
cardinalities):

Definition 5.3.5 (Tensor product for Kraus aggregations). Let Λ1 =
∑N

k1=1 p
1
k1
Λ1
k1
,

. . . , Λn =
∑N

kn=1 p
n
kn
Λn
kn

be Kraus aggregations in the contracted normal form. The tensor
product of these is given by

n⊗

i=1

Λi ≡
N∑

k1=1

· · ·
N∑

kn=1

p1k1
· · · pnkn

· Λ1
k1

⊗ · · · ⊗ Λn
kn

(5.27)

Note that the naming of qbits changes when multipartite systems are merged. For Kraus
sets which symbolically refer to qbits, the labels must be updated accordingly (the exact re-
naming scheme is given in Definition 5.3.6). Two aggregations are equivalent if they are
member of the same equivalence class as given by Eqn. 5.26 or member of the equivalence
class given by the same formula, but induced by a compatible ordering of one or more of Λi

as defined by Eqn. 5.25.

Note that we will show in Section 5.3.6.4 how send and receive operations can be inte-
grated into this formalism.

13Note that although formally, different tensor products are used for each element of the (K,T,E) tuple,
we use the same symbol for all of them to simplify notation.
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5.3.3.2 Typing Context

Definition 5.3.6 (Tensor product for typing contexts). The tensor product of n typing
contexts (ι1, θ1, χ1), . . . , (ιn, θn, χn) is given by

n⊗

i=1

(ιi, θi, χi) =

(
n⋃

i=1

Lc(i)ιi,

n⋃

i=1

θi,

n⋃

i=1

Lc(i)χi

)

(5.28)

where Lc(i)M denotes a set which contains all elements of M prefixed by the unique
identifier Lc(i); Lc(i)χ denotes the morphism χ adapted to the new naming scheme.

5.3.3.3 Probabilistic Environment

The probabilistic environment can be adapted to multipartite systems analogous to the
typing context, i.e., by prefixing the variable names with appropriate labels and adapting
the morphism used to connect the set of identifiers with the set of data types. Obviously,
the prefix for each subsystem must be the same as used for the typing context.

The quantum part needs to be modified as well: The local quantum heaps must be united
to a single one; necessarily, the positions of all variables on the new heap still need to be
disjoint. This is simple to achieve: If E0 uses the range [0, n1] and E1 the range [0, n2], the
new range is given by [0, n1 + n2 + 1] and the morphism M ′ needs to be adapted such that
the mapping remains unchanged for variables originating from E0 and the constant offset
n1 + 1 is added to its codomain for variables originating from E1.

14 Likewise, the function
# which associates variable names with quantum heap positions needs to be updated such
that the modified variables names are mapped to the modified positions.

We will not consider the renamings any more in the following parts, but just take them
as given; this simplifies the notation considerably.

5.3.3.4 Quantum channels

Quantum channels are used to exchange information between processes.15 Although not
only quantum data, but also classical variables can be sent, we restrict our considerations to
the first case because the second one is not too interesting from a physical point of view and
would only obstruct the view on the central elements. In particular, classical communication
can be seen as a special case of quantum communication (cf., e.g., [Key02, Section 6.2.2]),
hence the generality of the approach does not suffer from this restriction). Besides, the topic
of classical communication has been investigated in classical programming language theory
for a long time, so we can refer the reader to the wealth of existing literature about this
topic, e.g., Ref. [Rey98].

We have already introduced quantum channels informally in Section 2.2.3.1; here, we
consider the concept formally.

Definition 5.3.7 (Quantum channel). A quantum channel is a five-tuple (O,D,S,R,F)
where O is the origin and D the destination for a quantum variable (these can, e.g., be

14Note that both local quantum heaps could have already used the full number of available quantum
bits (Q); we do not consider this problem any further because it is alway possible to limit the number of
quantum bits for n communicating systems to n·Q because both n and Q are finite. We are not too concerned
about this problem because we always assume that there are enough qbits available. The reason behind
the restriction to a finite, but fixed number of qbits is to ensure the boundedness of all Kraus operation as
explained in Chapter 4.

15A user in a real-world implementation is nothing else than a process in the simulation. We thus use
both terms interchangeably.
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represented by processes), F is a FIFO16 containing objects of type (̺, σ), S is a morphism
to place two-tuples (̺, σ) in F and R is a morphism to retrieve two-tuples (̺, σ) from F .
As usual, ̺ represents the density matrix of a quantum variable and σ the associated type.

Thus, the quantum channel can be used to make sure that not only typing is guaranteed
to be preserved along communication (for this, confer further Section 5.4), but also that
quantum data does not appear multiple times in a composite system at the same time
which is necessary to avoid unphysical situations in the simulation.

Remark 5.3.4. Note that quantum channels are only necessary when the parallel composi-
tion of two or more processes is considered. For single modules, the functions used to deposit
respectively request information from the channel together with an abstract representation of
the channel (e.g., an identifier) are sufficient.

Remark 5.3.5. Also note that most descriptions of quantum communication protocols do
not consider typing of the exchanged data explicitely, it is nevertheless implicitly implied by
the physical realisation of the protocol, e.g., in the measurement process, by the hardware
used to realise the communication channel or in the way the quantum part is implemented
in general.

5.3.4 Existence of fixed points

Because fixed points are important for the denotational description, we need to prove the
following theorem which states a condition for the existence of such. In the following, the
condition can shown to be fulfilled for every element of the semantics.

Theorem 5.3.1. Let T be a linear operator D → D acting on a complete partial order D

with bottom ⊥D. If T is bounded, then a fixed point of T exists.

Proof. Since T is bounded, we can see from Theorem 4.2.1 that it is continuous as well.
Topological continuity implies Scott continuity as was shown in Theorem 4.4.2. The exis-
tence of a fixed point is now given by Theorem 4.4.1, as required.

Remark 5.3.6. Note that the same proof could have been deduced at a slightly more abstract
level using the notion of a pointed dcpo, i.e., a dcpo with a least element. For structures
fulfilling this condition, Theorem 2.1.19 in [AJ94] ensures that the desired least fixed points
exist. Ref. [Sel04b] uses a somewhat similar reasoning in the description of recursive proce-
dures where the existence of least fixed point solutions for these is explained by the fact that
for Scott-continuous endofunctions on pointed complete partial orders, these always exist.

Remark 5.3.7. For those who want to be extra sure, the classical fixed point theorem by
Schauder which states that any continuous map with a countably compact image on a com-
pact, convex subset of a Banach space has a fixed point could also be used to derive the
required property of cp-maps.

We will need fixed points to solve recursive equations which occur in denotations spec-
ified by recursive equations. These are required for loops and the combined semantics of
communicating systems.

16First in, first out queue. Informally, this is a queue where objects can be put in on one side and taken
out on the other side. The object which is put in first comes out first, the second one comes out second etc.
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5.3.5 Types of interpretational equivalence

The term “equivalence” is not unambiguous without further specification. Under which
conditions can two programs or, respectively, the denotations of two programs be considered
as equivalent? QPL has to distinguish between two different types of equivalences as noted
in [Sel04b, Section 6.6]; likewise, we can define several types of equivalence:17

❏ Two programs are textually equivalent if there is a bijective mapping between the set
of all variables the programs use and for every constituent of program A, there is a
constituent of program B such that Ai = Bi, i.e., the programs are identical already
at the level of the syntax. The ordering of these constituents must be identical.

For example, the two program fragments new int a; a:=1; and new int b; b :=

1; are equivalent because the sequence of commands is identical if the replacement
a ↔ b is applied to the variables.

❏ Two programs are denotationally equivalent if their denotations are identical.

The second definition only shifts the problem because it leaves the question of how
to identify equivalent denotations. This is problematic for cQPL because we do consider
multiple representations of superoperators which have identical effects; some care needs to be
taken to exactly specify the meaning of “identical” in this setting. Denotational equivalence
can be refined to the following cases for cQPL:

❏ Direct denotational equivalence: We can distinguish three different scenarios which
exhibit direct denotational equivalence for (K1, T1, E1) and (K2, T2, E2) given as de-
notations of A1, A2:

1. card(K1) = card(K2), ∀i ∈ [0, . . . , card(K)[: K1i = K2i and E1 = E2, T1 = T2.
This means that both programs have have the same number of Kraus sets as
denotation, the probabilistic environment and the typing context contain the
same information and the denotations of the statements are pairwise identical.

2. E1 = E2, T1 = T2, card(K1) = card(K2), ∃ϕ ∈ Sym(n) : ∀i ∈ [0, . . . , card(K)[:
K1i = K2ϕ(i) such that the sum of commutator products calculated according to
the method given in Section 4.5.4.2 vanish identically, i.e., only permutations with
vanishing commutator have been used. This equality holds if only commuting
statements have been exchanged to match the lists, the total denotation is thus
identical.

3. ∀̺ ∈ D : (K1, T1, E1)(̺) = (K2, T2, E2)(̺) where (K,T,E)(̺) means the applica-
tion of the Kraus set in K on ̺ where the information contained in E is utilised
to construct the proper superoperators because the exact representation of K in
general depends on information given in T and E. Note that the initial state
resolves any symbolic parametrisations which may be present in K.

The first condition obviously implies the second and third condition; the second implies
the third, but the other direction is not true in general, so equivalences of decreasing
strength are defined by this enumeration.

❏ Heap-permutative respectively variable-permutative denotational equivalence is given
if there exists a permutation of the quantum heap positions (respectively the variable
names) such that direct denotational equivalence holds. These permutation schemes
can be used to align different probabilistic environments to each other.

17Note that our definitions of equivalence do not coincide with the types of equivalence given by Selinger.
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Chapter 5. Formal denotational semantics

Note that textual equivalence implies denotational equivalence, but the converse state-
ment is not valid in general.

A last form of equivalence that needs to be considered concerns the parallel execu-
tion of programs. If {Ai} represents a set of n communicating modules, the order in
which the subsystems are given does not make any difference, i.e., JA1||A2|| · · · ||AnK ∼=
JAϕ(1)||Aϕ(2)|| · · · ||Aϕ(n)K for any ϕ ∈ Sym(n) and an according update of the references to
the other subsystems Ak, k 6= m in Am for all m. Likewise, relabelling of communicating
modules does not change the meaning of parallel execution if the reference names in all par-
ticipating modules are updated correspondingly. This type of equivalence can be referred
to as communicative equivalence.

The problem of how to detect equivalence between different representations will emerge
several times in the following remarks and is not easy to solve constructively.

We have augmented the definitions of the semantic basis (K,T,E) with the ele-
ments required to represent communicating systems, i.e., cQPL programs which
are generally independent of each other, but can exchange quantum mechanical
and classical data in a well-defined way. Additionally, we have shown that fixed
points exist in this framework; they are necessary to assign semantics to numerous
components of the language as explained in Chapter 4. Criteria for the equiva-
lence of cQPL programs were specified as well; this allows to check if programs
which are specified by different sequences of commands have the same effect.

S
u
m
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y

5.3.6 Semantics of the language components

Chapter 2 gave an informal18 introduction the the language elements of cQPL. In this chap-
ter, we will use the mathematical and semantical formalism introduced in the preceding
sections to give a rigorous mathematical meaning to these statements. By the composition-
ality of denotational semantics, this means that all cQPL programs (which are, necessarily,
composed of cQPL statements) have a defined semantics. There are two possible represen-
tations for cQPL programs in form of textual descriptions and graphical flow charts; we
resort to the particular representation that is more convenient for the desired purpose in
the following remarks. Establishing a formal correspondence between both possible repre-
sentations of cQPL is obvious and follows exactly the argumentation used in [Sel04b]; we
will thus not bore the reader with details on how to relate both representations uniquely.

Note that we try to keep the purely classical formalism as terse as possible because
most problems related with this are not too interesting from a physical point of view. More
elaborate descriptions or gentle introductions can be found, e.g., in Refs. [Mos90, Rey98,
Win93].

5.3.6.1 Some notational remarks

Some conventions and notations widespread in semantics are uncommon in physics, thus we
want to make two short remarks before proceeding further.

Typed lambda calculus Computer science literature habitually uses the typed lambda
calculus (cf., e.g., [RP02]) to formulate the equations for valuation functions; this is useful to

18It should be noted that although informal may sound a little fuzzy, such a description is normally the
maximal level of accuracy with which users of programming languages (and in most cases, implementors as
well) are confronted.
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not only clarify which parameters are used, but also to determine their type. We, in contrast,
use a different notation. Observe, for example, the denotation of the dyadic operator + which
adds two natural numbers:

DOJ+K(n1, n1) = sum(n1, n2) (5.29)

It is intuitively clear that we are talking about a function which takes two natural numbers
as arguments and computes another natural number as result. Nevertheless, we did not
formally specify the data types of the arguments nor of the result of the function.

This can be solved by using the typed lambda calculus in which the function would be
written as:

DOJ+K = λn1 ∈ N.λn2 ∈ N.sum(n1, n2) (5.30)

This very simple example already demonstrates that the representation requires a consider-
able notational effort. Since nearly all valuation functions for the semantics of cQPL defined
in the following require (K,T,E) tuples in addition to the effective parameters, this would
unduly inflate the length of equations which does not really increase lucidity. Thus, we
stick to a simplified notation which follows the algebraic convention for functions as pre-
sented above. The domains where parameters originate from are normally clear from the
context; we will mention it explicitely should this not be the case since typing is obviously
not explicitely part of the simplified description.

Currying/Schönfinkeln Another point we want to mention is the insight that functions of
more than one parameter may always be composed by a number of subsequent functions
which take exactly one parameter. Thus, a function f(x1, x2, x3) = y with xi, y ∈ N which
is an element of (N×N×N) → N can also be seen as a mapping (N→ N→ N) → N, the
parentheses may also be omitted. The technique of transforming a function with multiple
arguments into a function which takes only one argument, but returns another function
which requires the remaining arguments and returns the result is conventionally termed
currying, although it was first introduced by Schönfinkel [Sch24]. The process can obviously
be repeated so that there are only functions left which take exactly one argument. In the
following, we will use the form which is more apt for the respective purpose.

5.3.6.2 State transformations and fixed points

Valuation functions for top-level elements of cQPL (i.e., those for expressions) work on a
three-tuple (K,T,E) and produce a new three-tuple (K ′, T ′, E′) as we will see in the course
of the following remarks. Thus, these tuples form the domain which is the basis of semantics.
Since we will need fixed points as solution of several recursive domain equations, we need to
show how to calculate them for (K,T,E) tuples. We have already shown that fixed points
exist for Kraus aggregations which fulfil certain conditions. Now, we need to transfer this
to (K,T,E) tuples.

For this, note that the typing context is not involved in the calculation of fixed points:
Its purpose is to ensure well-typedness of programs (which will be explained in more detail
in Section 5.3.8) and (as a consequence) to make sure that ownership of qbits is unique.
Otherwise, it has no semantical meaning.

To consider the contribution of the probabilistic environment, observe that we could do
without it in principle by using a different notation as is, for example, the case in QPL
(we did not adopt this approach because it quickly leads to very long annotations which are
cumbersome to handle; additionally, our approach has a greater similarity with the standard
notation commonly used in denotational semantics). For every possible value of a variable
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in the probabilistic environment, a specific Kraus aggregation can be inferred. Consider
a measurement of two qbits whose result is stored in a classical variable of two bits. A

probability distribution x
πx:PROJ (q,T )−−−−−−−−−−→ [0, 1, 2, 3] is stored in the probabilistic environment

where PROJ (q, T ) represents the information that the quantum variable q contained in
the typing context T was measured (this will be covered in more detail in Section 5.3.6.4
on page 69). Since the exact form of the probability distribution depends on the state of
the measured variable about which nothing is known in the worst case (if, e.g., the variable
was received from a remote party which did not characterise it any further), we have to
account for all possible cases, i.e., for all values the variable can have in principle. Let
{Γ}; {M}#q be the contents of the Kraus list K from the (K,T,E) tuple immediately after
the measurement where {M}#q denotes the Kraus set for a projective measurement. This
list can with the help of the probabilistic environment be rewritten into a four-tuple

({Γ}; {P0}, {Γ}; {P1}, {Γ}; {P2}, {Γ}; {P3}) (5.31)

where {Pi} = |i〉 〈i| is one of the projection operators which constitute the POVM elements
of the measurement. Note that the Kraus aggregations contained in tuples of this kind are
always unparametrised.19

If there is now an operation performed which is independent of the measured variable, the
contribution to the Kraus set is appended to all list components in this picture. Consider, for
example, the application of some operator U to another quantum variable v. The resulting
four-tuple of Kraus aggregations then looks like:

({Γ}; {P0}; {U}#v, {Γ}; {P1}; {U}#v, {Γ}; {P2}; {U}#v, {Γ}; {P3}; {U}#v). (5.32)

The first entry belongs to the case that x = 0, the second to x = 1, and so on. Obviously,
it is much simpler to write this in our notation as

({Γ}; {M}#q; {U}#v) (5.33)

from which the tuple representation can be reconstructed. This also works if operations
are considered that depend on the state of a classical variable governed by a probability
distribution. Consider, for example, the case that an operator U is applied to some quantum
variable v if the value of x is 2 (the program code for such an operation would be if (x = 2)

then v *= U;). In our notation, the branching condition is preserved in the probabilistic
environment as shown in the example given by Figure 5.5. From this information, the
corresponding tuple representation

({Γ}; {P0}, {Γ}; {P1}, {Γ}; {P2}; {U}#v, {Γ}; {P3}; ). (5.34)

can be constructed. Note that U is only applied in the case x = 2.
The transfer from our representation to tuples of Kraus aggregations is easier when

classical variables with defined values and no associated uncertainty are considered, so we
will not show an explicit example for this.

As the forgoing considerations have demonstrated, the probabilistic environment and
the Kraus aggregation contained in the (K,T,E) tuple can be used to construct a tuple of
Kraus aggregations where the tuple contains one entry for every combination of values the
classical variables can be in. Fixed points of (K,T,E) triples must therefore be calculated
separately for all possible Kraus aggregations that can be constructed from the triple because

19This kind of split is one of the reasons why it is more convenient to work with Kraus representations of
cp-maps instead of the cp-maps alone which would also be possible in principle.
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each of them represents another possible meaning of the program. This is possible with the
methods introduced before. After the fixed points have been derived, the usual (K,T,E)
representation can be used again. Thus, calculation of fixed points effectively only requires
the properties of Kraus sets as introduced before. In the following, we need thus only make
sure that the conditions for the existence of fixed points of Kraus aggregations as given in
Theorem 5.3.1 are fulfilled to ensure the existence of fixed points for (K,T,E) tuples.

5.3.6.3 Classical operations

The classical subsystem of cQPL consists of the following parts:

❏ Allocation and (implicit) deallocation of classical variables.

❏ If-then-else expressions.

❏ While-loops (this and the previous point require the evaluation of boolean conditions
which must also be accounted for by the semantics).

❏ Sequential composition.

❏ Do-nothing-operation (skip).

❏ Sending and receiving of classical states.

❏ Assignment to classical variables.

❏ Calling procedures which manipulate classical data.

❏ Blocks.

Note that we do not cover sendig and receiving of classical data because this has ex-
tensively been covered in the literature. Additionally, it is in principle always possible to
achieve the same effects with the transmission of quantum mechanical information. In the
following, we cover only the valuation functions which are either absolutely indispensable or
are influenced by the quantum properties of our language.

Sequential composition Modifications made to the typing context, the probabilistic envi-
ronment and the Kraus aggregation made by the first statement must be taken into account
when the semantics of the second statement is calculated:

EXPJS1;S2K(K,T,E) = EXPJS2K(EXPJS1K(K,T,E)
︸ ︷︷ ︸

=(K′,T ′,E′)

) (5.35)

This is utilised many times in the denotational equations for quantum communication.

Blocks Blocks are used to introduce multiple levels of scope into programs. This can
happen both implicitly (e.g., in loops) and explicitely (by syntactical specification of blocks),
but there is no need to distinguish between these cases from a denotational point of view.

Superficially, a block looks just like a collection of multiple statements which are executed
one after another; but some additional points need to be taken into account:

❏ New variables (both quantum and classical) may be declared inside blocks, but they
cease to exist once the block’s scope is left.
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❏ New variables do overshade old ones if they share the identifier.

❏ Changed bindings of already existing variables are also visible after the control flow
has left the block’s scope.

Thus, the probabilistic environment is partially affected by a block. The typing context
before and after the block is identical and thus unaffected by the block’s effect,20 and the
Kraus aggregation records everything that has been done inside the block.

Since the mentioned problems appear in every programming language featuring blocks,
standard solutions are available in every textbook (as usual, cf. Refs. [Mos90, Rey98,
Win93]), so we will not explictely present them here to save some formal overhead.

Conditionals and Operators Dyadic operators combine two subexpressions into one result,
as, e.g., all arithmetic operations do. Conditionals are operators which result in a boolean
variable, i.e., they evaluate to one of the values true or false which are represented by 1
and 0. In contrast to most classical languages, the result of both types need not be fixed
with certainty, but can be governed by a probability distribution. Note that conditionals
may not be used as stand-alone expressions, but can only be part of conditional statements.
This is why their semantic valuation does not result in the usual (K,T,E) tuple, but in
a probability distribution for the possible results which is, e.g., apt for inclusion into the
probabilistic environment. The basic valuation functions are given by:

OPJa DO bK(T,E) = DOJDOK(OP(a)(T,E)⊗OP(b)(T,E)) (5.36)

OPJMO aK(T,E) = MOJMOK(OP(a)(T,E)) (5.37)

where DO ∈ {+,−,∧,∨, . . . } and MO ∈ { ¬,− }. The meaning of the operations is defined
as usual, but the probability distribution nature of the arguments needs to be taken into
account:

DOJDOK(a, b) =
⊕

v1∈range(a)

⊕

v2∈range(b)

πa(v1)πb(v2)DO(v1, v2). (5.38)

This expression results in a new probability distribution that can be used by the elements
further up in the evaluation hierarchy.

Note that the denotation of a single variable is given by the corresponding probability
distribution which can be found in the probabilistic environment:

OPJvK(T,E) = E(v) (5.39)

This definition ensures that chains of expressions using dyadic and monadic operators
(e.g., 42+23+4) are covered by the semantics because a and b in Eqns. 5.36, 5.37 can either
be values or other operator expressions.

Also note that the eventual action of the respective operators (+, ∧, . . . ) can be seen
intuitively, so we abstain from further formalisation and rely on the reader to use his common
mathematical sense.

Remark 5.3.8. Note that we do neither consider any problems of numerical accuracy nor
of limited ranges of representable numbers for the specific data types. Consequently, we also
do not care for the problem of division by zero. We are aware that such pitfalls exist, but
are not interested in their solution in this context since their nature is purely classical.

20But note that the typing context within the block may well be different than the one outside.
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If-Statements The semantic description of the if-statement is simplified by introducing
the following helper function:

f((K0,T0, E0), (K1, T1, E1), π, ν, (K,T,E)) =
(
p(ν = 0) ·K ◦ (K0 −K) + p(ν = 1) ·K ◦ (K1 −K), (5.40)

T ⊕ ν : bit, p(ν = 0) · E ⊕ ν : π ⊕ E0 + p(ν = 1) · E ⊕ ν : π ⊕ E1

)

which eases selection of components of (K,T,E) tuples gained by other evaluations and
additionally circumvents repeated semantic evaluations of some components. The tuple
(K0, T0, E0) is the result of the evaluation of the if-branch, while (K1, T1, E1) is for the
then branch. π is the probability distribution governing the branch, and ν is the identifier
which is used to represent this distribution in the probabilistic environment. (Ki − K)
represents the Kraus aggregation that contains only the elements that were appended to Ki

in comparision to K; this ensures that only new contributions introduced in the branches
are added to the Kraus aggregation finally. The denotational description for the if-statement
then reads as

Jif c then C0 else C1K(K,T,E) =

f(EXPJC0K(K,T,E)
︸ ︷︷ ︸

(K0,T0,E0)

, EXPJC1K(K,T,E)
︸ ︷︷ ︸

(K1,T1,E1)

,OPJcK(T,E)
︸ ︷︷ ︸

π

, uid
︸︷︷︸

ν

, (K,T,E)) (5.41)

where uid is a unique identifier for the branch which can be chosen at will, but must not be
identical with other identifiers already in use. Such a choice is simple for non-communicating
programs. The extension to communicating systems is possible if every identifier is given a
unique prefix for each partner as described before.

Note that although dyadic operators might syntactically be used to describe arithmetic
operations and not necessary conditionals, this source of mistake is ruled out by the type
system which only allows boolean typed expressions for c.

While-Statements While statements can be solved using the fixed-point theorem given in
Eqn. 4.4.1. For this, note that the denotation of the while function can be rewritten using
the previously considered if-function together with an explicit block (c denotes a boolean
condition and S a statement):

JwK(K,T,E) ≡ Jwhile c do SK(K,T,E) (5.42)

JwK(K,T,E) = Jif c then {c;w} else skipK(K,T,E) (5.43)

Eqn. 5.43 is a recursive equation (c appears both on the left hand and the right hand side)
whose solution is a fixed point. The agreement is that the least fixed point is taken to be
the denotational solution, and this is exactly what the fixed point theorem delivers. To
write this formally is now a standard exercise of denotational semantics [Rey98, Mos90],
but we show it nevertheless because it is an instructive example for the technique of solving
recursive equations which will be necessary for the denotation of quantum communication.
Consider the function F given by

Ff (K,T,E) = if JcK(K,T,E) then f(JSK(K,T,E)) else (K,T,E). (5.44)

Then the fixed point solution can be formally written as

Jwhile c do SK = YΣ→Σ⊥
F, (5.45)
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where Σ is any (K,T,E) tuple as usual; assume that f is defined like

f(x) =

{

⊥ if x = ⊥
f(x) otherwise

(5.46)

since we have to account for the case that the argument of f is ⊥ because of the recursion
(note that we would have to use two different symbols for f to write this überproperly).

Assignments Assignments in cQPL can be seen as a convenience mechanism which extends
the simple binding of identifiers to values; it is not necessary to introduce the concept of
stateful variables to the language to be able to formalise assignments. The description can
be simplified if some syntactical transformations are applied. For this, first consider the
following program fragment:

new int a := 10;

// Do something using a (part 1)

a := a + 4;

// Do something using a (part 2)

The assignment is equivalent to introducing a new identifier a’:

new int a := 10;

// Do something using a (part 1)

new int a’ := a + 4;

// Do something using a’ (and replace all a by a’) (part 2)

This strategy also works when blocks are taken into consideration:

new int a := 10;

if (...) {

new int a := 5;

a := a + 1;

...

}

else {

new int a := 1;

a := a + 1;

...

}

Note that not possible to employ a static renaming scheme in this case because the
identifiers a in both subsequent blocks would then end up with identical names which leads
to problems. We thus have to postulate that new identifiers are always chosen such that
they do not overlap with previous identifiers and must, of course, also not overlap with
identifiers which can be assigned by the user. This is possible if the set of identifier strings
is denoted by Σ∗

1, we introduce a second set of strings Σ∗
2 with Σ1 ∩ Σ2 = ∅; each time

an identifier is overshaded, it is replaced in its complete scope with a new one in Σ∗
2 that

has not been used before. While this policy is hard to implement in practice,21 it does not

21This is exactly the reason why mechanisms like call-by-name disappeared as a curiosity some thirty
years ago.
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present any problem in theory (even cases which require an infinite number of replacements
are no problem because there are infinitely many unique identifiers).

Most important, the approach is also valid when loops are introduced because these can
be rewritten using a (possibly infinite) chain of appropriate if-then constructions as is done
in the denotation of them.

In conclusion, we do not need to take care for the obstacles introduced by overshad-
ing, but can simply ignore the problem in the denotation of assignments (ν denotes some
identifier):

Jν := ǫK(K,T,E) = (K,T,E ⊕ ν : EQN JǫK(K,T,E)) (5.47)

where ǫ is some arbitrary arithmetic expression (which includes single identifiers); the deno-
tation of this is obvious and will not be considered further. Note that this valuation function
does not cover the case that the result of a quantum variable measurement is stored in a
classical variable; this will be covered later when we describe the denotation of the measure
funtion on Page 69.

Allocating and destroying variables As we have noted in the previous remarks, we do not
need to take the problem of overshading into account when dealing with assignments; this
obviously also applies to allocations. We refrain from a more detailled description of this
topic because everything necessary for the solution can be readily found in the literature, e.g.,
[Win93, Rey98, Mos90]. Note that allocating new variables does not present any problems
for the boundedness of the Kraus aggregation because the number of qbits is limited by Q,
an arbitrary, but finite quantity.

Procedure handling Procedures in cQPL follow the standard scheme of classical languages
for the non-quantum part. The denotation of such can therefore be directly taken from the
usual textbooks [Rey98, Mos90, Win93], so we will not repeat this here. The interesting
problem is given by recursive procedures, especially when they act on quantum parameters.
For simplicity, we consider directly recursive procedures with quantum parameters; the case
of indirect recursion is in princple identical, but necessitates more formal effort, so we skip
it here. The solution is an adaption of the method presented in [Sel04b, Sections 5.5 and
6.5] for our purposes.

Consider a procedure Y which depends on itself, e.g.,

Y = X(Y ) (5.48)

If Y is given as a flow chart, this can be interpreted as shown in Figure 5.7: A “hole” in the
representation of X is replaced by Y with another hole, this is again replaced by the same,
. . .

proc rec: test:qbit {

A

if (cond) call rec(test’);

else { ... }

B

}

Formally, we can thus define an approximation relation given by

Yi+1 = X(Yi). (5.49)
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Figure 5.7: Unwinding a recursive flow chart is done by placing the flow chart with
a hole (given by the white rectangle) into the hole and repeating the
process again and again. The limit of this sequence is given by a fixed
point as explained in the text.

where Yi are approximations of Y which get better with increasing i. Y0 = ⊥ is the crudest
approximation which simply does not terminate. The solution of Equation 5.49 is another
case for the fixed-point theorem. Once a solution for Y has been found, it can be applied to
any (K,T,E) tuple to calculate the required state transformation. Note that although the
procedure depends only on quantum variables, there nevertheless needs to be a termination
condition. In the example, this condition is given by the if-then-else statement in which
the recursive call is wrapped; since the procedure only takes a quantum parameter, the
condition is either trivial or depends on a measurement of quantum states. In the first case,
the condition depends only on classical variables which were allocated within the procedure,
the condition could thus be determined at compile-time and the recursion unrolled because
the recursion depth is already known. In the second case, we really need to unwind the
procedure.

5.3.6.4 Quantum operations

The quantum mechanically relevant operations of cQPL are :
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❏ Application of (unitary) operators.

❏ Calling procedures which manipulate quantum data.

❏ Sending and receiving quantum states.

❏ Measurements.

❏ Creating new and destroying existing quantum states, where the last operation is not
explicitely, but only implicitly possible when quantum variables drop out of the present
frame. Sending quantum variables makes them disappear from the scope so that they
can not be accessed any more, but does not destroy respectively deallocate them.

We will give formal denotations for these constructs in the remaining part of this section.
Obviously, the description of communication is our foremost concern, so we elaborate this
in most detail.

Unitary operators Unitary operators induce isometries, so the corresponding Kraus set is
obviously bounded and filfills the requirement for fixed points. Every unitary transforma-
tion can be expressed by a Kraus set with only one element. The semantics of a unitary
transformation acting on the qbits q1, . . . , qk is given by

EXPJ(q1,...,qk) *= UK(K,T,E) = (K ◦ {U}(#q1,...,#qk), T, E). (5.50)

Note that the type system ensures that the variable/operator dimension on both sides of
the expression matches as required, i.e., the classical variable has the proper size to hold all
potential measurement outcomes.

Measurements Measurements are described by the following semantic equation:

EXPJa := measure qK(K,T,E) =

(

K ◦ {M}#q, T, E ⊕ a
πa:PROJ (q,T )−−−−−−−−−−→ range(a)

)

.

(5.51)
Hereby, PROJ (q, T ) denotes the function to generate the set of projectors for the type of
q which can be resolved from the typing context T . The required basis for the projection

(which is actually nothing else than the basis for F
tq(χ(q))
2 in Dirac notation, also named the

standard basis) is given by

B =







tq(χ(q))⊗

n=0

|in〉 ∀in ∈ {0, 1}






. (5.52)

The corresponding Kraus elements are obvious. Accordingly, πa : PROJ (q, T ) denotes the
probability distribution which connects the possible values of a with a probability distribu-
tion induced by the projectors. Since the measurement operators work on discrete states in
a finite-dimensional Hilbert space, they are obviously bounded.

Remark 5.3.9. Note that although we restrict measurements to projections onto the stan-
dard basis, projective measurements in arbitrary bases can be realised by applying appropriate
unitary transformations prior to the measurement.
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Sending and receiving qbits To consider sending quantum variables, we first split com-
mands which send lists of quantum variables into a list of commands that send one quantum
variable each:

EXPJsend q1, . . . , qn to moduleK(K,T,E) =

EXPJsend q1 to module; send q2 to module; . . . ; send qn to moduleK(K,T,E). (5.53)

The denotation of a single send command is given by

EXPJsend q to moduleK(K,T,E) =
(
K ◦ {S}#q, T ⊖ q, E ⊖ q

)
. (5.54)

{S}#q is not a real physical map as other cp-maps are, but only a “placeholder” to note that
qbits have been sent. This will become important when the semantics of parallel execution
is considered further below. The interesting thing here is that the sent qbit is removed from
the typing context and from the probabilistic environment. Thus, it is not visible any more
in the remaining statements. Further access to it can be detected as erroneous at compile
time; the typing context gives the formal basis for this.

Receiving qbits is described in a similar manner. First, a receive operation with multiple
quantum variables is split into a sequence of single-variable receive operations:

EXPJreceive q1 : qtype1, . . . , qn : qtypen from moduleK(K,T,E) = (5.55)

EXPJreceive q1 : qtype1 from module; . . . ; receive qn : qtypen from moduleK(K,T,E).

The denotation of a single-variable receive command is given by:

EXPJreceive q : qtype from moduleK(K,T,E) = (5.56)
(
K ◦ {R}#q, T ⊕ q : qtype, E ⊕ q : module

)
.

Again, {R}#q is a placeholder required to denote the semantics of parallel composition.

Parallel composition The compositionality principle of denotational semantics implies that
the formal denotation of sending and receiving qbits must be independent of the conjugate
action, i.e., sending must be independent from reception and reception must be indepen-
dent from sending. This is fulfilled in the formalism of cQPL as we have shown on page
70. Nevertheless, the denotation of the communication as a whole requires (at last) two
communicating partners. It needs thus make use of both of them to assign semantics to
communication.

Before we start with the formal details, we want to motivate why parallel composition
is necessary at all. For this, consider the case of two processes where A sends a quantum
bit (which we call a1) to B and, later on, receives a quantum bit from B (which we call a2).
We must distinguish two different cases (note that for more difficult cases with an arbitrary
number of send and receive statements, the conditions become more complicated because
we need to account for more general schemes of mutual influence. These conditions will be
developed stepwise in the following):

❏ The returned quantum bit was not identical with the sent one, a1 6= a2. The inequality
refers to the positions occupied by the qbits on the combined quantum heap, it is not
related with the names of the qbits.

❏ B returned the quantum bit it got from A, a1 = a2.
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Consider the consequences for the semantics of parallel composition when the interaction
of both processes is considered (both cases can be treated identically if only the separated
semantics is taken into account): While in the first case (a1 6= a2), operations on a2 and a1
end up on different physical locations, the same operations must in the second case (a1 = a2)
be applied to the same physical location. Therefore, we must be able to construct enough
information from the composed systems such that it is possible to distinguish between both
cases.

Additionally, the distinctness of qbits influences denotational equivalence; many different
orderings of the actions performed by A and B lead to the same semantics (the exact
conditions for this will be formulated later on), but the class of possible reorderings is
usually bigger if there was no interaction on the same physical location in communicating
modules. Figure 5.8 presents a visualisation of this fact using a pseudo flow diagram.

Figure 5.8: Flow graph for two communicating processes. A sends a qbit to B

and B sends one to A; if there are no operations on the same physical
locations, the shaded regions commute. This is obviously not the case
if one or more identical quantum heap positions are modified in both
paths: Since the shaded regions operate on the same physical qbit
then, their actions need not necessarily be interchangeable because
non-commuting operations may have been performed on the same
physical location.

There is no explicit statement in the syntax of cQPL which describes the combination of
two processes. As explained in Chapter 2, communication is realised implicitly usingmodules
which interact among each other. These modules must thus be given some semantical
meaning; this will be developed in the following. Note that we restrict the description to
two communicating processes which we call A and B (this might stand as an abbreviation
for the omnipresent Alice and Bob) at first. Consider the following cQPL fragment:
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module A {

...

};

module B {

...

};

Any valid cQPL code (except the definition of new modules) may be contained in the
bodies of module A and module B; both entities thus constitute regular cQPL programs
whose meaning is made up by the meanings of all statements they consist of. Thus, we
can write PROGJAK and PROGJBK for the denotation of the code as if the modules were
regular, uncommunicating cQPL programs.

To consider the communicative interactions between both, we introduce the operation

PROGJA||BK ≡ COMM(PROGJAK,PROGJBK)(K∅, T∅, E∅) (5.57)

where (K∅, T∅, E∅) denotes the inital (K,T,E) tuple without content. The valuation func-
tion COMM is used to compute the combined denotation of A and B which we also call
parallel execution. It must obviously only depend on the denotations JAK and JBK, i.e.,
(K,T,E) tuples. Since we do not want the semantics of communication to depend on the
order in which the communicating partners are specified, the operator || must necessarily

be commutative: PROGJA||BK
!
= PROGJB||AK. This equivalence can easily be achieved:

It suffices to define the operator in such a way that the modules are ordered lexicograph-
ically, then the order in which they are specified does not influence the denotation; the
commutation relation is thus automatically fulfilled.

PROGJAK is used to evaluate a semantic equation with empty initial context; this is
obviously the case when the top-level of a program is considered (as is the case for modules)
where no definitions can have been made yet. Thus, PROGJAK ≡ EXPJAK(K∅, T∅, E∅).

Consider the evaluation of JAK and JBK which both do as usual depend on (K,T,E)
tuples. COMM results in the creation of a valuation function which depends on the tensor
product of these tuples, i.e.,

VALJAK(K0, T0, E0)
VALJBK(K1, T1, E1)

}

⇒ COMM(VALJAK,VALJBK) (K,T,E)
︸ ︷︷ ︸

(K0 ⊗K1, T0 ⊗ T1, E0 ⊗ E1)

. (5.58)

Both representations convey the same information. This is immediately obvious if the ex-
pressions are written as direct λ-abstractions as defined in Section 5.3.6.1 together with
an appropriate “untensoring” function which separates the tensor product of the combined
(K,T,E) tuple into two components. We will not show this explicitely to avoid introducing
even more symbols.

Note that termination of A and B alone does not imply termination of PROGJA||BK.22

This can be seen by considering the following simple program:

22Here, the question arises how termination should be defined for communicating processes if only one
part (A) of a total system is considered. We could, for instance, define a demonic partner which always
supplies the required number of qbits the process needs and absorbs any number of qbits sent, but this will
not necessary lead to termination of A. The exact solution of the problem depends on the context in which
it is considered; we will not deal with it any further here, but define a process as terminating if there exists
a demonic partner that behaves in such a way that the process terminates.
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module A {

new qbit q1;

send q1 to B;

};

module B {

receive a1:qbit from A;

receive a2:qbit from A;

};

While both processes represent valid cQPL programs, they will obviously result in some
non-terminating program (which should thus denote ⊥) because B will wait forever for the
second qbit (a2) to be sent. Thus, COMM(x, y) = ⊥ is possible although both x 6= ⊥ and
y 6= ⊥.

Extensions of the semantical components (K,T,E) to the multi-party case were defined
in Section 5.3.3; they provide the basis for the denotation of parallel execution which will be
developed stepwise by considering bipartite systems without communication, bipartite sys-
tems with single send/receive pairs, bipartite systems with arbitrary send/receive statements
and finally, arbitrary multipartite systems.

Thus, let A and B be two programs which do not use any communication. The semantics
of their parallel execution can be readily denoted:

PROGJAK = (K0, T0, E0),PROGJBK = (K1, T1, E1)

⇒ (5.59)

PROGJA||BK = (K0 ⊗K1, T0 ⊗ T1, E0 ⊗ E1).

Note that the following equivalences hold if Ai, Bi are parts of a program which do not
contain any send/receive operations (we omit the required EXPs in the second line to
simplify the notation):

EXPJA1||B1; A2||B2K
︸ ︷︷ ︸

= EXPJA1;A2||B1;B2K
︸ ︷︷ ︸

(5.60)

(COMM (JA1K, JB1K) ; COMM (JA2K, JB2K)) = COMM(JA1;A2K, JB1;B2K). (5.61)

This ensures that it does not make any difference if we consider the sequential combination
of two parallel executions or the parallel execution of two sequential combinations as shown
in the formula; we will make use of this later on.

The situation gets more complicated if a single send/receive pair is allowed, i.e., if a single
quantum variable can be transferred from A to B (the case B to A is nearly identical, so
we restrict ourselfs to the first case). Let {S} and {R} denote the Kraus pseudo-operations
for sending and receiving. To see how these operations influence the possible equivalent
compositions of a program, observe the following two schematic Kraus aggregations:

ΛA = {A1}, . . . , {An}, {S}, {An+1}, . . . , {Am} (5.62)

ΛB = {B1}, . . . , {Bn′}, {R}, {Bn′+1}, . . . , {Bm′}. (5.63)

To consider how these aggregations can be rearranged, we define the following function:

D(A,B) =

{

1 if A and B are operations on disjoint qbits

0 otherwise
. (5.64)
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Remark 5.3.10. The same effect could have been achieved with the standard commutator
in principle, but we want the notation to emphasise additionally that not the simultane-
ous diagonalisability, but the fact that the operations work on disjoint bases is responsible
for the exchangeability. Additionally, using the standard commutator to show equivalence
between permutations of communicating systems would have interferred with the standard
permutation rules that would then have become more complicated.

Since the two processes are necessarily totally uncorrelated before the transmission takes
place, the parts given by the sub-aggregations

Λ1
A = {A1}, . . . , {An} (5.65)

Λ1
B = {B1}, . . . , {Bn′} (5.66)

can be composed as in Eqn. 5.59 because D(Λ1
A,Λ

1
B) = 1. Since the parts after sending

respectively receiving the quantum variable are uncorrelated as well (they both work on
disjoint sets of qbits; this property remains valid in the combined semantics because the
combination of the probabilistic environments creates an appropriate combined quantum
heap as described in Section 5.3.3), the sub-aggregations

Λ2
A = {An+1}, . . . , {Am} (5.67)

Λ2
B = {Bn′+1}, . . . , {Bm′} (5.68)

can likewise be parallel composed as in Eqn. 5.59. The only thing which needs to be taken
into account is that references to the position of the received qbit must be replaced by the
position of the qbit on the combined quantum heap in the combined probabilistic environ-
ment. This can formally be achieved by the following function (here, S denotes a send and
R a receive statement):

SR(COMM(JSK, JRK))(K⊗, T⊗, E⊗) = (K⊗, T⊗, E⊗′
). (5.69)

Here, K⊗, T⊗, E⊗ denotes the usual (K,T,E) parameter tuple with the additional require-
ment that it must have the structure which is gained by combining two (K,T,E) tuples
with a tensor product as given in Section 5.3.3. SR itself is responsible for two things: On
the one hand, it applies the effect of COMM(JSK, JRK) to the parameter tuple, and on the
other hand, it replaces the portion of E which contains the information about the received
quantum variable so that it now points to the position of the sent quantum variable on the
combined quantum heap; the resulting probabilistic environment is denoted by E′. This
is obviously possible since SR does have access to the information provided both by send
and receive. To illustrate the effect of SR, consider the following example: Let the sent
quantum variable be denoted by q and the received one by r. The names of these variables
will have thus been changed to Lc(1)q and Lc(2)r. The receiving module does not have
any information about the received quantum variable except its type and its local name;
the position on the combined quantum heap is unknown. This can now be changed by SR;
for that, it inserts the position of Lc(1)q on the combined quantum heap into the com-
bined probabilistic environment such that Lc(2)r points to it. Nothing more is necessary to
identify the received quantum variable with the sent one.

Note that RS defines the analogous function for the receive/send case. This is necessary
when bidirectional communication between processes is considered. Except the inverted
direction of data flow, the function is completely equivalent to SR.

Thus, the semantics of parallel execution for processes with a single send/receive opera-
tion can be reformulated as

PROGJA||BK = PROGJA1||B1; S||R; A2||B2K (5.70)
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where JAiK and JBiK denote the parts of the program which induce the operations described
by Λi

A,B as given by Eqns. 5.65–5.68. It is already known how to compute the semantics of
JA1||B1K. To compute the denotation of the complete statement, we first consider how to
include the send/receive pair into the description:

PROGJA1||B1; S||RK = SR(COMM(JSK, JRK))

(COMM(PROGJA1K,PROGJB1K)(K
⊗
∅
, T⊗

∅
, E⊗

∅
)). (5.71)

Note that although PROG with argument JA1K, JB1K appears both on the left and right hand
side of this equation, it is not truly recursive, but can here be seen as just a breakdown into
simpler cases. A general recursive formula will be derived in the following.

By using Eqn. 5.70, we can now give the denotation of the complete parallel composition
as defined in Eqn. 5.61; for this, we define the righthand side of Eqn. 5.71 to be denoted by
ξ to increase clarity:

PROGJA1||B1; S||R; A2||B2K = COMM(PROGJA2K,PROGJB2K)(ξ). (5.72)

Note that establishing the semantics of a given description is one thing we need to do;
finding equivalent descriptions for a given communication is another task. For this, we need
to consider all rearrangements that preserve semantics. This allows us to decide if two
communicating programs are identical because we can check if they can be brought to the
same form.

For the case of a single send/receive pair, the operations can be shifted in the Kraus
aggregation if certain conditions hold:

❏ The send operation can be postponed to the end of the aggregation (at least in the case
where no more send/receive operations take place) or brought forward by k positions
in the Kraus aggregation if D({An−l}, S) = 1 ∀l = 0, . . . , k − 1.

❏ The receive operation can be brought forward to the first position of the Kraus aggre-
gation (again, this relies on the fact that only a single send/receive operations takes
place) or postponed by k positions if D({Bn+1+l}, R) = 1 ∀l = 0, . . . , k − 1.

Performing shifts characterised by these operations together with reorderings as given
by Eqn. 5.26 generates the equivalence class of all programs with a single send/receive pair
that posses the same semantics.

The next step is to include arbitrary send/receive operations into the communication
between A and B. As in the case of a single send/receive combination, the send/receive
statements act as synchronisation points; the denotation needs thus be aligned along them.
The problem to solve is now given by

PROGJA1||B1; S1||R1; A2||B2; S3||R3; · · · ; Sn−1||Rn−1; An||BnK. (5.73)

First, we will establish the semantics for the given ordering; semantics-preserving permuta-
tions will be considered afterwards.

Note that we only consider the denotation of data flow in one direction for simplicity;
the semantics of the case R||S which may appear mixed with the other form is gained by
replacing SR with RS at the appropriate places). To find a solution for this equation, define

A′||B′ ≡ A2||B2; Sn||Rn; · · · ; Sn−1||Rn−1; An||Bn. (5.74)

Eqn. 5.73 then has the form

PROGJA1||B1; S1||R1; A′||B′K. (5.75)
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According to Eqn. 5.72, the solution of Eqn. 5.75 is given by

EXPJA′||B′K(SR(COMM(JS1K, JR1K))

(COMM(PROGJA1K,PROGJB1K))(K
⊗
∅
, T⊗

∅
, E⊗

∅
)). (5.76)

By introducing ξ1 as abbreviation for the part following EXPJA′||B′K and expanding A′||B′

to A2||B2; S2||R2; A′′||B′′, the formula reads as

EXPJA2||B2; S2||R2; A′′||B′′K(ξ1). (5.77)

This type of equation is already well-known; it can be further resolved to

EXPJA′′||B′′K(SR(COMM(JS2K, JR2K))

(COMM(PROGJA2K,PROGJB2K))(ξ1)). (5.78)

By recursively defining

ξ0 = (K⊗
⊥ , T⊗

⊥ , E⊗
⊥) (5.79)

ξi = (SR(COMM(JSiK, JRiK))(COMM(PROGJAiK,PROGJBiK))(ξi−1)) (5.80)

we see that the final solution of Eqn. 5.73 is given by

EXPJAn||BnK(ξn) (5.81)

where ξn needs to be expanded as defined above.

The whole process thus leads to a recursive valuation function given by

EXPJA||B; S||R; C||DK(K,T,E) =

EXPJC||DK(SR(COMM(JSK, JRK))(COMM(EXPJAK, EXPJBK))(K,T,E) (5.82)

whose solution can be found by resolving the recursion in the usual way.

Now, consider which alternative orderings of the Kraus aggregations preserve semantics
in the multi send/receive and receive/send case. For this, observe the following symbolic
representation of two Kraus aggregations (to save some notational effort and to increase
lucidity, we represent the Kraus sets which are not concerned with communication by boxes.
Although the boxes have identical widths, they do not need to contain the same number of
Kraus sets):

A1 SA
1 A2 RA

1 A3 (5.83)

B1 RB
1 B2 SB

1 B3 . (5.84)

As in the case of a single send/receive pair, we know that the blocks A1 and B1 (con-
sidering again the compatible displacements of SA

1 and RB
1 ) can be arbitrarily combined

because they work on disjoint subsets of the quantum heap; the same holds for A2, B2 and
A3, B3. In addition to the previously given rules, the following restrictions hold for shifting
send and receive operations in multi send/receive scenarios:

❏ Two consecutive send statements can only be interchanged if the corresponding receive
statements are interchanged, and vice versa.
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❏ If D(Ai, Bi+1) = D(Bi, Ai+1) = 1 the blocks Ai, Ai+1 and Bi, Bi+1 can be taken like
single blocks when possible orderings according to Eqn. 5.26 are considered. Note that
the validity of this condition can only be detected if the combined quantum heap is
considered. If it holds, then the sender does nothing to the sent and the receive does
nothing to the received quantum bit; thus, the statements contained in the blocks can
be executed in arbitrary order.

Two systems are identical if their denotations can be unified by performing rearrangements
according to these rules.

Another possibility that needs to be considered is the case where the number of send/re-
ceive pairs in the parallel processes does not match. As we have described before, this leads
to a non-terminating process because either the sending process wants to ship a quantum
variable, but cannot deliver it and thus blocks or the receiver wants to get a variable, but
blocks indefinitely because there is no sender for one. The semantics should thus be given
by ⊥ for both cases.

For the case of two parties (where we do not need to consider the case that a balanced
number of send/receive statements is present, but the distribution among the parties is
unmatched), this is covered by the following definition:

EXPJA||BK = ⊥ if R(JAK) 6= S(JAK) ∨S(JAK) 6= R(JBK) (5.85)

where S denotes the number of send and R the number of receive statements. The deno-
tations JAK and JBK are supposed to be those derived for the parallel composition. The
extension to higher-dimensional systems is obvious, so we omit it here.

Finally, we can describe the semantics for multi-party communication with arbitrary
send/receive statements which is the most general case and therefore includes everything
considered before. The problem which needs to be evaluated is given by

PROGJA1||A2|| · · · ||AnK, (5.86)

where (note the different notation compared to before!) Ai represents all statements given
in module i; this may contain any number of send/receive statements that are now denoted
by Si

k and Ri
k where i is the receiver for S and destination for R and k the sequence number

within the other send/receive statements of the communication channel the statement works
in (if we consider for example three parties A1,A2 and A3, then there are the channels A1–A2,
A1–A3, A2–A3).

The semantic context the evaluation is based on is given by the tensor product of the
semantic contexts of the subsystems, i.e., (K⊗, T⊗, E⊗) = (K1 ⊗ · · · ⊗ Kn, T1 ⊗ · · · ⊗
Tn, E1 ⊗ · · · ⊗ En) and equivalent for the initial context. The valuation function COMM
given by Eqn. 5.57 can be extended from the two-party case to the n-party case without any
problems, we denote this by COMM⊗n. Since communication still takes place between two
partners (although there are now many choices for such two-partner subsystems), there is
always a pair of corresponding send/receive respectively receive/send statements. To take
the n-dimensional semantical context into account, the definition of SR (the version for
two parties is given in Eqn. 5.69) needs to be adjusted as follows when sending a quantum
variable from system m to system m′ is to be covered:

SRm,m′

(COMM⊗n(JSm′

K, JRmK))(K⊗, T⊗, E⊗) = (K⊗, T⊗, E⊗′
). (5.87)

SR is again responsible to apply the effect of COMM⊗n(JSK, JRK) to the parameter
tuple; note that in this case, do-nothing-operations 1 are used for all systems except m and
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m′ because these are not concerned with the communication. This is to ensure that the
dimensionality matches.

Additionally, SR replaces the portion of E which contains the information about the
received quantum variable so that it now points to the position of the sent quantum variable
on the combined quantum heap. This is identical to the effect in the simplified case for two
systems. If in this case the sent quantum variable is denoted by q in system m and the
received one by r in system m′, then the names of these variables will have been changed to
Lc(m)q and Lc(m

′)r. SR simply inserts the position of Lc(m)q on the combined quantum
heap into the combined probabilistic environment such that Lc(m

′)r points to it.
With this, we can generalise the recursive definition of Eqn. 5.82 to the case with an

arbitrary number of participants:

EXPJA1|| · · · ||An; Sm||Rm′

; B1|| · · · ||BnK(K,T,E) =

EXPJB1|| · · · ||BnK(SRm,m′

(COMM⊗n(JSmK, JRm′

K)) (5.88)

(COMM(EXPJA1K, . . . , EXPJAnK))(K,T,E).

Finally, this is the solution to the most general case of communication which can be
expressed in cQPL.

5.3.7 Explicit transformations of density matrices

Although the abstract view on quantum operations which we have presented in this work
is quite suitable for reasoning about general formal properties of quantum systems, the de-
mands of practical work are usually of a different nature: Here, one is interested in the
calculation of explicit states and probabilities which determine a system and allow predic-
tions about its past, present and future behaviour. This goal is usually achieved by specifying
the initial state of the system, subjecting this to diverse transformations and measuring the
required properties which give rise to the desired explicit probability distributions.

The semantics of a cQPL program can be used to generate exactly this information:
The abstract transformation given by the semantical denotation of a program is a function
which maps the density matrix of the input state to the density matrix of the output state.
Obviously, the election of a certain density matrix as initial state implies loss of generality,
but in turn allows to infer real-world information, not just abstract properties of generalised
systems.

5.3.8 The type system

Typing judgements make statements about the connection between expressions and their
types; cf., e.g.,[Car97] for an introduction. For our purposes, the following two building
blocks are necessary to describe the properties of cQPL:

E ⊢ e : T ⇔ Expression e has type T in E (5.89)

E ⊢ F ⇔ F is well-typed in E. (5.90)

Proper typing is necessary to eliminate certain runtime errors by applying appropriate com-
pile time checks (cf. Section 5.4). Additionally, it is the key to showing that our formalism
ensures that quantum bits can – especially in communicating systems – be only manipulated
by one party at a time (a similar line of reasoning, albeit for a quite different formalism,
was used in [GN05]). The typing context provided by T in the (K,T,E) tuple is the basis
for this.
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Properties of the type system are customary expressed with judgements of the following
general form:

P1 · · ·Pn

C
(5.91)

where the Pi are called the premises and C the conclusion. If all premises are true, the
conclusion is fulfilled. Such judgements can be used to deduce the type of a given composite
expression in an automated, formal manner. The following elementary typing judgements
hold for cQPL:23

Scalars
i ∈ N

E ⊢ i : int
(analogous for bits, floats etc.) (5.92)

new t n := v
E ⊢ v : t

E ⊢ n : t
(5.93)

C1;C2
E ⊢ C1 E ⊢ C2

E ⊢ (C1;C2) : void
(Composition preserves well-typedness) (5.94)

Conditionals
E ⊢ v1 : t1 ∧ E ⊢ v2 : t2 c(t1) = c(t2) = 1

E ⊢ op(v1, v2) : bit
(op ∈ {<,>,=, . . . }) (5.95)

Arithmetic
E ⊢ v1 : t1 ∧ E ⊢ v2 : t2 c(t1) = c(t2) = 1

E ⊢ op(v1, v2) : max(t1, t2)
(op ∈ {+,−, ·, :, . . . }) (5.96)

Again, we do not consider division by zero or overflows; up- and downcasting of data
types and procedure handling is also skipped. An equivalence relation between two types
was given by Eqn. 5.11 in Section 5.3.1.1; this can be immediately carried forward to typing
judgements:

σ1
∼= σ2 ⇒ E ⊢ x : σ1

E ⊢ x : σ2
. (5.97)

Note that we do not consider these equivalences explicitely in the following to simplify the
notation, all statements are automatically supposed to hold for all equivalent types as well
without further noting this.

Also note that subtyping (i.e., considering one type as a subtype of another and allowing
appropriate conversions) is not explicitely taken into account because this is also a problem
which is specific to the classical data types of cQPL and thus not of too much interest here.

5.3.8.1 Quantum variable tuples

Tupling of variables must make sure that no component appears more than once in the list
because this would allow to write programs which violate the no-cloning principle and thus
lead to runtime errors. Formally, the requirement is given by24

E ⊢ x1 : σ1 · · ·E ⊢ xn : σn

∀k = 1, . . . , n : q(σk) = 1 ∧
#xk ∩ (#x1 ∪ · · · ∪#xk−1 ∪#xk+1 ∪ · · · ∪#xn) = ∅

E ⊢ (x1, . . . , xn) :
∑

i σi
.

(5.98)
The meaning of this is as follows: E ⊢ xi : σi formulates the requirement that all variables
are well-defined. The condition ∀k = 1, . . . , n : q(σk) = 1 requires that all components are

23Remember: c(x) = 1 ensures that the data type of x is purely classical.
24Remember: q(k) = 1 ensures that the data type does not contain any classical components, #q denotes

the positions in the quantum heap occupied by a quantum variable.
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quantum data types; the tuple thus has no classical components which is justified by our
abdication of mixed types. The condition #xk∩(#x1∪· · ·∪#xk−1∪#xk+1∪· · ·∪#xn) = ∅

is a formal version of the requirement that no variable may appear more than once in the
list of variables. The conclusion which can be drawn from these premises is that (x1, . . . , xn)
is a proper quantum variable tuple, i.e., a well-typed expression in the current environment.

5.3.8.2 Application of operators

The application of unitary operators requires that the dimension of the operator matches
the dimension of the variable or variables it is applied to. Formally, this is written as

E ⊢ (x1, . . . , xn) : q tq(q) = dim(U) ∧ U ∈ U(n)

∀k : E ⊢ xk : qk ∧ ((x1, . . . , xn)*=U) : void
. (5.99)

The statement additionally ensures that the typing of the qbits involved is not influenced
by the operator application. Note that we do not explicitely specify a formal condition for the
unitarity of an operator U given in terms of a function of its components. The membership
in U(n) is sufficient for our purposes. The distinctness of the destination variables for the
transformation is already ensured by the tupling requirements given above, so it does not
need to be checked explicitely.

5.3.8.3 If conditionals and while loops

The condition for this construction must have type bit, whereas both possible paths must
be well-typed:

E ⊢ c : bit E ⊢ P ∧ E ⊢ Q

E ⊢ (if c then P else Q) : void
. (5.100)

A similar condition holds for the while loop:

E ⊢ c : bit E ⊢ P

E ⊢ (while(c) do P ) : void
. (5.101)

5.3.8.4 Measurements

The classical data type used to store the result of a measurement must have the same number
of bits as there are qbits in the quantum variable. This is represented by the condition

E ⊢ a : σ1, c(σ1) = 1 ∧ E ⊢ b : σ2, q(σ2) = 1 tq(σ2) = tc(σ1)

E ⊢ (a := measure b) : void
(5.102)

5.3.8.5 Communication

Sending qbits When qbits are sent, the type system has to make sure that no qbit is
sent twice because this would result in the same effects as if operators could be applied to
multiple copies of the same qbit; using a tuple to combine the sent qbits automatically solves
this problem:

E ⊢ (x1, . . . , xn) : σ, q(σ) = 1

E ⊢ (send q1, . . . , qn):void
. (5.103)

Note that the type system is not concerned with the actual receiver of the qbits; this
information is only required for the denotation of the expression, but not to ensure well-
typedness.
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Receiving qbits When qbits are received, the type system must make sure that the destina-
tion variables are not yet defined in the receiver’s context, i.e., they must not be well-typed
expressions. Afterwards, the variables used in the receive statement are well-defined in the
typing context and have the data type required by the statement. This can be formally
written as

∀i : ¬(E ⊢ xi), q(σi) = 1

E ⊢ (receive x1 : σ1, . . . , xn : σn):void ∧ ∀i : E ⊢ xi : σi
. (5.104)

As in the case of sending, it is not interesting for the type system from which communication
partner the qbits originate.

We have given the denotational semantics of all language components of cQPL ex-
cluding some standard cases that are readily available in the literature. Together
with the definition of the type system (by intentional omission of all technical
details), this completes the effort of assigning a precise meaning to quantum pro-
grams written in cQPL.

S
u
m
m
ary

5.4 Avoidance of runtime errors

QPL is a functional language with a static type system which guarantees the absence of
runtime errors (note that functionality is subject to a precise definition of the term; it is
certain that classical languages need to have additional properties – most important higher-
order functions – to be called fully functional. But this is not really relevant from a physicist’s
point of view, as we have discussed before). It is very desirable that runtime errors can be
avoided as far as in principle possible, from a physicists point of view, it does not matter
how this is achieved. This desire was brought forward into cQPL and manifests itself in two
points: Cloning is (as in QPL) prevented already at the syntactical level, and communication
does not allow different processes to access qbits concurrently.

5.4.1 Unique ownership of qbits

Observation 5.4.1. No part of the quantum heap is accessible to two or more parties at
the same time during parallel execution of arbitrary cQPL programs.

Rationale: When a module is considered stand-alone, it is obvious that all qbits present
in the system are owned by one party. Uniqueness of the ownership is guaranteed by the
quantum part of the probabilistic environment which ensures (as described in Section 5.3.1)
that it is impossible for two or more names to refer to overlapping sets of qbits.

Parallel composition of systems is performed by always considering pairs of send/receive
statements; while sending removes the sent qbit from the typing context of the originating
system, receiving adds it to the typing context of the destination. Since both commands are
always considered in pairs and denoted atomically,25 a quantum variable may not be in two
typing contexts at the same time. Access to quantum variables is only possible for a user
when the variable is present in his typing context, this ensures (together with the fact that
quantum heaps of communicating systems cannot overlap by virtue of Definition 5.3.3) that
it is impossible for two or more modules to access identical qbits at a time.

It is possible to prove this statement formally based on the observations in Section 5.3.8.
Since this is on the one hand a general problem of semantics theory and on the other
hand burdened with many technical difficulties, we omit a precise proof here, but refer to

25This means that nothing can happen in between sending and receiving the quantum bit.
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[WF94] where the exact details can be found. [GN05] is one source where the proofs of
the aforementioned reference have been adapted to a quantum system which fulfils exactly
the same properties as ours (basically, not too much except notational details needs to be
changed). X

5.4.2 Prevention of cloning and unphysical situations

One of the fundamental consequences of quantum mechanics is that it is impossible to
define a unitary operator that can duplicate arbitrary quantum states with perfect fidelity; a
straightforward calculation shown in nearly every text on quantum mechanics (e.g., [NC00,
Pre99]) proves this. Obviously, quantum programming languages must make sure that
cloning is forbidden because otherwise, processes contrary to the laws of physics could be
simulated. Since most other approaches to quantum programming (e.g., [Öme98, BSC01,
Kni96, SP00]) require the possibility to address quantum bits via references or pointers, they
cannot ensure at compile-time that two distinct variables do not share the same quantum bit;
they must provide appropriate checks at runtime which ensure this condition. Aside from
efficiency considerations, this is unsatisfying because especially for long-running programs,
termination with an error which was caused by a programming mistake is undesirable.

The static typing of QPL allows together with some syntactical checks to ensure that
once a program was approved to be correct by the static syntactical and semantical analysis
of the compiler, no runtime errors caused by unphysical cloning of quantum states can
happen. A similar statement can be observed for cQPL:

Observation 5.4.2. cQPL programs which do not use communication primitives can be
guaranteed to execute without runtime errors if the syntactic and semantic analysis deems
them correct.

Rationale: No quantum bit can be referred to by multiple identifiers in cQPL, as was
shown in the previous section. Thus, the distinctness of the quantum components of a list
of identifiers (which is used to specify the list of qbits an operator works on or given as
parameter to a procedure) can be guaranteed by ensuring that the same identifier does not
appear multiple times in the list. Therefore, the same line of reasoning for the impossibility
of cloning or generating unphysical situations as in [Sel04b, Section 4.8] applies. X

Remark 5.4.1. Note that non-termination is something different than a runtime error.

Remark 5.4.2. Note that static typing can also prevent the possibility for some runtime
errors which originate from the classical parts of the language; this is well-known in pro-
gramming language theory (cf., e.g., Refs. [RP02, WM95, App04] for details) so that we will
not dwell into this any further here.

5.4.3 Unavoidable non-termination conditions

Albeit cQPL tries to prevent runtime errors as good as possible, the introduction of commu-
nication opens the possibility of writing programs that cannot be checked at compile time
if they will terminate at runtime although nothing would hinder the separate modules to
terminate. Nevertheless, by restricting the code to a certain subset of cQPL,26 it is still
possible to produce programs which will execute guaranteed without termination problems
and without runtime errors. Note that non-termination is not considered as a runtime error.

26Which can, in principle, solve all problems that might arise in quantum programming, but is not a very
practical.
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If a program of the form while (1) do skip is provided, then executing the skip com-
mand forever (and thus doing nothing forever) is exactly the intention of the program and
therefore the correct behaviour which should be reflected by the denotation.

In Section 5.3.6.4, we have already considered an example of a non-terminating program.
The culprit here was the different number of sent versus received qbits, but since the number
of sent and received qbits is fixed at compile time on both sides, this error can obviously
be detected by the semantic analysis; the program can be rejected. Unfortunately, this
possibility is not always the case because the exact number of how many qbits will be
sent and how many will be received can not be decided in general. Consider the following
example:

module A {

new qword nq;

nq *= H(8);

new word n := measure nq;

while (n >= 0) {

new qbit q;

send q to B;

n := n-1;

}

};

module B {

receive q1:qbit, q2;qbit, q3:qbit;

};

Since n in module A may contain (with equal probability) any value in [0, 28 − 1], the
number of sent qbits cannot be determined with certainty, but is governed by the probability
distribution of n. It may be the case that the program terminates (namely, if exactly three
qbits are sent by A), but it may also be the case that less or more than three qbits are sent.
This results in either a blocking process A which cannot find a receiver for the qbits it wants
to transmit, or in a blocking process B which is not satisfied with a proper number of qbits
and blocks to wait for the missing ones.

Fortunately, there are only three commands in cQPL that allow to execute a sequence
of communication commands for which it is not possible to determine at runtime how many
there will be, so we can make the following observation:

Observation 5.4.3. cQPL programs using communication can be guaranteed to execute
without runtime errors if the syntactic and semantic analysis deems them correct and the
following possibilities of the language are not used:

❏ While-loops with a termination condition that contains a probabilistic variable.

❏ If-conditionals that are based on a probabilistic variable.

❏ Recursive procedures whose recursion depth cannot be determined at compile time.

Rationale: All send and receive statements which are given as a sequence of commands
(which may include the use of blocks) can be counted at compile time; their order is obviously
also known. If the if-statement is used with a condition that can be computed at compile
time, one path can be eliminated. Thus, the statement is nothing else than a regular
contribution to the list of statements. While-loops with a compile-time computable number
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of iterations can be replaced by inlining the loop body the appropriate number of times, so
they also become only a regular contribution to a sequence of commands. If the recursion
depth of a procedure can be calculated, it be converted to an iteration where the number
of steps and thus the number of communication commands are known. Therefore, it is also
just a regular contribution to a sequence of commands. X

Remark 5.4.3. Note that the checks required to determine the number of loop iterations
etc. at compile-time are based on well-understood analysis techniques in computer science;
nevertheless, we did not actually implement these checks in the cQPL compiler because it is
nothing else than a routine task with little benefit and no gain of any valuable insight, but
just a technical problem.
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I ain’t no physicist, but I know what matters.

Popeye the sailor

6 Prospects
6.1 Outlook

The field of quantum programming languages is – as everything connected with quantum
information – still a young one, and many things that are standard in classical programming
languages still need to be adapted for these. Some ideas which were tried to be realised
during the work on this thesis, but did not reach fruition are:

❏ Integration of higher-order functions. Everything we tried ended up in requiring clo-
sures for an implementation, but this is (to our knowledge) impossible to achieve
because of the no-cloning theorem. Having them would be quite desirable for many
applications.

❏ The ability to describe the complete loss of quantum bits caused by imperfect channels
or eavesdroppers. This is obviously hard to integrate into a programming language,1

but should be possible by heading for a protocol specification variant of cQPL.

❏ Consideration of more general eavesdropping models where the strategy needs not be
fixed, but can be one of multiple independent alternatives. The work provided in
[dH02] would possibly provide a suitable basis with demonic choices.

❏ Most texts about quantum programming languages extensively use categories to de-
scribe the underlying structures. We found that this does not really add any substantial
points, but merely more notation and nomenclature, so we did not follow this style
although some effort was made in the beginning to become familiar with the field.

Nevertheless, the material provided here could serve as starting point for the following
possible extensions:

❏ Quantum instead of classical control, i.e., allowing conditions to be based on quantum
and not classical logic. It would be possible to simulate this with QCL, but the benefit
is questionable because no known quantum algorithm makes use of such a feature.

❏ The method presented here could provide a basis to formulate quantum process alge-
bras as, e.g., presented in [GN05, AM05].

❏ An extension from discrete to continuous systems would allow the simulation of gen-
eral quantum systems and could thus be useful for a much wider range of quantum
information applications.

1Just think about the situation that would arise if variables in classical programming languages could
randomly disappear. . .
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❏ Faulty hardware models could be integrated at the simulation layer, but this would
presumably be very challenging at the semantic level.

Initially, it was planned to also investigate the possibility of integrating the semantic
framework into a theorem prover which could possibly facilitate automated analysis tech-
niques for quantum protocols. Some preliminary experiments were performed by describing
the BB84 protocol in a classical protocol simulator, but this has only shown that the gap
between the requirements for such an automatisation and what is currently available is still
very wide for all approaches to quantum programming.

6.2 Latest developments

After this thesis was finished, another QPL compiler written by D. Williams was presented in
a joint work by Nagarajan, Papanikolaou and Williams [NPW05]. Since both efforts work on
closely related fields, it seems apt to sketch similarities and differences of them (to distinguish
it from our implementation, we call William’s compiler sqrQPL2 in the following):

❏ Both compilers use the quantum computer model defined by Knill [Kni96] as basic
architecture.

❏ sqrQPL provides an own quantum simulator which is called sequential quantum random
access machine. Code generated for this architecture resembles machine language quite
closely.

❏ sqrQPL provides support for a smaller subset of QPL than cQPL.

❏ sqrQPL has the ability to automatically decompose arbitrary unitary matrices into a
set of standard gates. As a result (and in addition to theoretical elegance) of this, the
simulator needs only provide support for very few different elementary gates.

❏ The semantics of sqrQPL is fully covered by the one given for QPL, while cQPL needs
to provide additional semantics for the added features.

❏ cQPL already includes support for communication and concurrency, whereas work to
bring these abilities to sqrQPL will be started in the future according to [NPW05].

It would be interesting (and should be possible without too much effort) to provide an
SQRAM-backend for cQPL; since Ref. [NPW05] states that support for communication and
concurrency is (at least in preliminary form) already present in their simulator, no major
obstacle does seem to exist to hinder such an endeavour. In summary (and, obviously, seen
from the author’s subjective point of view) sqrQPL is a straight implementation of QPL
where the ability to decompose complicated gates into a set of simpler ones is the essen-
tial feature. The focus of cQPL is mainly on the semantics of (quantum) communication;
although the cQPL compiler seems (at the time of writing) to provide a bigger and more
versatile language core than sqrQPL, it is more or less a by-product of the actual work.

2Because their compiler targets a virtual machine which is termed sequential quantum random access

machine.
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A List of symbols
The following presents a list of symbols used in this work. Note that the meanings given
here are not necessarily the only ones with which they were used.

#number . . . Unique node id

#string . . . . . Position(s) occupied by
quantum variable variable
on the quantum heap

JK . . . . . . . . . . . Separate syntax and
semantics

|| . . . . . . . . . . . . Parallel composition

$ . . . . . . . . . . . . Superoperator on B(H)
⊔

. . . . . . . . . . . Least upper bound

⊥ . . . . . . . . . . . Least element of a partial
order

∼= . . . . . . . . . . . Equivalence, reflexive and
transitive

⊑ . . . . . . . . . . . Binary partial order

(K∅, T∅, E∅) Initial (K,T,E) tuple

Γ . . . . . . . . . . . List of Kraus sets

Λ . . . . . . . . . . . Completely positive map

χ(v) . . . . . . . . Type associated with a
variable v

ω . . . . . . . . . . . Increasing chain of
natural numbers

ϕ . . . . . . . . . . . A permutation

π : B . . . . . . . . Probability distribution
obtained by applying a
projective measurement
defined by the basis B

̺ . . . . . . . . . . . . A density operator

Σ . . . . . . . . . . . State in form of a
(K,T,E) tuple

σ . . . . . . . . . . . Signature for types

A . . . . . . . . . . . Set of all possible Kraus
aggregations

A . . . . . . . . . . . Observable algebra

A . . . . . . . . . . . Finite ordered set

A#b . . . . . . . . The bth element of the
ordered set A

B(H) . . . . . . . . Set of all bounded
operators on Hilbert
space H

COMM . . . . Valuation function for
parallel execution

C(X) . . . . . . . . Complex-valued functions
X → C

c(σ) . . . . . . . . . Check if a given data
type is purely classical

card(X) . . . . . Cardinality of X

Dn . . . . . . . . . . Set of all density
operators of dimension n

S(k) . . . . . . . . Set of all decompositions
of k ∈ N

D(A,B) . . . . . Determine if A and B

operate on disjoint qbits

DO . . . . . . . . . Valuation function for
dyadic operators

E . . . . . . . . . . . Environment

E ⊢ x : T . . . . x has type T is valid in
environment E

E ⊢ F . . . . . . . F is well-typed in
environment E

E(A) . . . . . . . . Effects of A
EQN . . . . . . . Valuation function for

arithmetic expression

EXP . . . . . . . . Valuation function for
expressions
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Appendix A. List of symbols

F . . . . . . . . . . . Set of all fixed points of a
permutation

F2 . . . . . . . . . . Binary group/ring/field

fix . . . . . . . . . . Fixed point

in . . . . . . . . . . . Injection

I(M) . . . . . . . Set of all intervals in M

K . . . . . . . . . . . Kraus aggregation

K . . . . . . . . . . . Set of all unparametrised
Kraus agregations

Lc . . . . . . . . . . Set of labels for
communication partners

M . . . . . . . . . . Finite set

MO . . . . . . . . Valuation function for
monadic operators

OP . . . . . . . . . Valuation function for
operators

P(M) . . . . . . . Powerset of M

nc . . . . . . . . . . . Classical data type with
n bits

nq . . . . . . . . . . Quantum data type with
n qbits

pos(x, L) . . . . Position of x in the list L

PROG . . . . . . Valuation function for
programs

PROJ . . . . . Generate Kraus set with
projection operators for a
quantum type

Q . . . . . . . . . . . Size of the quantum heap
(global constant!)

Q . . . . . . . . . . . Set of all quantum
variables in a typing
context

q(nτ ) . . . . . . . Distinguish between
classical and quantum
components of a data
type

q(σ) . . . . . . . . . Check if a given data
type is purely quantum

qtype . . . . . . Arbitrary quantum data
type

R . . . . . . . . . . . Number of receive
statements in a Kraus
aggregation

RS . . . . . . . . . Valuation function for a
receive/send pair

S . . . . . . . . . . . Number of send
statements in a Kraus
aggregation

S(A) . . . . . . . . States of A
smash . . . . . . . Smash product (with a

single bottom element)

SR . . . . . . . . . Valuation function for a
send/receive pair

Sym(M) . . . . Symmetric group over M

T (σ) . . . . . . . . Set of data types
equivalent to σ

T . . . . . . . . . . . Typing context

tq(σ) . . . . . . . . Number of quantum bits
contained in a data type
σ

tc(σ) . . . . . . . . Number of bits contained
in a data type σ

U(n) . . . . . . . . Unitary group of degree n

VAL . . . . . . . . Arbitrary valuation
function

X . . . . . . . . . . . Finite set

x : t . . . . . . . . . Variable x with type t

YD . . . . . . . . . Fixed point combinator
on cpo D
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Die Bedeutung eines Wortes ist das, was die
Erklärung der Bedeutung erklärt.

Ludwig Wittgenstein, Philosophische
Grammatik

B Glossary
Some terms used in this work are not too commonplace in physics, so we collected the most
important definitions to remind the reader of their meaning if it cannot be immediately
recollected. Some of the definitions were inspired by [Wik05].

Abstract syntax Grammar used to spec-
ify the possible shapes of the parse
tree.

Backus-Naur Form Metasyntax with a
standardised set of symbols and nota-
tions which is used to express context-
free grammars.

Compiler-Compiler A program used to
generate a parser which can perform
syntax analysis on programs that fol-
low a given grammar.

Compile time refers to all actions which
are performed by the compiler before
the program is executed, e.g., syntac-
tical and semantical analysis, scoping
rule enforcement, type analysis, opti-
misation, code generation etc.

Concrete syntax Syntax in which textual
representations of programs must be
specified.

Context free grammar Formal grammar
in which every production rule needs
to be of the form V → w where V is a
non-terminal and w a list of terminal
and non-terminal symbols.

Data type A data type is a name or label
for a set of values and some operations
which can be performed on that set of
values.

EBNF Extended Backus-Naur Form

Environment Structure which provides a
mapping between identifiers of vari-
ables and the values associated with
them.

FIFO Queue with first-in, first-out be-
haviour, i.e., the output of the queue
is in the same order as the input.

Functional languages do not work on ex-
plicit states, but use transformations
that map input to output parameters
(→ referential transparency). Assign-
ment to variables is not possible since
they represent immutable bindings for
values. In our notation, functionality
is exploited as far as it is necessary for
the ability to guarantee freedom from
runtime errors. Classical examples of
functional languages include Lisp, ML,
and Haskell.

Identifier Name of a variable in a program.

Imperative languages work on a global
state that is modified during runtime.
The most widespread languages (C,
C++, Pascal etc.) follow this ap-
proach. It is normally impossible to
decide if a program written in an im-
perative language will terminate or
produce errors without executing it.
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Lexer A lexer is the part of a compiler
which takes the source code of a pro-
gram (in textual form) and dissemi-
nates it into a stream of tokens which
is fed to the parser.

Lexicographic order Two strings x, y ∈
Σ∗ can be ordered such that x > y

if x#i− y#i > 0 for the first i ∈ N for
which x#i 6= y#i.

LALR(1) Certain class of context-free
grammars that needs to be specified
subject to some constraints on its
form, but can be handled by Yacc-style
parsers.

Mutex Mutual exclusion. A technique re-
alised with the aid of special variables
which ensures that only one compo-
nent of a parallel program can be in
the region protected by the mutex at
a time.

Non-terminal symbol A symbol that is
composed of terminal symbols and
possibly other non-terminal symbols.

Parser The parser is the part of a compiler
which analyses the grammatical struc-
ture of a program (which is fed to him
in the form of tokens produced by the
lexer). This process is also known as
syntactical analysis.

Parse tree Representation of a program
which is generated by the parser. Since
tree-based data structures are used to
represent the information, the abstract
syntax of the language (which is easier
to analyse) can be utilised.

Runtime refers to the time when a pro-
gram is executed and the compiler has
no more influence on what happens.
Alternatively, it may denote a library
with helper functions supplied by the
compiler which are necessary for the
generated code to work (this may be
also referred to as runtime library).

Scope Rules used to determine what, if
any, entity a given occurrence of an
identifier in a program refers to.

Semantic analysis is the part of a com-
piler that adds semantic information
to the parse tree (for example, the re-
quired space in memory for variables)
and performs sanity checks which may
detect errors in the code before it is
executed.

Static typing means that once a type has
been assigned to an object, it cannot
be changed any more.

Strong typing means that not only values,
but also identifiers are typed.

Terminal symbol A symbol of a grammar
that represents a constant.

Token Tokens are the smallest elementary
parts of a program form the parser’s
point of view. While int is a three-
letter word respectively a string of
characters in the source code, the
parser regards it as a single entity
which describes the data type of in-
tegers.

Type Also called data type. It is a label for
a set of values together with some op-
erations that can be performed on the
set.

Type system Set of rules that determines
which type a given object has, how
types can be combined etc.

Type checking is the pass of a compiler
which ensures that all operations of
a program are applied to variables of
proper type; it can, e.g., ensure that
string concatenation is not tried to be
performed on integers.

Yacc Yet another compiler compiler. One
of the early approaches to automated
parser generation. Most modern
parser generators follow the concept of
this program.
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Der Satz ist der sprachliche Ausdruck dafür,
dass sich die Verbindung mehrerer Vorstel-
lungen in der Seele des Sprechenden vollzogen
hat, und das Mittel dazu, die nämliche
Verbindung der nämlichen Vorstellungen in
der Seele des Hörenden zu erzeugen.

H. Paul, Prinzipien der Sprachgeschichte

C Formal syntax
The formal syntax for cQPL is defined by the following rules which are used to generate the
parser. Words in typewriter face denote tokens recognised by the lexer, whereas slanted

text is used for productions. identifiers are given by a letter followed by an arbitrary number
of letters, digits and underscores. The empty production is denoted by ǫ.

program: stmt list EOF

| module list EOF

stmt list: statement;

| stmt list statement;

module list: module def ;

| module list module def ;

module def : module identifier { stmt list }

proc decl: proc identifier:context -> context block in statement

| proc identifier:context block in statement

context: identifier:var type more context | ǫ

nonempty context: identifier:var type more context

more context: , identifier:var type more context | ǫ

block: { stmt list }

var type: bit | qbit | qint | int | float

send stmt: send args to identifier

receive stmt: receive nonempty context from identifier

allocate stmt: new var type identifier := arith expr

arith expr: int value

| float value

| true

| false

| identifier

| (arith expr)

| arith expr + arith expr

| arith expr - arith expr

| arith expr * arith expr

| arith expr / arith expr

| arith expr < arith expr

| arith expr > arith expr

| arith expr <= arith expr

| arith expr >= arith expr

| arith expr == arith expr

| arith expr != arith expr
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Appendix C. Formal syntax

| arith expr & arith expr

| arith expr | arith expr

| - arith expr

| ! arith expr

proc call: call identifier (args)

| (var list) := call identifier (args)

args: identifier more args | ǫ

more args: , identifier more args | ǫ

if stmt: if arith expr then statement

| if arith expr then statement else statement

measure stmt: measure identifier then statement else statement

assign stmt: identifier := arith expr

assign measure stmt: identifier := measure identifier

while stmt: while arith expr do statement

gate stmt: var list *= gate

gate: H | CNot | Not | Phase float value

| FT (int value)

| [[ number list ]]

number list: sign float value

| sign int value

| sign float value PLUS sign imaginary value

| sign int value PLUS sign imaginary value

| sign imaginary value

| number list, sign float value

| number list, sign int value

| number list, sign imaginary value

| number list, sign float value + sign imaginary value

| number list, sign int value + sign imaginary value

sign: - | + | ǫ

var list: identifier | var list, identifier

skip stmt: skip

print stmt: print "string"

| print arith expr

| dump var list

statement: proc call

| proc decl

| while stmt

| allocate stmt

| if stmt

| print stmt

| assign stmt

| assign measure stmt

| measure stmt

| skip stmt

| block

| gate stmt

| send stmt

| receive stmt
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