
A modular framework for randomness extraction based on Trevisan’s construction

Wolfgang Mauerer,1, ∗ Christopher Portmann,2, 3, † and Volkher B. Scholz2, ‡

1Siemens AG, Corporate Research and Technologies, Wladimirstraße 1, 91058 Erlangen, Germany
2ETH Zürich, Institute for Theoretical Physics, Wolfgang-Pauli-Straße 27, 8093 Zürich

3Group of Applied Physics, University of Geneva, 1211 Geneva, Switzerland.

Informally, an extractor delivers perfect randomness from a source that may be far away from the
uniform distribution, yet contains some randomness. This task is a crucial ingredient of any attempt
to produce perfectly random numbers—required, for instance, by cryptographic protocols, numer-
ical simulations, or randomised computations. Trevisan’s extractor raised considerable theoretical
interest not only because of its data parsimony compared to other constructions, but particularly
because it is secure against quantum adversaries, making it applicable to quantum key distribution.

We discuss a modular, extensible and high-performance implementation of the construction based
on various building blocks that can be flexibly combined to satisfy the requirements of a wide range
of scenarios. Besides quantitatively analysing the properties of many combinations in practical
settings, we improve previous theoretical proofs, and give explicit results for non-asymptotic cases.
The self-contained description does not assume familiarity with extractors.

I. INTRODUCTION

Random numbers are key ingredients for many pur-
poses concerning communication or computation: se-
cretly shared, perfectly random bit strings enable two
parties to communicate in private using a one-time pad,
without the possibility of a third party decrypting any of
the messages they exchange. Stochastic algorithms used
in numerical simulation or machine learning also rely on
random numbers as part of their input. In all such ap-
plications, it is usually best to have uniform random-
ness available, that is, an observer should not have prior
knowledge about the distribution of numbers, or, more
specifically, the content of bit strings: Each string should
be equally probable from his point of view. Some appli-
cations, such as encrypting a message with information-
theoretic security, are even impossible if the randomness
used to choose the key is not equivalent to a uniform dis-
tribution [1]. Unfortunately, despite their usefulness and
the need for them, uniformly distributed random bits are
almost impossible to generate in practice. On the other
hand, there are plenty of physical resources containing
“some” randomness, for instance radioactive decay, ther-
mal fluctuations, certain measurements on photons, or
many others.

This contrast motivates the study of randomness ex-
tractors: Functions that map longer, slightly random bit
strings onto shorter, perfectly random bit strings. They
convert an initial distribution of random numbers (the
source) that satisfies certain assumptions on “how ran-
dom” it is into an almost uniform distribution over the
output bit strings. As suggested by intuition, this is im-
possible in a completely deterministic way [2], and ex-
tractors indeed require a second source of randomness,

∗ wolfgang.mauerer@siemens.com (corresponding author)
† chportma@phys.ethz.ch
‡ scholz@phys.ethz.ch

the seed, that is usually assumed to be perfectly uni-
formly distributed.

The goal of this work is twofold: to implement a spe-
cific randomness extractor devised by Trevisan in 1999 [3]
as a practical companion to the abundant amount of
theoretical literature on the subject, and to provide an
overview and guidance on the topic to experimental-
ists who need to use extractors, but would not benefit
from working through all fundamental publications. Tre-
visan’s construction has three particular advantages: For
one, it is secure in the presence of quantum side infor-
mation, as was shown by one of the authors in collabora-
tion with others [4]. This is especially important in the
context of cryptography, where an adversary usually has
some prior information about the initial distribution used
as raw material to produce a secret key. With a quantum-
proof extractor, it is possible to eliminate all these unde-
sired correlations by turning the initial distribution into
a uniform one — a task referred to as privacy amplifi-
cation. With quantum key distribution (QKD) systems
gradually transitioning from research labs into commer-
cial applications, it is very important to implement this
crucial protocol step, and given a bound on how random
and how correlated with some (quantum-)memory a bit
string is, the algorithm can indeed perform the task of
producing truly random and uncorrelated bits with the
help of a short seed of uniformly distributed bits.

Another crucial advantage of Trevisan’s construction
is that the required seed length is only poly-logarithmic
in the length of the input. This greatly outperforms ran-
domness extractors based on (almost) universal hashing,
which are currently most often used in quantum cryp-
tographic applications [5, 6], but require a seed whose
size unfortunately scales with the length of the raw in-
put (output) bits.

In addition, Trevisan’s construction is a strong extrac-
tor, which means that the seed is almost independent of
the final output. This implies that randomness in the
seed is not consumed in the process (compared to weak
extractors) and can be used at a later time — or, as in

ar
X

iv
:1

21
2.

05
20

v1
 [

cs
.I

T
]

 3
 D

ec
 2

01
2

mailto:wolfgang.mauerer@siemens.com (corresponding author)
mailto:chportma@phys.ethz.ch
mailto:scholz@phys.ethz.ch

2

the case of privacy amplification, it can be obtained by
the adversary without compromising the security of the
QKD scheme.

Despite the considerable theoretical attention the field
of extractors has received during the last decade, there is,
to our knowledge, only a single publication, Ref. [7], that
discusses a prototypical implementation of Trevisan’s
construction. However, their work has some drawbacks:
Compared to Ref. [7], our implementation offers greater
flexibility as the operator can combine various different
building blocks that make up the extractor, and so can
specifically engineer an algorithm for his needs. Com-
paring the performance, our implementation exceeds the
throughput of [7] by several orders of magnitude, and is
for the first time able to scale to data sets of realistic size
(exceeding the maximal amount considered in [7] by 10
orders of magnitude) for which the amount of extracted
randomness actually exceeds the size of the initial seed,
which marks the regime in which Trevisan’s construc-
tion prevails over two-universal hashing. Besides, the full
source code of our implementation is available1 and can
be inspected and used as basis for further research. We
therefore hope that our implementation will be of use for
applications in the context of quantum cryptography, for
implementing random number generators, or as a testbed
for developing new ideas about extractors.

In Section II, we give more proper descriptions and
definitions of the involved concepts and constructs. In
particular, we discuss the necessary notions of entropy
and the distance of a distribution from uniform (relative
to an overserver). However, no prior knowledge about
randomness extractors is assumed. Section III contains
the necessary technical details, and can be skipped upon
first reading. Section IV is devoted to the implemen-
tation: It describes the software architecture and dis-
cusses some important technical details, explains how to
add new components, and gives concise algorithmic de-
scriptions of all components. In Section V, we present
comprehensive performance measurements, and discuss
which combinations of primitives are useful for which
purpose. The appendices collect formal definitions, pro-
vide known extractor results with explicitly spelled out
constants that are, in contrast to many discussions that
rely on asymptotic notations, vital for an implementa-
tion, and give proofs for some new propositions developed
in the paper.

1 The sources are available under the terms of the GNU General
Public License (GPL), version 2— see www.gnu.org. Essentially,
this means that the code can be used and modified free of charge
for research (or even commercial) work, provided that any im-
provements to the code are made available under similar terms.

II. OVERVIEW

A. What are extractors?

There are numerous possibilities to produce random
numbers, and many of them rely on some random phys-
ical process, turning, for instance, thermal fluctuations
into random bit strings. The laws of physics state that
these processes produce distributions with a non-zero en-
tropy, and hence are somewhat random. But the uni-
form distribution or maximal entropy case is most often
not within reach: thermal fluctuations, for instance, re-
quire infinite temperatures to produce truly random bit
strings. It is therefore necessary to have an algorithm
that extracts random numbers from some given initial
distribution satisfying a lower bound on its entropy, turn-
ing them into uniformly distributed ones. By shrinking
the bit string (i.e., reducing the support of its distri-
bution), we increase its randomness until it achieves its
maximum. It is easy to see that such a task is impossible
for any deterministic routine [2]. But assuming that we
have two distributions (seed and source) over bit strings
at our disposal, promised to be uncorrelated and fulfill-
ing a lower bound on their entropy, the task comes into
reach. Such algorithms are called randomness extractors,
and their general structure is shown in Figure 1. The ad-
ditional randomness is usually taken to be uniform, and
is called the seed2. A natural aim is to seek algorithms
that minimise the required size of the seed, or in other
words, the amount of additional randomness. Extractors
depend on several parameters, specifying source, seed,
and output. This section explains the different param-
eters and how they are quantified, and discusses their
connection. In the second part, we briefly outline Tre-
visan’s construction.

2 For simplicity we also treat the case of a uniform seed in this
work, but some variations of Trevisan’s extractor still apply when
the additional randomness just fulfills a lower bound on its en-
tropy [4], and so the methods and code that we have developed
can also be adapted to this setting.

www.gnu.org

3

Weakly random source

Uniform random seed

Extracted uniform randomness

Extractor

(re-use only for
strong extractors)

FIG. 1. Scenario considered in randomness extraction: The
output of a weakly random source, together with a short, uni-
formly distributed seed, is processed by a deterministic algo-
rithm— the extractor — that produces a uniform sequence of
randomness that is shorter than the initial input. For strong
extractors, the initial seed is independent of the output and
can be re-used as part of the result.

First, let us consider how to quantify the amount of
randomness contained in the source. As per the seminal
works of Boltzmann, Shannon and von Neumann, the
amount of randomness contained in some distribution of
numbers is best quantified by its entropy, traditionally
given as

∑
x px log px. Here, x ranges over all output val-

ues, and px is the probability to observe outcome x. This
notion of entropy originates from statistical mechanics,
where we deal with large numbers of independent entities
that are usually also identically distributed. In contrast
to that, we are interested in a single run of our extrac-
tor, and not in statements about the output distribution
obtained from many instances of the extractor applied
to many independent copies of the initial distribution.
Consequently, we have to alter the notion of entropy.

Intuitively, the amount of randomness in some distri-
bution is quantified by the ability to predict the observed
values. This leads to the definition of the guessing prob-
ability pguess(X) as the probability of correctly guess-
ing the value of the random variable X. It is given by
pguess(X) = maxx px — the optimal strategy is to guess
the most probable value. The bigger pguess, the less ran-
dom the source is. This is quantified by the min-entropy,
defined by Hmin(X) = − log maxx px.

The definition does so far not consider the possible
presence of side information. In a more complex setting,
there might be some side information E correlated to
the source X, and the task becomes to extract uniform
randomness from X that is independent of E. In a cryp-
tographic context, E represents the adversary’s informa-
tion about the source. Clearly, if E is a one-to-one copy of
X, this task is impossible, even if X is perfectly uniform.
The notions of guessing probability and entropy conse-
quently need to be extended such that they measure the
randomness of the source conditioned on E. If the side
information is classical, then extractors proven sound in
the absence of side information can be used with only

a small adjustment of the parameters.3 However, this
changes dramatically if the observer is allowed to use the
power of quantum mechanics [8].

To guess the value of X, a player holding a quan-
tum state in a system E may measure this system, and
make a guess based on the observed outcome. For ev-
ery value X = x, his quantum memory is in some con-
ditional state ρx, and his task reduces to distinguish-
ing the different states ρx. Mathematically, such a
measurement is specified by a positive operator-valued
measurement {Ex}. Thus, the probability to correctly
guess the value taken by X is given by pguess(X|E) =∑
x px tr ρxEx. The corresponding entropic quantity, the

conditional min-entropy [5], is given by Hmin(X|E) =
− log

∑
x px tr ρxEx, where we take {Ex} to be the opti-

mal measurement.
Having specified the quantification of randomness, we

need to define what we mean by an “almost uniform”
distribution over the output Z = Ext(X,Y), where X is
the source and Y the seed. Again intuitively, we would
like to assure that a player holding some side information
cannot do better than with a random guess, that is, the
probability that he guesses correctly should be close to
1

2m if the output is a bit string of length m. Mathemat-
ically, this is expressed by requiring that the joint state
of the output and the side information ρZE is close to a
product state of a perfectly uniform output, τ— the fully
mixed state — and the side information ρE , that is, we
want ρZE ≈ τ ⊗ ρE . The distance4 between these states
is usually denoted by ε, and referred to as the error of
the extractor. Colloquially, an error of ε corresponds to
a probability of at most 1

2m + ε that the output can be

guessed correctly, and a probability of at most 1
2 +ε that

any single bit can be guessed.
We are now able to define extractors in more detail.

We assume that the input are bit strings of length n and
that the distribution has a conditional min-entropy of at
least k. For processing each input string, d randomly
distributed bits may be used. The output should consist
of bit strings having length m, and the distribution of
outcomes should be ε-close to uniform and independent
from the side information. We call a deterministic func-
tion taking as input the source and the seed and achieving
these goals a quantum-proof (k, ε)-extractor5. The out-
put length of such an extractor is m. Naturally, we would
like to have m as close to k as possible, which means
that most of the entropy has been extracted. The value
k −m is therefore called the entropy loss. The extractor
is called strong if the output is also close to independent
of the value of the seed, or equivalently, the output of the
extractor is a pair of bit strings, the first being the value
of the random bits used as seed, and the second being

3 See Lemma A.3 for an exact statement.
4 We use the trace distance to measure how close two states are,

see Appendix A for an exact definition.
5 See Definition A.2 for a formal definition.

4

the output. This is exactly the setting needed for the
privacy amplification step in quantum key distribution
protocols, as both Alice and Bob need to use the same
value for the seed, in order to produce a correlated bit
string. It is thus assumed that the bit values for the seed
are uniformly distributed, but known to the adversary,
since they are publicly announced by one of the parties.

The most commonly used (at least in theoretical con-
siderations) strong extractor in quantum key distribution
protocols is based on two-universal hash functions [5, 6].
A family is a collection of functions that map longer bit
strings to shorter bit strings. Over a random choice of the
function from the set, two-universality requires that it is
extremely unlikely for different bit strings to be mapped
to the same output. While universal hashing is optimal
in the entropy loss6, the required seed length (the size of
the function family: as many bits as necessary to ran-
domly select one member) scales as a multiple of n, the
input data length (or, in the case of almost universal
hashing [6], as a multiple of m, the output length).

It is important to emphasise that strong extractors
provide security just based on an entropic assumption,
namely the amount of (conditional) min-entropy of the
initial distribution. In contrast, pseudo-random number
generators are based on complexity theoretic assump-
tions. For instance, the presumed existence of functions
that are hard to invert on average in polynomial time
can be turned into an algorithm taking a short random
seed and producing an output distribution that “looks”
like the uniform distribution to any algorithm running in
polynomial time (see Ref. [10] for further information and
formal definitions). While such generators greatly out-
perform our current implementation,7 they require much
stronger assumptions and give rise to weaker promises on
the output distribution.

After this general discussion on extractors and related
issues, we now describe Trevisan’s construction in more
detail.

B. Trevisan’s Construction

Trevisan’s seminal contribution originates in the in-
sight that a certain class of error-correcting codes (ECC),
called list-decodable codes [13], can be re-interpreted as

6 An extractor will always have an entropy loss ∆ ≥ 2 log 1/ε +
O(1), where ε is the error of the extractor [9].

7 Practical implementations of pseudo-random number generators,
among them the variant used in the Linux kernel [11], rely on
cryptographic hash functions like SHA-512 [12]. Since these func-
tions, in turn, are used in numerous computing scenarios that ex-
tend well beyond cryptography, many recent CPUs offer special-
purpose machine instructions that allow for particularly efficient
implementations. This makes it practically impossible for an im-
plementation of Trevisan’s construction to beat the throughput
of cryptographic hash algorithms that are, besides, much simpler
from an algorithmic point of view.

extractors. In fact, the codes are one-bit extractors, and
deliver a single perfectly random bit from a larger reser-
voir of slightly random bits. Since an error correcting
code is a deterministic mapping from shorter into longer
bit strings to make them more robust against the influ-
ence of errors acting on the encoded data, the connection
between ECCs and bit extractors is not immediately ob-
vious. Trevisan’s first observation was that if we ran-
domly select a position of an ECC’s output string, the
corresponding bit is uniformly distributed, provided that
the initial distribution has enough min-entropy. If the
code outputs bit strings of length n̄ = poly(n), a loga-
rithmic long seed of random bits is needed, since exactly
log n̄ bits are necessary to specify a position of an n-bit
string.

Of course, we are interested in much longer outputs
than just a single bit. The second observation of Tre-
visan states that outputs of many uses of the one-bit
extractor can be concatenated so that the output is still
uniformly distributed, and that we do not need to choose
a completely new set of random seed bits for every use of
the one-bit extractor. This is achieved using a construc-
tion of Nisan and Wigderson [14], the Nisan-Wigderson
pseudo-random generator. The basic idea is that the ini-
tial choice of random bits taken from the seed is divided
into sets of random bits with small overlap. For example,
100 random bits are divided into 15 sets, each consisting
of 10 bits. If the overlap is not too large, there are not
too many correlations induced by seeding the elements of
each set into the one-bit extractors and concatenating the
output bits. The randomness available in the initial dis-
tribution can then be used to cope with these additional
correlations. Dividing the original seed bits into smaller
sets is done using an algorithm called weak design. The
complete process is summarised in Figure 2.

It turns out that there are many examples of one-bit
extractors and weak designs that fulfil the requirements
needed for the above procedure to work. Trevisan’s con-
struction is therefore not really a single algorithm, but
rather a recipe to combine different one-bit extractors
and weak designs to generate a quantum-proof strong ex-
tractor. The exact choice of either building block (we also
refer to them as primitives in the following) depends very
much on the application and on the parameter regime of
interest. Consequently, we decided to implement differ-
ent possible choices and let the operator decide which
ones to use. We now present two exemplary use cases
that do especially highlight the need to prioritise be-
tween speed, entropy loss, and the assumptions on the
initial randomness.

Suppose first that we have at our disposal a fast source
providing very good random numbers, or equivalently,
having a very high entropy. Ideally, we would like to
extract all randomness, but since producing new ran-
dom numbers is fast, we can allow a substantial entropy
loss, concentrating on performance instead. In this case,
the combination of the GF(p)-weak design with the XOR
one-bit extractor is the best choice, achieving a through-

5

Weakly random source

U
ni

fo
rm

 r
an

do
m

 s
ee

d

Extracted uniform randomness

BBBB

Weak
Design

... ...

FIG. 2. Interplay of components in Trevisan’s extractor. The
weak design expands the initial seed into multiple smaller
packets with certain overlap properties whose cumulative
length can considerably exceed the seed length. Each is fed
into a 1-bit extractor B, which distills a single random bit out
of the global randomness for each packet. The bits are finally
concatenated to form the extracted randomness. All compo-
nents that make up Trevisan’s algorithm are highlighted in a
grey box.

put of about 17 kbit/s on a normal notebook machine and
about 160 kbit/s on a large workstation with 48 cores.
The extractor can handle input lengths of several GiBits,
which is also necessary since in these extreme cases only
one percent of the available entropy is extracted. This
means that the source needs to provide random numbers
with a rate of about 20 Mibit/s. The required amount
of seed for the one-bit extractor is 1.7 KiBit, which leads
to a total seed of roughly 2.9 MiBit for 4 GiBit of input
data.

If we consider a source of very low entropy and focus on
small entropy loss rather than throughput, the optimal
choice turns out to be the block weak design together
with polynomial hashing for the one-bit extractor. It
works for any lower bound on the entropy, has almost
minimal entropy loss, and requires the shortest seed of
all constructions. It is, however, much slower than the
first combination: A throughput of only a few kbit/s
is achieved on a notebook computer, or 70 kbit/s with
48 cores, albeit for a much shorter input length of 216

bits: 100 bits are necessary for the one-bit extractor,
which results in 10 KiBit of total seed for the standard
weak design, and slightly less than 300 KiBit for the block
weak design needed to extract nearly all the entropy.

These are just two examples, and proper performance
measurements as well as a discussion on possible improve-
ments and aspects of high-performance computing can be
found in section V.

III. DERIVATIONS

A. Trevisan’s extractor

1. Description

As briefly sketched in the previous section, Trevisan’s
construction consists in applying multiple times the same
one-bit extractor to the input string, using different
weakly correlated seeds for each run. The seeds are cho-
sen as substrings of some longer seed y ∈ {0, 1}d. Let
{Si}i be a family of sets such that for all i, |Si| = t
and Si ⊂ [d] = {1, . . . , d}. Then ySi

— the string formed
by the bits of y at the positions given by the elements
j ∈ Si — is a string of length t. For a given one-bit ex-
tractor C : {0, 1}n × {0, 1}t → {0, 1}, and such a family
of sets {Si}mi=1, Trevisan’s extractor is defined as the con-
catenation of the output bits of C when used with the
seeds ySi

, namely

Ext(x, y) := C(x, yS1
) · · ·C(x, ySm

). (1)

The performance of the extractor naturally depends on
the performance of the one-bit extractor, but also on the
independence of the seeds used for each run of the one-
bit extractor. Intuitively, the smaller the cardinality of
the intersections of the sets {Si}, the more randomness
we can extract form the source, but the larger the seed.
The exact condition is given in the following definition.

Definition III.1 (weak design [15]8). A family of sets
S1, . . . , Sm ⊂ [d] is a weak (m, t, r, d)-design if

1. For all i, |Si| = t.

2. For all i,
∑i−1
j=1 2|Sj∩Si| ≤ rm.

In the following, we refer to the parameter r as the
overlap of the weak design.

As an example, if we use a quantum-proof (k, ε)-strong
extractor as one-bit extractor and a weak (m, t, r, d)-
design, the construction given by (1) is a quantum-proof
(k+ rm,mε)-strong extractor (see Lemma B.8). Thus, if
r = 1, Trevisan’s extractor has roughly the same entropy
loss as the underlying one-bit extractor. Note also that
the error ε of the one-bit extractor is the error per bit for
Trevisan’s construction.

2. Constructions overview

We always denote the input length by n, and the out-
put length by m. We choose ε in such a way that it

8 The second condition of the weak design was originally defined
as

∑i−1
j=1 2|Sj∩Si| ≤ r(m − 1). We prefer to use the version of

[16], since it simplifies the notation without changing the design
constructions.

6

corresponds to the error per bit for the final construc-
tion. We use d to describe the seed length of Trevisan’s
extractor and t for the seed length of the underlying one-
bit extractor. r denotes the overlap of the weak design,
and k the min-entropy required in the source, which is
often expressed as k = αn.

In the following, we briefly summarize the construc-
tions described in Sections III B and III C. We take the
input length n, output length m, and error per bit ε to be
fixed, and calculate the seed length d and entropy needed
in the source k as functions of these three parameters.

a. Weak designs: In Section III B we describe two
weak designs, the first was originally proposed by Nisan
and Wigderson [17], and has parameters d = t2 and r =
2e for any prime power t and any m. This means that
the seed of the final construction is the square of the seed
of the one-bit extractor, and the entropy loss induced by
the weak design is (2e − 1)m ≈ 4.436m. The second
construction iterates the first; it has a larger d = at2 for

a =

⌈
log(m− 2e)− log(t− 2e)

log 2e− log(2e− 1)

⌉
, (2)

but r = 1, i.e., the design does not cause any entropy
loss.

b. XOR-code: The XOR-code is a one-bit extractor,
which simply computes the XOR of a substring of the
input. With the two different weak designs, we find that
the randomness and seed needed are

k = γn+ rm+ 6 log
1 +
√

2

ε
+ log

4

3
,

t =
2 ln 2

h−1(γ)
log n log

(2 +
√

2)

ε
,

d = t2 or at2,

where γ is a free parameter that influences the amount of
extracted randomness and the length of the initial seed
(details in Section III C 1), and a is given by Eq. (2).
h(p) = −p log p− (1− p) log(1− p) is the binary entropy
function, and its inverse is defined on the interval (0, 1/2).

c. Lu’s construction: This one-bit extractor selects
a random substring of the input by performing a walk
on an expander graph, and then hashes the result to one
bit by taking the parity of the bitwise product with a
random string. With the two different weak designs, we
find that the randomness and seed needed are

k = h(ν)n+ rm+ 6 log
2 +
√

2

ε
− 2,

t = log n+ 3c(`− 1) + `,

c =

⌈
logw

2 log 5
√

2/8

⌉
,

` =

⌈
8 log ε− 8 log(2 +

√
2)

log(1− ν + w)

⌉
,

d = t2 or at2,

where ν ≤ 1/2 is a free parameter, a is given by Eq. (2),
and w is the solution to the equation9

w logw = (1− ν + w) log(1− ν + w).

d. Polynomial hashing: This constructions uses al-
most universal hash functions. With the two different
weak designs, we find that the randomness and seed
needed are

k = rm+ 4 log
1

ε
+ 6,

t = 2

⌈
log n+ 2 log

2

ε

⌉
,

d = t2 or at2,

where a is given by (2).

B. Weak designs

The weak design construction we use (see Sec-
tion III B 1 for a description) is originally from Nisan
and Wigderson [17], who proved that it is a standard
design — a notion stronger than weak designs, originally
used by Trevisan [3], but which Raz et al. [15] showed
to be unnecessary. Hartman and Raz [16] proved that
this construction is a weak (m, t, r, d)-design with over-
lap r = e2 for a prime t, d = t2, and m a power of t.
Ma and Tan [18] improved Hartman and Raz’s analysis,
and showed that r = e for any prime power t and any
m which is a multiple of a power of t. However, for a
practical implementation, we need a construction that is
valid for any m. We prove in Appendix C 1 that this con-
struction is a weak (m, t, r, d)-design for any prime power
t, any m, and r = 2e.10

As mentioned in Section III A, a larger overlap leads
to a larger entropy loss. In Section III B 2 we adapt an
iterative construction of the basic design from Ma and
Tan [18], to construct a new design with r = 1. We
prove in Appendix C 2 that this construction is correct.

1. Basic construction

In this section we describe a weak design construction,
that is, we define a family of sets that satisfy the condi-
tions of Definition III.1.

9 w < ν can actually be chosen freely. The above value minimizes
the walks on the expander graph.

10 Hartman and Raz [16, Corollary 2] show that there exist a
d = O(t2) and r = O(1) such that for any m > tlog t the con-
struction is a (m, t, r, d)-design, however the restriction m > tlog t

and constants in the O-notation which depend on m make this
unusable in practice. Ma and Tan [18] conjecture that the basic
construction is a weak (m, t, e, t2)-design for any m, and use this
in their implementation. To make up for the lack of proof, they
simply count the intersections between the sets Si after gener-
ating the design, to make sure that the overlap is bounded by
e.

7

This construction makes use of polynomials over a fi-
nite field GF(t). Every set Sp is indexed by one such
polynomial p : GF(t) → GF(t). To construct a weak
(m, t, r, d)-design we need m sets, and therefore m such
polynomials, which we take in increasing order of their
coefficients. For example, if m = 6 and t = 2, the poly-
nomials are

∑2
i=0 αix

i, with the coefficients (α2, α1, α0)
taken in the following order: (0, 0, 0), (0, 0, 1), (0, 1, 0),
(0, 1, 1), (1, 0, 0), (1, 0, 1). In general, the nth polynomial
is given by p(x) =

∑c
i=0 αix

i, with αi = (n−1)/ti mod t

and c =
⌈

logm
log t − 1

⌉
.

The elements of the set Sp are all the pairs of val-
ues Sp := {(x, p(x)) : x ∈ GF(t)}. Each set thus has
|Sp| = t elements, and Sp ⊂ [d] holds for d = t2, where
we map [d] to [t] × [t] in the obvious way. We prove in
Appendix C 1 that for all m and p, this construction has∑
{q<p} 2|Sp∩Sq| ≤ 2em, where by {q < p} we mean the

set of all polynomials that come before p.

2. Reducing the overlap

Note that any weak design can be viewed as a bi-
nary (m × d)-matrix W , where the value wij = 1 if
j ∈ Si. To construct a weak design with r = 1, we will
use the construction from Section III B 1 repeatedly with
different values mj (but the same t), obtaining designs
WB,0, . . . ,WB,`. We then construct a new design W by
placing these in its diagonal, that is,

W =

 WB,0

. . .

WB,`

.
Let m and t be fixed, and let r′ = 2e be the parameter

from the basic construction. The number of calls to the
basic construction is given by

` := max

{
1,

⌈
log(m− r′)− log(t− r′)

log r′ − log(r′ − 1)

⌉}
. (3)

And each design WB,i is constructed with mi sets, defined
as follows:

ni :=

(
1− 1

r′

)i(m
r′
− 1
)

for 0 ≤ i ≤ `− 1,

mi :=

i∑

j=0

nj

−
i−1∑
j=0

mj for 0 ≤ i ≤ `− 1,

m` := m−
`−1∑
j=0

mj .

(4)

The weak design W thus has d = (` + 1)t2. In Ap-
pendix C 2 we prove that this construction has r = 1.

Figure 3 discusses the parameter behaviour of the
block weak design.

1−Bit extractor seed length

B
lo

ck
 w

ea
k

de
si

gn
 s

ee
d

le
ng

th
 (

bi
ts

)
[lo

g.
 s

ca
le

]

104

105

106

107

8 64 128 256 512 1024

m (extracted
 # of bits)

104

105

106

107

108

N
um

be
r

of
 b

lo
ck

s

20

30

40

50

60

70

80

8 128 256 512 1024

FIG. 3. Total seed length required for the weak block design
(based on an elementary design with r = 2e) depending on
the seed length of the 1-bit extractor. The inset shows the
number of blocks – since the seed size for the block design
depends linearly on the block number, this is also the seed
overhead associated with the use of a block design. For typical
parameters, the amount of seed grows by a factor of 50.

C. One-bit extractors

1. XOR-code

This extractor computes the XOR for ` random po-
sitions of the input, it is thus an `-local extractor (see
Appendix A for a precise definition). This construc-
tion is efficient to compute, but requires a seed of length
t ∈ O(log n log 1/ε)), where n is the input length and
ε the error of the construction, instead of the optimal
O(log n + log 1/ε). It also has an entropy loss linear in
the input length.

Lemma III.2 (XOR-code [19, Theorem 41]11). For any
ε > 0, n ∈ N and ` ∈ [n], the function

Cn,ε,` : {0, 1}n × [n]` → {0, 1}

(x, i1, . . . , i`) 7→
⊕̀
j=1

xij

11 [19, Theorem 41] actually proves that this construction is a δ-
approximately (ε, L)-list-decodable code. But such a code is an
(ε, L2h(δ)n)-list-decodable code, which in turn is a classical-proof
extractor by Lemma B.3.

8

is a classical-proof `-local (k, ε)-strong extractor with k =
h
(

ln 2
` log 2

ε

)
n+ 3 log 1

ε + log 4
3 and seed length t = ` log n,

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function.

By Lemma B.5, this construction is a quantum-proof
(k, (1 +

√
2)
√
ε)-strong extractor. And by Lemma B.8, if

we use this in Trevisan’s construction, the final extrac-
tor is a quantum-proof (k + rm,m(1 +

√
2)
√
ε)-strong

extractor.
Let our source have min-entropy Hmin(X|E) = αn.

We want the entropy loss induced by this one-bit extrac-
tor to be roughly γn, and need to find the appropriate `
for the desired value of γ since γ(`, ε) = h

(
ln 2
` log 2

ε

)
for

some γ < α. Solving for `, we find `(γ, ε) = ln 2
h−1(γ) log 2

ε .

This implies that γ directly influences the length of the
seed, which we discuss below. Since the inverse binary
logarithm h−1(·) is not analytically available, we need to
resort to numerical techniques to determine the appro-
priate value of ` for a given γ. It is convenient to dis-
tinguish the experimental entropy deficiency α from the
loss induced by the extraction procedure by introducing
a parameter µ such that γ = µα.

For ε = ε′2

(1+
√

2)2
, Trevisan’s construction is a quan-

tum (k, ε′m)-strong extractor with k = γn + rm +

6 log (1+
√

2)
ε′ + log 4

3 . The seed of the one-bit extractor

has length t = ` log n = 2 ln 2
h−1(γ) log n log (2+

√
2)

ε′ , and the

seed of the complete construction has length d.
Especially the choice of µ influences the behaviour of

the XOR extractor. Figures 4, 5, and 6 depict and discuss
the effect of the various chosen and inferred parameters.

2. Lu’s construction

Lu [20] shows how to construct a local one-bit extrac-
tor, i.e., an extractor for which each bit of the output
only depends on a subset of the input bits. He then uses
his one-bit extractor in Trevisan’s construction. Here,
we adapt the parameters of his construction to build a
quantum-proof extractor.

Lu’s extractor proceeds in two steps. The first consists
in selecting a substring of the input; the second hashes
this string to one bit.12 To select the substring of the
input, he performs a random walk on a g-regular graph—
a graph in which every vertex is connected to exactly g
other vertices.

Recall that a graph G is uniquely identified by its ver-
tices and edges, and is consequently specified by G =
(V,E), where V is the vertex set and E the edge set. An
alternative representation of more importance in our con-
text is the adjacency matrix. For a graph with n vertices,

12 This type of construction is sometimes referred to as sample-
then-extract [21], although Lu [20] simply describes it as a local
list-decodable code.

XOR extractor: Scaling behaviour

n (# of input bits) [log. scale]

To
ta

l s
ee

d
le

ng
th

 fo
r

r=
2e

 w
ea

k
de

si
gn

50000

100000

150000

200000

2e+04

4e+04

6e+04

8e+04

1e+05

10000

20000

30000

40000

50000

0.01

105 108 1010 1012

0.1

105 108 1010 1012

0.15

105 108 1010 1012

0.17

105 108 1010 1012

1e−
15

1e−
07

0.001

Source
entropy α

0.7

0.75

0.8

0.85

0.9

0.95

FIG. 4. XOR parameter behaviour overview. µ varies per
column, ε per row. The influence of the initial source entropy
α is mostly negligible, especially for small values of the ex-
traction ratio µ. However, there is a drastic increase in seed
size for µ > 0.16, which restricts the XOR method to a prac-
tical upper bound of the extraction ratio of about 10% of the
source entropy.

this is an n×n matrix in which the entry aij denotes the
number of edges from vertex i to vertex j. The diagonal
is typically filled with ones; since the graphs considered
here are undirected (i.e., the direction of edges is not
taken into account, only the fact that two vertices are
connected), the adjacency matrix is symmetric.

The eigenvalues of the adjacency matrix are referred
to as eigenvalues of the graph. For our purpose, the ratio
between the second largest and largest eigenvalue plays
an important role, and is labelled as λ. Graphs with
a small λ are called expander graphs, and are common
objects in pseudo-randomness generation, see Ref. [22]
for a review.

For an input string of length n, we choose a graph with
n vertices, so that each vertex corresponds to a bit posi-
tion of the string. Let (v1, . . . , v`) be the vertices visited
during a walk of ` steps. We select the ` corresponding
bits of the input x, that is, (xv1 , . . . , xv`), and then hash
it by computing the parity of the bitwise product of this
string with a random seed β ∈ {0, 1}`.13 The output is

thus z =
⊕`

i=1 βixvi .
Lu [20] proves that the concatenation of the output

bits z for all possible seeds is a (δ, L)-list decodable code

13 This hash function is also used in Section III C 3.

9

XOR extractor: Seed to extraction ratio

n (# of input bits) [log. scale]

R
at

io
 o

f s
ee

d
le

ng
th

 to
 e

xt
ra

ct
ed

 b
its

 (
µα

n)
 [l

og
. s

ca
le

]

10−3

10−2

10−1

100

101

102

103

105 106 107 108 109 1010 1011 1012

Source
entropy α

0.7

0.75

0.8

0.85

0.9

0.95

m
−

d

104

105

106

107

108

109

1010

105 108 1011

FIG. 5. Ratio between output size and seed length for various
input sizes. The parameters µ = 0.05 and ε = 10−7 are fixed
for this computation. A ratio of 1, indicated by a dashed red
line, denotes the parameter regime where the amounts of ex-
tracted bits and the seed spent coincide; for values exceeding
this threshold, the particular advantages of Trevisan’s con-
struction over two-universal hashing prevail because the ratio
is better than what can be achieved with the latter approach.
Recall, though, that the seed acts as a catalyst that can be
included in the final randomness since the extracted bits are
independent of the seed.
The initial source entropy α accounts for a variation of about
one order of magnitude of the extraction threshold. As a rule
of thumb, the break-even point is at input sizes of roughly of
109 bits, which amounts to approximately 230 bytes (roughly
1 GiB) of data.
The inset shows the number of extracted bits less the seed
spent.

with

L =
2h(ν)n

2δ2
, (5)

for a ν ≤ 1/2 given by

ν = 1 + λ2 − δ 4
` . (6)

Since δ
4
t < 1, (6) can only be satisfied if λ2 < ν.

This can be obtained by taking as expander graph G a
given construction G0 to the power c. G is defined as
the graph with adjacency matrix A = Ac0, where A0 is
the adjacency matrix of G0. We then have λ = λc0. A
random walk of length ` on Gc0 is equivalent to a random
walk of length `c on G0, in which only the first of every
c steps is remembered, and the others deleted [23].

To construct the regular expander graph G0, we em-

XOR extractor: Break−even points

Extraction fraction µ

n
at

 b
re

ak
−

ev
en

 p
oi

nt
 [l

og
. s

ca
le

]

108.5

109

109.5

1010

0.005 0.020 0.040 0.060 0.080 0.100 0.120 0.140

Bit error ε

10−15

10−13

10−11

10−9

10−7

FIG. 6. Break-even points (i.e., minimal input length for
which the amount of extracted randomness exceeds the re-
quired seed size) for varying values of µ and ε. The parameter
α is fixed to 0.8. As a rule of thumb, µ = 0.05 is close to the
optimal value irregardless of the error parameter ε).

ploy an algorithm reviewed in Ref. [22]. Let us only sum-
marise the essential facts here:

• The construction is restricted to degree g = 8, and
the ratio between the second-largest and largest
eigenvalue can be shown to be λ = 5

√
2/8 ≈ 0.884.

• It is possible to compute the graph for all dimen-
sions (i.e., number of nodes) that can be expressed
as `2 for ` ∈ N. This restriction is much more re-
laxed than for other constructions, and does not
pose any problems in real applications. Formally,
the vertex set of the graph is defined on Z` × Z`.
Each vertex 〈x, y〉 ∈ Z` × Z` is connected to the
vertices 〈x ± 2y, y〉, 〈x ± (y + 1), y〉, 〈x, y ± 2x〉,
and 〈x, y ± (2x + 1)〉, which uniquely defines the
edges. Notice that the arithmetic must be per-
formed modulo `, so the computationally (compar-
atively) cheap additions and multiplications are un-
fortunately accompanied by an expensive modulo
division.14

• The complete graph does not need to be computed
in advance, but can be constructed during the ran-
dom walk, and using a constant amount of space.

14 An obvious optimisation possibility that is available because the
multiplicative factor 2 is small is to compute the modulo division
not unconditionally, but only when the intermediate result really
exceeds `.

10

For a given ν, we choose c and ` which minimize the
number of steps c`. By setting w := λ2c

0 and taking the
derivative of c` with respect to w, we find that minimum
is obtained for the w which is the solution of the equation

w logw = (1− ν + w) log(1− ν + w).

The number of steps on the expander graph is then given

by c =
⌈

logw
2 log λ0

⌉
and ` =

⌈
4 log δ

log(1−ν+w)

⌉
.

The walk on the g-regular graph requires nb(n) bits
of seed to choose the first vertex, and c(` − 1) log g bits
for the direction of the walk for each following step. The
final hashing uses ` bits of seed, for a total of t = nb(n)+
c(`− 1) log g + `.

From Lemma B.3 and (5), Lu’s one-bit extractor is
a classical-proof (h(ν)n + 3 log 1

δ − 2, 2δ)-strong extrac-
tor. By Lemma B.5 it is quantum-proof (h(ν)n +

3 log 1
δ − 2, (2 +

√
2)
√
δ). And from Lemma B.8, when

used with a weak (m, t, r, d)-design, Trevisan’s construc-
tion is a quantum-proof (k,mε)-strong extractor with

k = h(ν)n+ rm+ 6 log 2+
√

2
ε − 2.

Unfortunately, Lu’s construction is not useful in a prac-
tical setting owing to its unfortunate parameter scaling:
The number of random walk steps increases considerably
with decreasing parameter ν, see Figure 7. However, as
Figure 8 shows, small values of ν are required for even
tiny extraction fractions. Overall, this makes the con-
struction reach parameter realms where it is preferable
over two-universal hashing functions (namely, when the
length of the extracted bits exceeds the amount of initial
seed) only rarely, as Figure 9 shows.

Lu extractor: Number of random walk steps

output bits (m) [log. scale]

of

 r
an

do
m

 w
al

k
st

ep
s

[lo
g.

 s
ca

le
]

103.8

104

104.2

104.4

104.6

104.8

105

1e−15

104 105 106 107 108 109

1e−07

104 105 106 107 108 109

0.001

104 105 106 107 108 109

ν

0.1

0.2

0.3

0.4

0.45

FIG. 7. Number of random walk steps required in Lu’s con-
struction in dependent on the output length and the param-
eter ν.

Lu extractor: Interplay between ν and µ

Extraction factor µ

P
ar

am
et

er
 ν

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10−5 10−4 10−3 10−2 10−1

Entropy factor α

0.8

0.85

0.9

0.95

0.99

FIG. 8. Dependency between parameters ν and µ for Lu’s
construction. The largest value of ν that satisfies the bound-
ary conditions on the available entropy given in Section III C 2
was determined numerically.

3. Polynomial hashing

Renner [5] proved that universal2 hash functions15 are
good extractors. Tomamichel et al. [6] showed that the
same holds for δ-almost universal2 (δ-AU2) hash func-
tions, given that δ is small enough. For the range of
δ that build good extractors, almost universal2 hashing
requires a seed of length Ω(m + log n), where n is the
input and m the output length. This seed is too large for
many applications; however in the case of one-bit extrac-
tors, this reduces to Ω(log n), and is achievable with the
construction we describe here.

This construction is in fact the concatenation of two
hash functions, and uses a seed of length 2`, where `
will be specified later. The first is known as polynomial
hashing — or alternatively as a Reed-Solomon code, be-
cause the concatenation of the hashes for all seeds corre-
sponds to the encoding of the input with a Reed-Solomon
code. We partition the input string x ∈ {0, 1}n in blocks
x = (x1, . . . , xs), each of length ` (if necessary, we pad the
last string xs with 0s). We view each block as an element
of a field xi ∈ GF(2`), and evaluate the polynomial

pα(x) =

s∑
i=1

xiα
s−i,

15 See Appendix B 3 for a definition of (almost) universal2 hashing.

11

Lu extractor: Seed to extraction ratio (µ=0.05)

n (# of input bits) [log. scale]

R
at

io
 o

f s
ee

d
le

ng
th

 to
 e

xt
ra

ct
ed

 b
its

 (
µα

n)
 [l

og
. s

ca
le

]

100

101

102

103

104

105

106

105 106 107 108 109 1010 1011 1012

Source
entropy α

0.7

0.75

0.8

0.85

0.9

0.95

FIG. 9. Comparision of seed size and output size for Lu’s
construction. The interesting regime is only reached in very
rare cases.

where α ∈ GF(2`) is the first half of the seed. This family
is s−1

2` -AU2. [24]
Since the δ of polynomial hashing is too large (relative

to the output length) to build an extractor, we combine it
with another hash function— sometimes referred to as a
Hadamard code, as the concatenation of the outputs over
all seeds corresponds to the Hadamard encoding. This
hash function computes the parity of the bitwise product
of pα(x) and the second half of the seed, β ∈ {0, 1}`.
The output is thus z =

⊕`
i=1 βipα(x)i. Since this hash

function is 1
2 -AU2, by [25, Theorem 5.4] the combination

of the two is δ-AU2 with δ = 1
2 + s−1

2` .
Choosing ` = dlog n+ 2 log 1/ε′e, s = dn/`e we get

δ =
1

2
+
s− 1

2`
<

1

2
+
n

2`
≤ 1

2
+ ε′2.

From Theorem B.7, this is a quantum-proof (4 log 1
ε +

2, 2ε′)-strong extractor. And plugging this in Trevisan’s
construction with a (m, 2`, r, d)-design and ε = 2ε′, we
get from Lemma B.8 a quantum-proof (4 log 1

ε + 6 +
rm,mε)-strong extractor. The seed of the one-bit ex-
tractor has length t = 2` = 2dlog n + 2 log 2/εe, and the
seed of the complete construction has length d.

Figure 10 discusses the parameters of the polynomial
hashing extractor.

RSH extractor: Scaling behaviour

n (# of input bits) [log. scale]

P
ol

yn
om

ia
l d

eg
re

e
[lo

g.
 s

ca
le

]

103

104

105

106

107

108

104 106 108 1010

Bit error ε

10−3

10−7

10−11

10−15

To
ta

l s
ee

d
(r

=
2e

)

60

80

100

120

140

160

180

200

104 106 108 1010

S
ee

d
le

ng
th

/m
 [l

og
. s

ca
le

]

10−6

10−5

10−4

10−3

10−2

10−1

100

104 106 108 1010

FIG. 10. Polynomial hashing parameter overview (calcula-
tions are for r = 2e). The parameters are easy to evaluate
because there is no dependence on α, and there is also no ex-
traction factor µ—the extractor works equally well for high-
and low-entropy sources. The required seed is consistently
small (shown in the bottom inset); it increases linearly as ε
decreases exponentially.
The degree of the polynomial that needs to be evaluated is the
crucial factor. Even for small inputs like n = 106, correspond-
ing to roughly 1 MiB of data, the degree is ≈ 10000. Since the
polynomial needs to be evaluated for every extracted bit, this
makes the polynomial hashing extractor an unsuitable choice
for performance intensive scenarios.
The top inset shows the regime in which the extractor delivers
more bits than initially invested for the seed. It outperforms
two-universal hashing for a very wide range of parameters.

.

IV. IMPLEMENTATION

A. Implementation Architecture

We now turn our attention to describing the imple-
mentation of the Trevisan extraction framework by first
outlining the software architecture, that is, the high-level
conceptual point of view, followed by a discussion of some
important implementation details and notes on how to
add new primitives to the infrastructure. While many
important details are still omitted for the sake of brevity,
the full source code is available at https://github.com/
wolfgangmauerer/libtrevisan for inspection and mod-
ification. Besides instructions on how to build the code,
the website also contains detailled information on how
to use the program, which we will not discuss here any
further.

https://github.com/wolfgangmauerer/libtrevisan
https://github.com/wolfgangmauerer/libtrevisan

12

1. Architecture

The architecture was designed to satisfy two particu-
lar constraints: Correctness and maximum throughput.
To achieve the latter, we use C++16 to implement all
performance-critical parts, since the language is stati-
cally compiled and does not require any intermediate
layers that add runtime penalties to interpreted or byte-
compiled languages like, for instance, Matlab, but still
allows us to maintain a clean and extensible design based
on modern software engineering techniques [26]. The im-
plementation is portable across a wide range of machines
from laptops to high performance computing (HPC) ma-
chines, and also provides opportunities to benefit from
low-level capabilities of recent CPUs, for instance to ac-
celerate bit-level manipulations. We have tested the code
on Linux and MacOS machines.

To ensure correctness of the calculations, we base the
implementation on independent libraries (NTL [27] and
OpenSSL [28] for working with finite fields of arbitrary
size) that can be selected at compile time.17 Checking
that both variants arrive at the same results for identi-
cal parameter sets increases the faith in the reliability of
the calculations. Another means to ensure code correct-
ness is given by a large number of invariants and sanity
checks that are spread all across the implementation. To
not compromise the performance goals, it is possible to
deactivate the checks at compile time so that they incur
no runtime penalty.

Another major design decision is the focus on multi-
core machines: Nowadays, machines with only a sin-
gle core are a rare exception, and algorithms that
are limited to only one thread of execution voluntar-
ily sacrifice a large fraction of the available computa-
tional power, which is obviously not desirable in a high-
performance setting. We use the threading building
blocks library [29] as basis for the implementation, which
allows for fine-tuning the distribution of work across the
system ressources in a precise manner. We also employ
a mostly lock-free architecture (see, e.g., Ref. [30] for a
review) that avoids any computation stalls due to the
need for synchronised communication between computa-
tion elements.

The code also contains parts that are not performance-
critical, for instance calculating the parameters from
given user settings. This is conveniently done in very

16 We rely on numerous features of the new language standard
C++11, so at the time of writing, only sufficiently new com-
pilers are able to build the code.

17 NTL cannot be used in scenarios with high performance require-
ments since it is restricted to running on one single core per
design, which does not agree well with contemporary machine
architectures. It can only be used in a single primitive that re-
quires operations on GF(2x) because the library operates with a
single, global irreducible polynomial, which makes it effectively
impossible to operate on fields of different dimensions simulta-
neously.

high-level languages that allow for working in abstract
terms without having to consider any details of the un-
derlying machine architecture. To this end, we have in-
tegrated the possibility to call code written in the R lan-
guage (using the techniques provided by Ref. [31]; see [32]
for an overview about R), which enjoys widespread use
in statistical data processing and machine learning.

It is also possible to compute the weak design ahead of
time, store it on disk and re-use it for multiple runs of the
extractor — since computing the weak design is a deter-
ministic operation that does not require any randomness,
this is admissible to do. In matrix representation, a weak
design for output length m and a total seed length d is an
element Fm×d2 . Each row contains t ones and d−t zeroes,
so the matrix fill for the standard design is mt

m(d−t) ≈ 1/t.

A total seed of 50 KiBit, for instance, amounts to a fill
of about 0.5%, which exceeds the threshold for typical
sparse matrix techniques to pay off [33]. We found the
data transfer times from the underlying block device to
be longer than the time required to compute the weak
design on the fly, albeit this may change with the avail-
ability of high-speed storage. For the block weak design,
the situation is more favourable since only the basic de-
sign needs to be stored, and the remaining elements can
be reconstructed with very little computational effort.

Finally, we emphasise that the code can either be used
in stand-alone mode (also including a dry-run mode for
parameter estimation), or as a library as part of a larger
project.

2. Implementation details

Weak designs and one-bit extractors are imple-
mented as C++ classes derived from mixed interface/
implementation-type base classes. Trevisan’s algorithm
solely operates on the base class objects using dynamic
polymorphism, and does not require any knowledge
about the internal structure of the primitives.

The source code contains full information on how to
implement and integrate new primitives, so we only sum-
marise briefly what methods need to be provided.

Weak designs need to be derived from class weakdes,
and must implement

• compute Si(uint64 t i, vector indices) —
compute the ith index set, and store the results in
indices.

• compute d() — compute the required amount of
initial seed.

• get r()— report the overlap r to the higher-level
algorithms.

Optionally, the function set params(uint64 t,
uint64 t m) can, but need not be implemented to
initialise the parameters required for all weak designs.

13

Determining d from t seems straightforward, but is ac-
companied by constraints — the GF(2x) based weak de-
sign, for instance, only works for values of t that can be
represented as a power of 2, so the design typically needs
to choose larger values (resulting in more initial seed)
than requested.

One-bit extractors need to be derived from class
bitext, and must implement

• num random bits()— compute the amount t of ini-
tial seed bits required for every extracted bit.

• compute k()— determine the minimal source en-
tropy required by the extractor for the parameter
set under consideration.

• extract(void *initial rand)— extract one bit
using the provided subset of the initial randomness.

There are also generic functions to assign global ran-
domness and other generic parameters to the 1-bit ex-
tractor. They can, but need not be provided by an im-
plementation.

On the lower layers, the implementation was designed
to use elementary machine arithmetic (as opposed to
software-based multi-precision arithmetic) whenever pos-
sible; this is an obvious precondition for an implementa-
tion with good performance. In all performance critical
operations, logarithms are not computed using floating
point, but with integer operations since usually only floor
or ceiling of the result is required.

The code uses a fixed-width integer data type with
64 bits to represent potentially large quantities like the
number of input bits. It is important to note that the
width of the index data type sets an upper bound on the
amount of randomness that can be handled by the code,
namely to 2w−3 bytes (for w = 32 respectively w = 64),
which corresponds to 2w bits (the datum is used as an
index into a bit field, and this field need not be repre-
sentable by a machine quantity). Since contemporary
64-bit machines cannot handle more than 248 bytes ow-
ing to virtual address space management limits [11], the
choice does not introduce any additional limits. To pro-
cess large amounts of randomness (multiple gigabytes),
64 bit machines and a 64-bit kernel running on the ma-
chine are required, which the code assumes to be the
default setting.

B. Algorithms

In the following, we give a concise description of
all algorithms in a form that is helpful for actual
implementations—in some contrast to the previously
given descriptions that focus more on mathematical clar-
ity, we provide recipes in a pseudo-formal language that
is close enough to many contemporary imperative and
object-oriented programming languages, yet still suffi-
ciently abstract to avoid hiding the algorithmic core be-
hind technical side-work. Although each algorithm can

be captured with very few statements, we remark that
a practical implementation needs to account for many
non-trivial technical issues; our reference implementa-
tion published as a part of this paper comprises about
5000 lines of source code.

1. Trevisan’s extractor

The Trevisan algorithm is independent of the type of
weak design and bit extractor used; only the inferred
parameters depend on the specific properties of the com-
ponents:

1: procedure Trevisan(WD, Ext, n,m, µ, α, ε, %i, %d)
2: t← Ext.InputSize(n,m, µ, α, ε)
3: d← WD.InputSize(t)
4: Reserve space for m bits in %o

5: Reserve space for t numbers ∈ [d] in S

6: for i← 0,m− 1 do . Data parallel
7: S ← WD.computeS(i)
8: b← 0
9: for j ← 0, t− 1 do

10: bj ← %i
Sj

. Indices refer to bits

11: end for
12: %o

j ← Ext.extract(b, %d)
13: end for

14: return %o

15: end procedure

The components WD and Ext may impose boundary
conditions on the parameters; for instance, the single-bit
seed length t must be a power of a prime number for the
weak designs implemented in this paper.

2. Weak Designs

a. Construction of Hartman and Raz The weak de-
sign of Hartman and Raz is based on evaluating poly-
nomials over finite field; recall from Section III A 2 that
the dimension of the field needs to be a power of a prime
number. We have implemented two variants: One based
on the extension field F = GF(2x), and one based on the
prime field F = GF(p). The bit extractors can require
arbitrary values of t that are not necessarily compatible
with the constraints of the weak design. In this case, t
needs to be increased to the next possible value t′ that
can be provided by the weak design. Consequently, we
need to distinguish between t, which represents the value
that can be provided by the weak design, and treq, which
is the value originally requested by the bit extractor. It
necessarily holds that t ≥ treq.

The basic algorithm for both finite fields is as follows
(indices in square brackets denote bit selections):

1: procedure HR.ComputeS(F, i,m, t)

2: c← d logm
log t − 1e

14

3: for j ← 0, c do . Prepare polynomial coefficients
4: αj ← i[j · nb(t), j + nb(t)− 1] mod t
5: end for

6: for a = 0, a < treq do
7: b←

∑
j αja

j

8: Sai [log(t), 2 · log(t)− 1]← b
9: Sai ← Sai · a

10: Sai ← Sai mod |F|
11: end for

12: return S
13: end procedure

For a field of prime dimension p, all calculations are
performed modulo p. Notice, though, that it is not suffi-
cient to simply divide by p after any multiplication (or ad-
dition/subtraction) has been performed, because this can
easily lead to intermediate results that exceed the maxi-
mal bit width available in hardware. Multiplying two 40-
bit numbers, for instance, can result in an 80-bit value,
which exceeds the word size of 32 and 64 bit machines. A
näıve solution could fall back to using arbitrary-precision
software arithmetic, which is unfortunately much slower
than native machine hardware arithmetic. Consequently,
we use have made sure to use algorithms that avoid in-
termediate overflows and can work with multiplicands of
up to 61 bits, which is sufficient for our purposes. See
the source code or Ref. [34] for details.

For the extension field GF(2m), it is not sufficient to
perform a simple division of arithmetic results by a scalar
to satisfy the constraints of the finite field. Instead, all
elements of the field are formally interpreted as polyno-
mials over the binary field, and arithmetic operations are
performed modulo an irreducible polynomial that needs
to be constructed dependent on the field order. It can be
shown (see, e.g., Ref. [27]) that for every field order, an
irreducible polynomial of order 3 or 5 exists, so calcula-
tions can be optimised for these cases.

b. Block Weak Design The block weak design is
based on a basic design whose matrix representation is
re-used multiple times as part of the total weak design—
once the matrix representation of the basic design is
known, it is possible to construct the complete design
by placing sub-matrices of the basic design matrix on
the diagonal of a larger matrix. One possible implemen-
tation could thus use sparse matrix techniques to store
the basic design in memory, and derive all other blocks
from this representation.

When the basic design is not represented by a ma-
trix, but as vectors of indices, it is possible to compute
the content of W k

B,j from the basic design row W k
B,0 by

adding j ·t2 to all values of the set S corresponding to the
matrix row. Since it is possible to re-arrange the rows of
W without changing the properties of the weak design,
we use a suitable permutation (derived from the data in
Eq. (4), see the source code for details) of the rows of
W such that all rows that originate from the same row
of the basic design are adjacent to each other, which al-

lows us to cache calls to the basic construction. Since
the design is traversed from row to row in the Trevisan
algorithm, the permuted row order minimises calls to the
basic construction.

1: procedure BWD.computeS(WD, i, ic, Sc, t)
2: Infer j, k from i
3: if k 6= ic then
4: ic ← k
5: S ← WD.computeS(ic)

6: for ζ ← 0, t− 1 do . Fill cache
7: Sc

ζ ← Sζ
8: end for
9: else

10: for ζ ← 0, t− 1 do
11: Sζ ← Sc

ζ + j · t2
12: end for
13: end if

14: return S
15: end procedure

3. 1-Bit extractors

Finally, we discuss the algorithms used for the 1-bit
extractors implemented as part of this paper.

a. XOR Code An implementation of the XOR code
requires to derive the parameter l from the experimen-
tal parameters; since this can be achieved by a standard
numerical optimisation, we will not discuss a formal al-
gorithm here, but refer the reader to the source code for
the details. The algorithm itself is compact:

1: procedure XOR.extract(%i, %d)
2: r ← 0
3: for i← 0, l − 1 do
4: ζ ← %i[i · nb(n− 1), (i+ 1) · nb(n− 1)− 1]
5: r ← r ⊕ %g[ζ]
6: end for
7: return r
8: end procedure

b. Polynomial Hashing The algorithm to perform
polynomial hashing based on a concatenation of a Reed-
Solomon and a Hadamard code is as follows:

1: procedure RSH.extract(%i, %d, n, ε)
2: ζ ← 0, l← dlog n+ 2 log 2/εe
3: s← dn/le

4: Pick irreducible polynomial for GF(2l)
5: for i← 0, s− 1 do . Determine coefficients
6: ci ← %g[i · l, (i+ 1) · l − 1]
7: end for

8: α← %d[0 : l − 1] . Reed-Solomon step
9: r ←

∑s
i=1 ciα

s−i . Computed over GF(2l)

10: b← 0 . Hadamard step

15

11: for j ← 0, l − 1 do
12: b← b⊕ (%i[l + j] · r[j])
13: end for

14: return b
15: end procedure

Since the length of the global randomness is consider-
ably exceeds the bit length of the largest quantity repre-
sentable with elementary machine data types in all but
the most pathological cases, evaluation of the polynomial
has to be performed using arbitrary precision software
arithmetic.

There are two obvious optimisations: The global ran-
domness does not change across invocations of the RSH
extractor, so it is possible to compute the coefficients
of the polynomial once, and re-use the results in sub-
sequent evaluations. In a practical implementation, it
is also more efficient to use Horner’s rule for evaluating
the polynomial [35] instead of performing the straight-
forward evaluation shown in the algorithm.

The final parity calculation is not done using single-
bit operations in the actual implementation, but is split
into two steps: Firstly, the logical “and” operation is
computed block-wise on machine-word sized blocks. Sec-
ondly, the parity operation is built on special-purpose
machine operations (or compiler intrinsics) to count the
number of bits set in the result of the “and” operation.
The parity can then be derived by checking if the bit
count is even or odd.

c. Lu’s construction The algorithm for Lu’s extrac-
tor based on a random walk on an expander graph is as
follows (we do not discuss how the optimisations required
to determine the parameters c and l are performed; see
the source code for details):

1: procedure LU.extract(%i, %d, c, l)
2: v ← %i[0 : ζ − 1] . Initial node
3: r ← 0, b← 3 . 3 bits to represent an edge
4: w ← %i[ζ : ζ + c(l − 1) · b− 1]
5: s← %i[ζ + c(l − 1) · b :]

6: for i← 0, c− 1 do
7: r ← r ⊕ (%d[v] · s[i])

8: for j=0, l-2 do . Random walk
9: e← w[(i(l−1)+j)·b, (i(l−1)+j+1)·b−1]

10: v ← next.vertex(v, e)
11: end for
12: end for
13: r ← r ⊕ (%d[v] · s[c])

14: return r
15: end procedure

ζ denotes the number of bits required to store the in-
dex of a node. Function next.vertex(v, e) computes the
value of the next vertex given the current vertex and the
next edge; it is a straight-forward translation of the cal-
culation rule given earlier in Section III C 2.

Most of the implementation complexity for the Lu
expander stems from the need to select subsets of bit
strings. To simplify distributing the initial randomness
provided by the weak design into three components as
shown above, the actual implementation assumes that
the contributions start on indices that are evenly divis-
ible by the bit width of the data type used to represent
edges. This simplifies the implementation, but implies
that a slightly larger amount of randomness than theo-
retically possible is required, albeit the increase is only
by a negligible additive factor.

V. RUNTIME COMPARISON

Owing to the many aspects—throughput, scalability,
weak design versus extractor performance, parameter
ranges, machine characteristics, among others—involved
in determining code performance, and because of the
large number of combinations of primitives, it is neither
possible nor reasonable to present measurements for all
cases (since the full sources are available, measurements
for a particular case of interest can be easily conducted
by interested parties). Instead, we focus on a selection
of measurements that describe cases of typical experi-
mental interest. We use two machines to run the tests;
detailled technical specifications are shown in Table I.
One machine is a standard Laptop (MacBook Air) that
allows for testing the performance on an average personal
computer, and serves as an apt comparison basis to the
machine used for the measurements in Ref. [7]. The sec-
ond machine is a sizeable workstation that gives an indi-
cation for the behaviour in high-performance computing
scenarios, or when one is willing to spend substantial
computational effort on the post-processing, for example
in scenarios in which the highest possible security is the
foremost priority.

Machine CPU #
C

P
U

s

C
o
re

s/
C

P
U

T
h
re

a
d
s/

co
re

Σ
T

h
re

a
d
s

R
A

M
[G

iB
]

Kernel

Laptop Intel Core i5 1 2 2 4 4 Darwin 11.4.0
1.6 Ghz

Workstation AMD Opteron 8a 6 1 48 32 Linux 3.0
1.9 Ghz

a Pairs of two CPUs share one socket

TABLE I. Machines deployed in the benchmark measure-
ments.

The measurement results are shown in Figures 11, 12,
13, 14, and 15; refer to the captions for a detailled dis-
cussion of the results.

16

Number of input bits (log. scale)

T
hr

ou
gh

pu
t [

kb
it/

s]

50

100

150

50

100

150

●●●

●

●●
●●

●

●

●
●

●
●
●

●●
●

●
●

●

●
●

●

210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218

M
acB

ook (4 cores, 40 repetitions)
O

pteron (48 cores, 30 repetitions)

Weak design

block(gf2m)

block(gfp)

FIG. 11. Scaling behaviour of RSH with a block design for
varying input lengths. For a small number of CPUs, perfor-
mance degrades considerably with increasing input length, as
expected for a non-local extactor. Good throughput (more
than 100 kbit/s) is only obtained fo very small input sizes
(212 is only 4KiBit of data!) for which the required amount
of initial seed drastically exceeds the extracted amount of ran-
domness.
With many cores, the achieved speed-up does initially not
compensate the overhead for setting up and performing par-
allel operations, so the throughput increases to a local max-
imum, and then decreases as expected with larger input
lengths. Consequently, it is not just sufficient to add more
CPUs for a given scenario to increase throughput; practical
book-keeping tasks and technical aspects can easily dominate
the actual problem. In particular, this implies that purely
technical improvements like porting the processing to mas-
sively parallel approaches like GPU computing will not au-
tomatically resolve all performance needs; a proper choice of
primitives for given requirements is essential, which is only
possible with a framework that allows for flexibly combining
these primitives.

SUMMARY

We have presented a modular, scaleable implementa-
tion of Trevisan’s construction for randomness extrac-
tion, together with detailled parameter derivations and
improved mathematical proofs. We have shown that the
feasibility or non-feasibility of Trevisan’s scheme is not
mainly a question of computational complexity issues,
but does depend on the particular choice of primitives
used as components of the algorithm; different scenar-
ios require different constituents. Although our measure-
ments indicate that there exist use cases that require the-
oretical improvements to make Trevisan’s construction

Throughput scaling (block(GF(2x), RSH) (40 iterations)

Number of input bits

T
hr

ou
gh

pu
t [

kb
it/

s]
 (

lo
g.

 s
ca

le
)

10−1

100

101

102

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●●●●

●

●

●●

●●●●

●

●●●

●

●
●
●

●●●●●

●●

●

210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218210 211 212 213 214 215 216 217 218

Number of cores

1

4

FIG. 12. Throughput comparison of our results (obtained on
a laptop, represented by boxplots) with the results obtained
by Ma et al. (represented by triangles) for the combination
of primitives supported by their implementation. Since the
code of [7] seems to be limited to running on one CPU core,
we have also included an artificially contrained measurement
measurement for the code discussed in this paper. Generally,
our framework is 2–3 orders of magnitude faster in terms of
throughput, and allows for dealing with inputs that surpass
Ref. [7] by many orders of magnitude.

applicable (mostly because short-seed extractors all suf-
fer from a low extraction rate), the implementation can,
for instance, satisfy the needs of all current quantum key
distribution schemes. The authors hope that the public
availability of the source code, together with the exten-
sible architecture, will spawn contributions from other
researchers to turn future theoretical progress into prac-
tical results.

ACKNOWLEDGEMENTS

WM acknowledges architectural advice on multi-core
issues from T. Schüle, thanks U. Gleim for a few CPU
months, and the ETH Zürich for their hospitality during
his stay.

CP is supported by the Swiss National Science Foun-
dation (via grant No. 200020-135048 and the National
Centre of Competence in Research ‘Quantum Science and
Technology’), and the European Research Council – ERC
(grant no. 258932).

The authors thank B. Heim for helpful comments on
an earlier draft of this paper.

17

XOR+GF(p) throughput scaling (48 cores, 40 repetitions)

Input bit length n [GiBit], m=n/100

T
hr

ou
gh

pu
t [

kb
it/

s]

160

180

200

220

240

●

●

●

●

0.1 0.2 0.25 0.3 0.35 0.4 0.5 1 1.5 2 2.5 3 3.5 4

FIG. 13. Scaling behaviour of XOR/GF(p) for increasing in-
put size n. Although there is a marked decrease in perfor-
mance for input lengths of more than 200 MiBit, a through-
put of at least 160 kbits/s is sustained even for multi-GiBit
input lengths (since the XOR extracor is local, there is no
convergence towards a zero throughput rate for long inputs),
and matches the requirements of typical quantum key distri-
bution mechanisms curently under discussion.
Since only 1% of the input is extracted, the code needs to deal
with input data rates of 16–20 MiBit/s, making the primi-
tives suitable to extract randomness from fast random num-
ber sources—one example being, for instance, Ref. [36].

.

Appendix A: Extractor definitions

An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
function which takes a weak source of randomness X and
a uniformly random, short seed Y , and produces some
output Ext(X,Y), which is almost uniform. The extrac-
tor is said to be strong, if the output is approximately
independent of the seed.

The distance from uniform is measured by the trace
distance, defined as d(ρ, σ) := 1

2‖ρ − σ‖tr, where ‖ · ‖tr
denotes the trace norm given by ‖A‖tr := tr

√
A†A.

Definition A.1 (strong extractor [37]). A function Ext :
{0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong extractor, if
for all distributions X with min-entropy Hmin(X) ≥ k

XOR: n=2 × 106 (m=n/100); RSH: n=216, m=215 (48 cores)

Number of CPU Cores

T
hr

ou
gh

pu
t [

kb
it/

s]
 p

er
 c

or
e

3.4

3.6

3.8

4.0

4.2

4.4

4.6

1.4

1.6

1.8

2.0

2.2

2.4

2.6

●●●

●

●

●●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●●

●●●●●
●
● ●●●

●

●

●

●●
●●
●●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

X
O

R
+

G
F

(p) (40 iterations)
R

S
H

+
B

lock(G
F

(p)) (40 iterations)

FIG. 14. Comparison of per-core performance for
XOR/GF(p) and RSH/Block(GF(p)) primitive combinations.
The per-core throughput for the local XOR extractor drops
to about 75 % of the sincle-Core performance for a very large
number of cores (48), which makes it an excellent choice for
massively parallel systems. For the RSH extractor, perfor-
mance in the many-core case is only half of the performance
of a single CPU, which can be attributed to the larger amount
of data over which the primitive combination needs to iterate,
and the subsequently increased load on the system busses.

and a uniform seed Y , we have18

1

2
‖ρExt(X,Y)Y − τU ⊗ ρY ‖tr ≤ ε,

where τU is the fully mixed state on a system of dimen-
sion 2m.

When (quantum) side information E about the source
X is present, the randomness of the source is measured
relative to this side information. We also require the
output of the extractor to be close to uniform and inde-
pendent from E.

Definition A.2 (quantum-proof strong extractor [38,
Section 2.6]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a quantum-proof (or simply quantum) (k, ε)-
strong extractor, if for all states ρXE classical on X with

18 A more standard classical notation would be
1
2
‖Ext(X,Y) ◦ Y − U ◦ Y ‖ ≤ ε, where the distance metric

is the variational distance. However, since classical random
variables can be represented by quantum states diagonal in
the computational basis, and the trace distance reduces to
the variational distance, we use the quantum notation for
compatibility with the rest of this work.

18

Scaling behaviour: Block(GF(p))+RSH on 48 core Opteron (n=216, 40 repetitions)

Number of CPU Cores

T
hr

ou
gh

pu
t [

kb
it/

s]

10

20

30

40

50

60

70

●●●●●●●

●●●

●
●
●

●●●●
●●

●

●
●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

FIG. 15. Throughput scaling of the block(GF(p)/RSH prim-
itive combination for an increasing amount of CPUs. The
speedup is well below one even for a moderate number of in-
volved cores, and sees a further slow-down in the many-core
case. Nonetheless, data rates that are reasonable for practical
application are obtained, making the primitive combination
a viable choice to post-process the output of slow devices for
which it is important to not sacrifice valuable entropy, as is the
case for the faster XOR extractor. While the per-core mea-
surement in Figure 14 is more interesting from a scalability
point of view, this figure provides guidance to what ressources
are necessary to satisfy given experimental constraints.

Hmin(X|E)ρ ≥ k, and for a uniform seed Y , we have

1

2
‖ρExt(X,Y)Y E − τU ⊗ ρY ⊗ ρE‖tr ≤ ε,

where τU is the fully mixed state on a system of dimen-
sion 2m.

The function Ext is a classical-proof (k, ε)-strong ex-
tractor with uniform seed if the same holds with the sys-
tem E restricted to classical states.

Note that any conventional extractor (Definition A.1)
is classical-proof with slightly weaker parameters.

Lemma A.3 ([38, Section 2.5],[39, Proposition 1]). Any
(k, ε)-strong extractor is a classical-proof (k+log 1/ε, 2ε)-
strong extractor.

In the extractor constructions described in Section III,
we are particularly interested in extractors which only
need to process a few bits of the input for every bit of
output. These extractors are called local, and defined as
follows.

Definition A.4 (`-local extractor [21]). An extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m is `-locally computable

(or `-local), if for every y ∈ {0, 1}d, the function x 7→
Ext(x, y) depends on only ` bits of its input, where the
bit locations are determined by y.

This notion of local extractors applies equally to ex-
tractors with and without (quantum) side information.

Appendix B: Known extractor results

The next sections contain many known theorems on
extractors, which we need to derive the parameters of
the constructions from Section III.

1. List-decodable codes

A standard error correcting code guarantees that if
the error is small, any string can be uniquely decoded.
A list-decodable code guarantees that for a larger (but
bounded) error, any string can be decoded to a list of
possible messages.

Definition B.1 (list-decodable code [40]). A code C :
{0, 1}n → {0, 1}n̄ is said to be (ε, L)-list-decodable if
every Hamming ball of relative radius 1/2− ε in {0, 1}n̄
contains at most L codewords.

List-decodable error correcting codes are known to be
1-bit extractors [20, 21]. This has been rewritten out
explicitly in [4].

Lemma B.2 ([4, Theorem D.319]). Let C : {0, 1}n →
{0, 1}n̄ be an (ε, L)-list-decodable code. Then the func-
tion

C ′ : {0, 1}n × [n̄]→ {0, 1}
(x, y) 7→ C(x)y,

is a (logL+ log 1
2ε , 2ε)-strong extractor.

As noted in a footnote of [4], this lemma can be
strengthened to classical-proof extractors.

Lemma B.3. Let C : {0, 1}n → {0, 1}n̄ be an (ε, L)-list-
decodable code. Then the function

C ′ : {0, 1}n × [n̄]→ {0, 1}
(x, y) 7→ C(x)y,

is a classical-proof (logL+ log 1
2ε , 2ε)-strong extractor.

19 In the arXiv version, this theorem is numbered C.3

19

2. One-bit extractors

König and Terhal [39] show that any one-bit extractor
is quantum-proof.

Theorem B.4 ([39, Theorem III.1]). Let C : {0, 1}n ×
{0, 1}t → {0, 1} be a (k, ε)-strong extractor. Then C is a
quantum-proof (k + log 1/ε, 3

√
ε)-strong extractor.

If we however have a construction which has already
been shown to be a classical-proof (k, ε)-strong extractor,
then Theorem B.4 can be refined as follows.

Lemma B.5 (Implicit in [39]). Let C : {0, 1}n ×
{0, 1}t → {0, 1} be a classical-proof (k, ε)-strong extrac-

tor. Then C is a quantum-proof (k, (1 +
√

2)
√
ε)-strong

extractor.

3. Universal hashing

A family of hash functions is almost universal, if the
probability of a collision is low.

Definition B.6 ([25]). A family of hash functions {h :
X → Z} is said to be δ-almost universal2 (δ-AU2), if for
any x, x′ ∈ X with x 6= x′,

Pr
h

[h(x) = h(x′)] ≤ δ,

where the hash functions are chosen uniformly at ran-
dom.

The family is said to be universal2, if it is δ-AU2 with
δ = 1

|Z| .

Tomamichel et al. [6] show that for such a family of
hash functions {hy}y, the corresponding extractor— de-
fined as Ext(x, y) := hy(x) — is quantum-proof if δ is
small enough.

Theorem B.7 ([6, Theorem 7]). If a family of hash func-

tions {h : {0, 1}n → {0, 1}m} is δ-AU2 for δ = 1+2ε2

2m ,
then chosen uniformly at random, they build a quantum-
proof (m+ 4 log 1

ε + 1, 2ε)-strong extractor.

4. Trevisan’s extractor

In [4, Theorem 4.6], De et al. show that if a (k, ε)-
strong one-bit extractor is used in Trevisan’s construc-
tion, the final extractor is a quantum-proof (k + rm +
log 1/ε, 3m

√
ε)-strong extractor, where m is the output

length and r is a parameter of the weak design.
That theorem is the combination of the following im-

plicit lemma and Lemma A.3.

Lemma B.8 (Implicit in [4]). Let C : {0, 1}n×{0, 1}t →
{0, 1} be a quantum-proof (k, ε)-strong extractor with
uniform seed and S1, . . . , Sm ⊂ [d] a weak (m, t, r, d)-
design. Then Trevisan’s extractor, ExtC : {0, 1}n ×
{0, 1}d → {0, 1}m, is a quantum-proof (k + rm,mε)-
strong extractor.

If we use a one-bit extractor which is known to
be quantum proof, we get better parameters from
Lemma B.8 than [4, Theorem 4.6].

Appendix C: Weak design proofs

1. Basic construction

Lemma C.1. The weak design construction described in
Section III B 1 has r < 2e.

Proof. Ma and Tan [18] prove that if m ∈ [tc, tc+1] and tc

divides m, then the weak design has r < e. The lemma
is thus immediate for m = ktc and any integer 1 ≤ k ≤ t.

Let ktc < m < (k + 1)tc for some integer 1 ≤ k < t.
Since the construction for m is the same as the construc-
tion for m′ = (k+ 1)tc with the last sets Sp dropped, the
overlap can only decrease. Thus∑
q<p

2|Sq∩Sp| < em′ =
(k + 1)e

k
ktc <

k + 1

k
em ≤ 2em.

2. Reducing the overlap

Lemma C.2. The weak design construction described in
Section III B 2 has r = 1.

Proof. For simplicity, we number the sets of the weak
design W with two indices (i, j), where 0 ≤ i ≤ ` and 1 ≤
j ≤ mi, and label the corresponding set of the basic weak
design Sij . We need to show that the second condition of
Definition III.1 holds for r = 1, namely that for all (i, j),∑

(g,h)<(i,j)

2|Sg,h∩Si,j | ≤ m,

where {(g, h) : (g, h) < (i, j)} :=
⋃
g<i{(g, h) : h ≤ mg}∪

{(i, h) : h < j}.
Note that (4) implies that for all 0 ≤ k ≤ `− 1,∑

j≤k

nj ≤
∑
j≤k

mj <
∑
j≤k

nj + 1, (C1)

from which we get

mk <
∑
j≤k

nj −
∑
j≤k−1

mj + 1 ≤ nk + 1. (C2)

Furthermore, from the sum of a geometric series, we have

∑
j≤k−1

nj + r′nk =
1−

(
1− 1

r′

)k
1−

(
1− 1

r′

) n0 + r′
(

1− 1

r′

)k
n0

= r′n0 = m− r′. (C3)

20

For any two sets Si,j and Sg,h with i 6= g, we have
|Sg,h ∩ Si,j | = 0. Thus for any set Si,j with i ≤ `− 1, we
have ∑

(g,h)<(i,j)

2|Sg,h∩Si,j | =
∑

g<i,h≤mg

1 +
∑
h<j

2|S
i
h∩S

i
j |

≤
∑
g<i

mg + r′mi

<
∑
g<i

ng + 1 + r′(ni + 1)

= m+ 1,

where we used (C1) and (C2) in the second from the last
line, and (C3) in the last line. Since the LHS of the above
inequality is an integer, and the inequality is strict, we
must have ∑

(g,h)<(i,j)

2|Sg,h∩Si,j | ≤ m.

Finally, for the case of S`,j , note that ` was chosen such

that m` ≤ t. This can be seen as follows.

m` = m−
∑
j≤`−1

mj ≤ m−
∑
j≤`−1

nj

= m−
1−

(
1− 1

r′

)`
1−

(
1− 1

r′

) (m
r′
− 1
)

= r′ +

(
1− 1

r′

)`
(m− r′).

By plugging (3) in this, we get m` ≤ t. Since t is the size
of the finite field, the polynomial used to generate the
elements of S`,j has all coefficients 0, except the constant
term which is j. We thus have S`j = {(x, j)}x∈GF(t), and
so the sets {S`,j}j∈GF(t) have no intersection. Hence∑

(g,h)<(`,j)

2|Sg,h∩S`,j | ≤
∑
g≤`

m` = m.

[1] Carl Bosley and Yevgeniy Dodis, “Does privacy require
true randomness?” in Theory of Cryptography , Lecture
Notes in Computer Science, Vol. 4392, edited by Salil
Vadhan (Springer, 2007) pp. 1–20.

[2] R Shaltiel, “Recent developments in explicit construc-
tions of extractors,” Bulletin of the EATCS 77, 67–95
(2002).

[3] Luca Trevisan, “Extractors and pseudorandom genera-
tors,” Journal of the ACM 48, 860–879 (2001).

[4] Anindya De, Christopher Portmann, Thomas Vidick,
and Renato Renner, “Trevisan’s extractor in the pres-
ence of quantum side information,” SIAM Journal on
Computing 41, 915–940 (2012), http://arxiv.org/abs/
0912.5514 arXiv:0912.5514.

[5] Renato Renner, Security of Quantum Key Distribu-
tion, Ph.D. thesis, Swiss Federal Institute of Technol-
ogy Zurich (2005), http://arxiv.org/abs/quant-ph/

0512258 quant-ph/0512258.
[6] Marco Tomamichel, Christian Schaffner, Adam Smith,

and Renato Renner, “Leftover hashing against quantum
side information,” in IEEE Trans. Inf. Theory , Vol.
57 (8) (IEEE, 2011) pp. 5524–5535, http://arxiv.org/
abs/arXiv:1002.2436 arXiv:1002.2436.

[7] X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, and H.-K. Lo,
“Postprocessing for quantum random number generators:
entropy evaluation and randomness extraction,” (2012),
http://arxiv.org/abs/1207.1473 arXiv:1207.1473.

[8] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran
Raz, and Ronald de Wolf, “Exponential separation for
one-way quantum communication complexity, with appli-
cations to cryptography,” SIAM J. Comput. 38, 1695–
1708 (2008).

[9] Jaikumar Radhakrishnan and Amnon Ta-Shma, “Bounds
for dispersers, extractors, and depth-two superconcentra-
tors,” SIAM Journal on Discrete Mathematics 13, 2–24
(2000).

[10] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby, “A

pseudorandom generator from any one-way function,”
SIAM Journal on Computing 28, 1364–1396 (1999).

[11] Wolfgang Mauerer, Professional Linux Kernel Architec-
ture (Wrox, 2008).

[12] National Institute of Standards and Technology, FIPS
180-2, Secure Hash Standard, Federal Information Pro-
cessing Standard (FIPS), Publication 180-2 , Tech. Rep.
(Department of commerce, 2002).

[13] Salil Vadhan, “The unified theory of pseudorandomness:
guest column,” SIGACT News 38 (2007).

[14] Noam Nisan and Avi Wigderson, “Hardness vs. random-
ness,” Journal of Computer and System Sciences 49,
149–167 (1994).

[15] Ran Raz, Omer Reingold, and Salil Vadhan, “Extracting
all the Randomness and Reducing the Error in Trevisan’s
Extractors,” Journal of Computer and System Sciences
65, 97–128 (2002).

[16] Tzvika Hartman and Ran Raz, “On the distribution of
the number of roots of polynomials and explicit weak
designs,” Random Structures and Algorithms 23, 235–
263 (2003).

[17] Noam Nisan and Avi Wigderson, “Hardness vs random-
ness,” Journal of Computer and System Sciences 49, 149–
167 (1994).

[18] Xiongfeng Ma and Xiaoqing Tan, An explicit combina-
torial design, Tech. Rep. (2011) eprint, http://arxiv.
org/abs/arXiv:1109.6147 arXiv:1109.6147.

[19] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Ka-
banets, “Approximate list-decoding of direct product
codes and uniform hardness amplification,” SIAM Jour-
nal on Computing 39, 564–605 (2009).

[20] Chi-Jen Lu, “Encryption against Storage-Bounded Ad-
versaries from On-Line Strong Extractors,” Journal of
Cryptology 17, 27–42 (2004).

[21] Salil P. Vadhan, “Constructing locally computable ex-
tractors and cryptosystems in the bounded-storage
model,” Journal of Cryptology 17, 43–77 (2004).

http://dx.doi.org/10.1007/978-3-540-70936-7_1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recent+Developments+in+Explicit+Constructions+of+Extractors.#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Recent+Developments+in+Explicit+Constructions+of+Extractors.#0
http://dx.doi.org/10.1145/502090.502099
http://dx.doi.org/ 10.1137/100813683
http://dx.doi.org/ 10.1137/100813683
http://arxiv.org/abs/0912.5514
http://arxiv.org/abs/0912.5514
http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/arXiv:1002.2436
http://arxiv.org/abs/arXiv:1002.2436
http://arxiv.org/abs/1207.1473
http://dx.doi.org/10.1137/S0895480197329508
http://dx.doi.org/10.1137/S0895480197329508
http://www.worldcat.org/isbn/0470343435
http://www.worldcat.org/isbn/0470343435
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://dx.doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://arxiv.org/abs/arXiv:1109.6147
http://arxiv.org/abs/arXiv:1109.6147
http://dx.doi.org/10.1137/070683994
http://dx.doi.org/10.1137/070683994
http://dx.doi.org/10.1007/s00145-003-0217-1
http://dx.doi.org/10.1007/s00145-003-0217-1
http://dx.doi.org/10.1007/s00145-003-0237-x

21

[22] Oded Goldreich, Studies in Complexity and Cryptogra-
phy , edited by Oded Goldreich, Lecture Notes in Com-
puter Science, Vol. 6650 (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011) pp. 451–464.

[23] Shlomo Hoory, Nathan Linial, and Avi Wigderson, “Ex-
pander graphs and their applications,” American Mathe-
matical Society. Bulletin. New Series 43, 439–561 (2006).

[24] Douglas R. Stinson, “On the connections between univer-
sal hashing, combinatorial designs and error-correcting
codes,” Electronic Colloquium on Computational Com-
plexity (ECCC) 2 (1995).

[25] Douglas R. Stinson, “Universal hashing and authen-
tication codes,” Designs, Codes and Cryptography 4,
369–380 (1994), a preliminary version appeared at
CRYPTO ’91.

[26] Bjarne Stroustrup, The C++ Programming Language:
Special Edition, 3rd ed. (Addison-Wesley Professional,
2000).

[27] Victor Shoup, A Computational Introduction to Number
Theory and Algebra (Cambridge University Press, 2005).

[28] The OpenSSL Project, “OpenSSL: The open source
toolkit for SSL/TLS,” (2003).

[29] James Reinders, Intel Threading Building Blocks: Outfit-
ting C++ for Multi-Core Processor Parallelism, 1st ed.
(O’Reilly Media, 2007).

[30] Maurice Herlihy and Nir Shavit, The Art of Multiproces-
sor Programming , 1st ed. (Morgan Kaufmann, 2008).

[31] Dirk Eddelbuettel and Romain Francois, RInside: C++
classes to embed R in C++ applications (2012), r package
version 0.2.8.

[32] R Development Core Team, R: A Language and En-

vironment for Statistical Computing , R Foundation for
Statistical Computing, Vienna, Austria (2011), ISBN 3-
900051-07-0.

[33] Gene H. Golub and Charles F. van Loan, Matrix Com-
putations (Johns Hopkins Studies in Mathematical Sci-
ences)(3rd Edition), 3rd ed. (The Johns Hopkins Univer-
sity Press, 1996).

[34] Jörg Arndt, Matters Computational (Springer Berlin /
Heidelberg, 2010).

[35] Donald E. Knuth, Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms, 3rd ed. (Addison-
Wesley Professional, 1997).

[36] Christian Gabriel, Christoffer Wittmann, Denis Sych,
Ruifang Dong, Wolfgang Mauerer, Ulrik L. Andersen,
Christoph Marquardt, and Gerd Leuchs, “A generator
for unique quantum random numbers based on vacuum
states,” Nature Photonics 4, 711–715 (2010).

[37] Noam Nisan and David Zuckerman, “Randomness is lin-
ear in space,” Journal of Computer and System Sci-
ences 52, 43–52 (1996), a preliminary version appeared
at STOC ’93.

[38] Robert König and Renato Renner, “Sampling of min-
entropy relative to quantum knowledge,” IEEE Transac-
tions on Information Theory 57, 4760–4787 (2011), http:
//arxiv.org/abs/arXiv:0712.4291 arXiv:0712.4291.

[39] Robert König and Barbara M. Terhal, “The bounded-
storage model in the presence of a quantum adversary,”
IEEE Transactions on Information Theory 54, 749–
762 (2008), http://arxiv.org/abs/arXiv:quant-ph/

0608101 arXiv:quant-ph/0608101.
[40] Madhu Sudan, “List decoding: algorithms and applica-

tions,” SIGACT News 31, 16–27 (2000).

http://dx.doi.org/10.1007/978-3-642-22670-0
http://dx.doi.org/10.1007/978-3-642-22670-0
http://dx.doi.org/ 10.1007/BF01388651
http://dx.doi.org/ 10.1007/BF01388651
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201700735
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201700735
http://shoup.net/ntb/
http://shoup.net/ntb/
http://www.openssl.org
http://www.worldcat.org/isbn/0596514808
http://www.worldcat.org/isbn/0596514808
http://www.worldcat.org/isbn/0123705916
http://www.worldcat.org/isbn/0123705916
http://dirk.eddelbuettel.com/code/rinside.html
http://dirk.eddelbuettel.com/code/rinside.html
http://www.R-project.org/
http://www.R-project.org/
http://www.worldcat.org/isbn/0801854148
http://www.worldcat.org/isbn/0801854148
http://www.worldcat.org/isbn/0801854148
http://www.worldcat.org/isbn/0201896842
http://www.worldcat.org/isbn/0201896842
http://dx.doi.org/10.1038/nphoton.2010.197
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/ 10.1109/TIT.2011.2146730
http://dx.doi.org/ 10.1109/TIT.2011.2146730
http://arxiv.org/abs/arXiv:0712.4291
http://arxiv.org/abs/arXiv:0712.4291
http://dx.doi.org/10.1109/TIT.2007.913245
http://dx.doi.org/10.1109/TIT.2007.913245
http://arxiv.org/abs/arXiv:quant-ph/0608101
http://arxiv.org/abs/arXiv:quant-ph/0608101
http://dx.doi.org/10.1145/346048.346049

	A modular framework for randomness extraction based on Trevisan's construction
	Abstract
	I Introduction
	II Overview
	A What are extractors?
	B Trevisan's Construction

	III Derivations
	A Trevisan's extractor
	1 Description
	2 Constructions overview

	B Weak designs
	1 Basic construction
	2 Reducing the overlap

	C One-bit extractors
	1 XOR-code
	2 Lu's construction
	3 Polynomial hashing

	IV Implementation
	A Implementation Architecture
	1 Architecture
	2 Implementation details

	B Algorithms
	1 Trevisan's extractor
	2 Weak Designs
	3 1-Bit extractors

	V Runtime comparison
	 Summary
	 Acknowledgements
	A Extractor definitions
	B Known extractor results
	1 List-decodable codes
	2 One-bit extractors
	3 Universal hashing
	4 Trevisan's extractor

	C Weak design proofs
	1 Basic construction
	2 Reducing the overlap

	 References

