
ar
X

iv
:0

81
2.

35
97

v1
  [

qu
an

t-
ph

] 
 1

8 
D

ec
 2

00
8

How Colors Influence Numbers: Photon Statistics of Parametric Downconversion
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Parametric downconversion (PDC) is a technique of ubiquitous experimental significance in the
production of non-classical, photon-number correlated twin beams. Standard theory of PDC as a
two-mode squeezing process predicts and homodyne measurements observe a thermal photon number
distribution per beam. Recent experiments have obtained conflicting distributions. In this paper, we
explain the observation by an a-priori theoretical model solely based on directly accessible physical
quantities. We compare our predictions with experimental data and find excellent agreement.

PACS numbers: 42.50.Ar 89.60.Gg

Introduction Spectral properties of states gener-
ated by χ(2) nonlinearities are traditionally studied using
homodyne detection. Unfortunately, this standard tech-
nique implicitly restricts the observation to an effective
single spectral mode imposed by the single local oscil-
lator. Avalanche photo diodes (APDs) [1], in contrast,
are sensitive on all modes generated by sources of cur-
rent experimental significance, and uncover richer spec-
tral properties. This sub-structure is currently usually
neglected or only treated effectively, although it impacts
security proofs of quantum key distribution or the valid-
ity of fundamental quantum measurements, for example.
In this paper, we present an a-priori theoretical expla-

nation that connects the spectral structure of PDC states
with the photon number distribution (PND), which is a
commonly employed resource. Recent experiments have
observed that the PND for multi-mode sources differs
markedly from the prediction of the single-mode standard
model [2]. Our approach explains this behavior by de-
composing the state into a set of independent two-mode
squeezers [3, 4] akin, but not completely identical to the
Bloch-Messiah decomposition. The PND is inferred from
the well-known properties of these independent contribu-
tions. In contrast to previous efforts [5, 6], our approach
is the first to enable, to our knowledge, the quantita-
tive computation of photon number statistics without as-
sumptions or fitting of non-physical parameters. This is
important for a wide class of experiments ranging from
fundamental to highly applied because they require a
complete understanding of the internal structure of PDC
states to fully exploit their quantum features.

Decomposition A multi-mode type-II down-
conversion process is most conveniently stud-
ied using the interaction Hamiltonian Ĥint(t) =
∫

V
d3~xχ(2)Ê

(+)
p (~x, t)Ê

(−)
s (~x, t)Ê

(−)
i (~x, t) + H.c. [7],

where the subscripts denote pump, signal, and idler,
respectively, and the tensor χ(2) represents the second-
order nonlinear susceptibility. By assuming a classical
pump and a frequency-independent χ(2) in the spec-
tral range of interest, it can be shown [8] that with

ĤI ≡
∫ t

t0
dt′Ĥint(t

′),

ĤI = C

∫∫

dω1dω2f(ω1, ω2)â
†(ω1)b̂

†(ω2) + H.c., (1)

where â†(ω1) and b̂†(ω2) are field operators that create
a monochromatic photon with frequency ωi in the signal
and idler modes a and b. f(ω1, ω2) is the spectral distri-
bution function (SDF) of the single photon contribution,
and C = C(χ(2),

√

Ip) is a coupling constant that de-

pends on the strength χ(2) of the nonlinear susceptibility
and on the pump intensity [7, 9]. The time-propagated
state is computed by |ψ〉 = T exp((i~)−1ĤI)|ψ(t0)〉,
where we assume that the pulse has completely left the
crystal and the interaction is finished. Following [8], the
time-ordering T can be omitted because the Hamiltonian
approximately commutes with itself at different times
and the corrections are therefore negligible.
To express ĤI in a more convenient form, we use the

Schmidt decomposition, uniquely defined by

f(ω1, ω2) =

N−1
∑

n=0

√

λnξ
(1)
n (ω1)ξ

(2)
n (ω2), (2)

where the Schmidt modes {ξ(1)n (ω1)} and {ξ(2)n (ω2)} are
two sets of orthonormal bases with respect to the L2 in-
ner product, and the Schmidt eigenvalues λn are real ex-
pansion coefficients that satisfy

∑

n λn = 1. The salient
feature of Eq. (2) is that only a single summation index
is required, and not two as for a regular change of basis.
The decomposition is guaranteed to exist for a large class
of systems under very general assumptions [10]. For sim-
ple systems that require only a few Schmidt modes (i.e.,
N is small), the decomposition can be numerically com-
puted by solving a set of coupled integral equations [11].
For systems that require a large N , it is usually easier
to perform a singular value decomposition (SVD), see
Ref. [12] and below for more details.
We define effective single-mode field operators (some-

times also called pseudo-boson operators) by

Â†
n ≡

∫

dωξ(1)n (ω)â†(ω), (3)
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and similarly for B̂n. Because the spectral distribution
functions are orthonormal, that is, 〈ξi, ξj〉 = δij , it is easy
to verify that the operators fulfill the canonical commu-
tation relations [Âj , Â

†
k] = 1̂δjk and [Âj , Âk] = 0. More

details about this notation are provided by Ref. [13].
By rewriting ĤI in Eq. (1) using the Schmidt decompo-

sition (2) for f(ω1, ω2) and the definition of pseudo-boson
operators in Eq. (3), we obtain

exp

(

1

i~
ĤI

)

= exp

(

C

i~

N−1
∑

n=0

√

λnÂ
†
nB̂

†
n +H.c.

)

. (4)

The two-mode squeezing operator for spectral effec-
tive single modes A, B is defined by ŜAB(ηn) ≡
exp(−ηnÂ†B̂† + η∗nÂB̂), where ηn = C

√
λn/(i~) ≡

rn exp iϕn is a complex number. Because [Âj , Â
†
k] = 0

for j 6= k, the state after the interaction is a tensor prod-
uct of independent two-mode squeezers[21]:

|ψ〉 =
N−1
⊗

n=0

ŜAnBn
(ηn)|ψ(t0)〉. (5)

Notice that it follows from this decomposition that the
SDF is identical for all orders of photon number contribu-
tions because creation operators that belong to different
distribution functions are never mixed.[22]

Computing Statistical Distributions For two-
mode squeezed states, the PND in each mode is thermal,
that is, for the state

|ψ〉 = ŜAB(η)|00〉 =
∞
∑

n=0

κn|n, n〉, (6)

the distribution is given by p(n) = |κn|2 =
sech2 r tanh2n r for one output mode, that is, N = 1.
Consequently, the photon number distribution of the
multi-mode state (5) is given by the convolution of the
distributions of all independent squeezers. Assume that
pξk(n) denotes the PND of the kth squeezer with spectral

modes ξ
(i)
k . The overall PND is then given by

p~ξ(n) =
∑

Θ∈n⊢N

N−1
∏

m=0

pξm(Θm), (7)

where n ⊢ N denotes the set of all partitions of n into N
parts. The distribution p~ξ(n) is consequently the convo-

lution of all probability distributions pξi(n).
Two special cases follow directly from Eq. (7): When

only a single effective mode contributes (N = 1), the
resulting distribution exhibits thermal behavior. When
the physical process requires a very large number of effec-
tive modes (N → ∞), the resulting PND is Poissonian,
because it is known that a convolution of thermal dis-
tributions converges to a Poissonian distribution in this
limit [14].

Computing the convolution in Eq. (7) involves sum-
ming over numerous contributions. This is consider-
ably simplified by using generating functions. For coeffi-
cients p(n), they are given by the formal power series [14]
g(ζ) =

∑

n p(n)ζ
n. The individual coefficients can be re-

covered via p(n) = 1
n!

∂n

∂xn g(ζ)|ζ=0. For the thermal dis-
tribution of a two-mode squeezer, the series converges an-

alytically to gk(ζ) =
sech2 rk

1−ζ tanh2 rk
, where rk is the strength

of the kth squeezer. The generating function for a convo-
lution of N thermal distributions is

∏N−1
k=0 gk(ζ), and the

resulting photon number distribution is consequently

p~ξ(n) =
1

n!

(

∂n

∂ζn

N−1
∏

k=0

gk(ζ)

)∣

∣

∣

∣

∣

ζ=0

. (8)

Let us now turn our attention to an example illustrat-
ing our considerations. Assume that the SDF is given
by a two-dimensional, real-valued Gaussian distribution
(this is not a restriction because the methods also work
for complex, non-Gaussian SDFs). This approximation is
commonly used [11, 15] to provide a convenient param-
eterization of type-II PDC processes. Especially, it is
possible to perform an analytical Schmidt decomposition
(a similar approach is used, for instance, in Ref. [15]).
We use the parameters σ2

x and σ2
y to specify the spectral

widths of signal and idler, while θ denotes the rotation
with respect to the x axis. This form is illustrated in
Figure 3.
Let us choose σ2

x = 25 and σ2
y = 1, which are the pa-

rameters depicted in the inset of Figure 3. The Schmidt
number K = 1/

∑

n λ
2
n is computed from the eigenval-

ues λn of the Schmidt decomposition. It is a measure for
the number of effectively contributing spectral modes and
thus of inherent spectral correlations of the physical pro-
cess [11] (notice that we could have also considered an
entanglement monotone like the logarithmic negativity
for this purpose). For θ = 0, the state exhibits no spec-
tral correlations, and a single Schmidt mode suffices for
the decomposition. By rotating the SDF from θ = 0 to
θ = π/2, the correlations increase to their maximal value
at θ = π/4, and decrease again until the SDF becomes
separable for θ = π/2. This implies thermal statistics for
θ = 0 and θ = π/2, and maximal similarity to Poissonian
statistics for θ = π/4. The coupling and pump intensity
are, for better comparability, chosen such that n̄ = 1 for
all PNDs. Figure 1 illustrates the arising distributions.
To quantify the difference between convoluted and

Poissonian or thermal distributions, we employ the vari-
ational distance defined for two probability distributions
p1, p2 as ∆p1,p2

≡∑n |p1(n)− p2(n)|. Two distributions
are completely identical if and only if ∆ = 0. Figure 2
compares the difference of the convoluted distribution to
the above-mentioned special cases for a growing Schmidt
number K, that is, a growing number of Schmidt modes
achieved by rotating the Gaussian SDF for θ = 0 to
θ = π/4.



3

 0.2

 0.4

 0  1  2  3  4

θ=0 and θ=π/2 (K=1.0)

Poisson
Convolution

Thermal

 0.2

 0.4

 0  1  2  3  4

θ=0.1 and θ=π/2+0.1, (K=2.67)

Poisson
Convolution

Thermal

 0.2

 0.4

 0  1  2  3  4

θ=0.3 and θ=π/2+0.3, (K=7.11)

Poisson
Convolution

Thermal

 0.2

 0.4

 0  1  2  3  4

θ=1/4π, (K=12.51)

Poisson
Convolution

Thermal

FIG. 1: Photon number distribution depending on the num-
ber of effectively contributing modes as given by the Schmidt
number K (and thus on the angle of the SDF) of a type-II
PDC process. The x axes depict photon numbers, whereas
the y axes show probabilities.
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FIG. 2: Solid line and dashed line show the distance between
the convoluted photon-number distribution and Poissonian or
thermal statistics, respectively, plotted against Schmidt num-
ber. For a single effective mode, the distribution is exactly
thermal, but the more modes contribute, the closer it gets to
a Poissonian distribution. The inset fixes θ = π/4 and varies
σ2
x, which is drawn on a logarithmic scale.

Once again, we emphasize that the shift towards a
Poissonian distribution is inherent in the physical pro-
cess and not caused by any experimental imperfections.

Comparison with Experimental Data We have
also performed a comparison of experimentally measured
photon number statistics with the predictions of our the-
ory. A photon-number resolving fiber-loop detector [1] in
combination with highly efficient waveguides was used to
record the distribution. The detection method is resilient
against loss and allows us to eliminate the correspond-
ing effects when ensemble measurements are performed.

Ref. [12] shows the experimental details of state genera-
tion, and [2] describes the measurement procedure. Fig-
ure 3 compares the experimentally observed distribution
with the theoretical prediction at various pump powers.
As is immediately obvious from the figure, they are in
excellent agreement.

FIG. 3: (Color online) Comparison between experimentally
measured and theoretically obtained photon number distri-
butions for a multi-mode PDC process at various pump
strengths. The bottom inset shows the real part of the joint
spectral intensity, while the top inset demonstrates the pa-
rameterization of the analytical Gaussian approximation of
the SDF. Loss inversion and error estimation was performed
using non-negative least squares optimization.

To avoid the necessity of fitting any effective param-
eters, we have obtained an exact numerical decomposi-
tion using SVD techniques. After discretizing the SDF
on a grid Mmn of size 1500 × 1500, the matrix is de-
composed as M = UΣV †, where U , V are unitaries and
Σ = diag(

√
λ1, . . . ,

√
λN ) is a real diagonal matrix [16].

Extensive checks that the decomposition converges (and
also converges to the proper value) have been performed,
see Ref. [17] for details.

Notice that the decomposition of the spectral distribu-
tion does not depend on the pump intensity, which means
that the composition {λn} of the PND is fixed for the
physical process. However, the observed mean value of
the PND does depend on the pump intensity, and Fig. 3
shows a shift toward larger mean photon numbers for
larger pump intensities as expected.

For higher pump powers, photon-number resolved de-
tection is not possible anymore. To check the theory in
this regime, we have used a set of mean photon number
(n̄) measurements instead. The coupling constant C as
defined in Eq. 1 can be inferred from the decomposed
SDF for each n̄ for a given pump power by a numerical
optimization process[23]. The result is shown in Figure 4.
Again, very good agreement between theory and experi-
ment is achieved.
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FIG. 4: Relation between pump power and coupling param-
eter. The expected square-root dependency [9] is correctly
obtained for a wider range of pump intensities than can be
resolved with current TMDs, which ensures the validity of our
approach also for high powers. Notice that this knowledge
would also allow for computing the expected mean photon
number for a given pump power or a determination of χ(2),
as described in [18].

Conclusions We have shown how to decompose a
multi-mode PDC process into independent two-mode
squeezers operating on effective single modes, and how
this explains why the photon number distribution of the
process can exhibit any form ranging from purely thermal
to purely Poissonian. We have underlined the validity of
the theory by comparing the predictions to an experi-
mentally measured photon number distribution. Addi-
tionally, we have compared theory and experiment for
larger pump powers.

Appendix A two-dimensional Gaussian distribution
in a suitable parameterization is given by

f(x, y) =
1

√
πσxσy

exp(−ax2 − 2bxy − cy2),

a(θ, σx, σy) = cos2 θ/(2σ2
x) + sin2 θ/(2σ2

y),

b(θ, σx, σy) = − sin 2θ/(4σ2
x) + sin 2θ/(4σ2

y),

c(θ, σx, σy) = sin2 θ/(2σ2
x) + cos2 θ/(2σ2

y).

Without getting into details of the alge-
bra involved, we remark that by starting from

Mehler’s formula [20]
∑∞

n=0Hn(x)Hn(y)
( 1

2
γ)n

n! =
1√
1−γ2

exp
(

− γ2x2−2γxy+γ2y2

1−γ1

)

(Hn(x) denotes the

Hermite polynomial of nth order), it is possible to bring

f(x, y) into the form f(x, y) =
∑∞

n=0

√
λnf

(1)
n (x)f

(2)
n (y).

The coefficients λn are given by λn = 22n−1

ac
1+γ2

σxσy

(

γ
2

)2n

where γ = −2
√
ac+

√
4ac−4b2

2b . Since the set {λn} contains
all information required for our calculations, the exact

form of f
(i)
n (·) is not of interest here, but can be found

in Ref. [18].
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