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Abstract. Frequency conversion (FC) and type-II parametric down-conversion
(PDC) processes serve as basic building blocks for the implementation of
quantum optical experiments: type-II PDC enables the efficient creation of
quantum states such as photon-number states and Einstein–Podolsky–Rosen
(EPR)-states. FC gives rise to technologies enabling efficient atom–photon cou-
pling, ultrafast pulse gates and enhanced detection schemes. However, despite
their widespread deployment, their theoretical treatment remains challenging.
Especially the multi-photon components in the high-gain regime as well as
the explicit time-dependence of the involved Hamiltonians hamper an efficient
theoretical description of these nonlinear optical processes. In this paper, we in-
vestigate these effects and put forward two models that enable a full description
of FC and type-II PDC in the high-gain regime. We present a rigorous numeri-
cal model relying on the solution of coupled integro-differential equations that
covers the complete dynamics of the process. As an alternative, we develop a
simplified model that, at the expense of neglecting time-ordering effects, enables
an analytical solution. While the simplified model approximates the correct
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solution with high fidelity in a broad parameter range, sufficient for many exper-
imental situations, such as FC with low efficiency, entangled photon-pair gener-
ation and the heralding of single photons from type-II PDC, our investigations
reveal that the rigorous model predicts a decreased performance for FC processes
in quantum pulse gate applications and an enhanced EPR-state generation rate
during type-II PDC, when EPR squeezing values above 12 dB are considered.
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1. Introduction

Fundamental building blocks of quantum information and quantum communication applications
are nonlinear optical processes. In experimental implementations of photonic quantum
systems, type-II parametric down-conversion (PDC) and frequency conversion (FC) are
omnipresent. Type-II PDC enables the generation of various quantum states ranging from
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single photons [1–5] over entangled photon-pairs [6–8] up to Einstein–Podolsky–Rosen (EPR)-
states [9, 10]. FC is applied for frequency translations between different wavelengths [11–13],
which enables interfaces between quantum systems, in particular atom–photon coupling
[14, 15], quantum pulse gates [16–18] and efficient quantum state detection [19–23].

Their deployment in quantum-enhanced applications requires a detailed theoretical
understanding of the corresponding nonlinear interactions. A variety of models have been
developed for PDC [10, 24–28] and FC [13, 16–18, 29]. They vary from straightforward
perturbation approaches to much more rigorous treatments. The crucial issue in these derivations
is firstly the fact that multi-photon effects have to be considered during the interaction, and
secondly the problem that the involved electric field operators and consequently Hamiltonians
do not commute in time. In this paper, we address these issues and build two theoretical models
for FC and type-II PDC: a rigorous numerical model extending the theoretical framework of
Kolobov [30], and a simplified analytical approach. Both models take into account higher-order
photon-number effects and are hence suitable for describing FC and type-II PDC in the high-
gain regime. We analyse their performance and the quality of their predictions over a broad
parameter range, which enables us to suggest in which experimental configurations a simple
analytical modelling of the processes is sufficient and when the rigorous approach has to be
applied.

The paper is structured into two main parts. In sections 2–8 we study FC. Our investigation
of this process is divided into eight subsections: after a short description of the basic
principles of FC in section 2, section 3 discusses the Hamiltonian of the process. The general
properties of the conversion are outlined in section 4. In section 5 we derive the simplified
analytical solution excluding time-ordering effects. In section 6 we put forward the rigorous
approach relying on the solution of coupled integro-differential equations. The differences
between the two models are quantified in section 7. Finally, in section 8, we elaborate on the
impacts of our work on the design and performance of FC processes for quantum-enhanced
applications. The same reasoning is then applied to the process of type-II PDC in section 9
onward. Section 16 concludes the paper and summarizes our findings. Appendices A–F contain
additional information and further calculations.

2. Frequency conversion (FC): overview

A general FC process is sketched in figure 1. Mediated by the nonlinearity of the crystal and
a strong pump beam two input fields â(in) and ĉ(in) are interconverted into two output fields
â(out) and ĉ(out). This FC process is more commonly known as sum frequency generation (SFG),
when the input beam in combination with the pump beam generates an output field at a higher
frequency ωout = ωin +ωp (figure 1(a)), or difference frequency generation (DFG), when a field
with frequency ωout = ωin −ωp is created (figure 1(b)).5

The distinction between SFG and DFG arises via the input wave that is fed in either the
â(in) or ĉ(in) port. In the scope of this paper â(in) → ĉ(out) depicts a SFG process and ĉ(in) → â(out)

labels DFG. Each crystal configuration always supports both processes simultaneously and we
refer to the overall system as FC.

5 In classical nonlinear optics, DFG is understood as a stimulated process. The bright pump field has the highest
frequency and the process is seeded with a weak input field, which is enhanced through continuous conversion of
pump photons. We, in contrast, assume a weak input field, which has the highest frequency, and the ‘seed’ is the
bright pump field (see [16] for details).
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Figure 1. Sketch of the FC process. Mediated by the strong pump field and
the χ (2)-nonlinearity of the medium parts of the fields either an input field â(in)

is converted via SFG to ĉ(out) (a) or via the process of DFG a field in ĉ(in) is
converted to â(out).

In this paper, we go beyond the standard monochromatic single-mode description of FC
and consider a multitude of frequencies interacting with each other during the FC process. This
becomes especially important for ultrafast pulsed FC experiments where ultrafast light pulses
with spectral bandwidths of several nanometers interact with each other [16, 17, 29, 31]. In the
following sections, we derive the properties of this transformation and compare the accuracy of
different theoretical models.

3. FC: Hamiltonian

We first define the electric field operators of an optical wave inside a nonlinear medium as [32]

Ê
(+)
(z, t)= Ê

(−)†
(z, t)

= ı

(
h̄ c

4πε0 A n3(k0)

) 1
2
∫

dk
√
ω(k) exp [ı(kz −ω(k)t)] â(k), (1)

where A labels the transverse quantization area in the material [33]. We use the slowly varying
envelope approximation, i.e. the bandwidth 1ω of the considered electric fields is small
compared to their central frequency ω0 (1ω� ω0) and hence treat the dispersion term in front
of the integral n(k0) in (1) as a constant, using the value at the central wave vector k0. This
approximation is justified since, in the remainder of this paper, we only consider electric fields
not too broad in frequency, compared to their central frequency, and take into account the rather
flat dispersion in nonlinear crystals. Finally, â(k) is the standard single-photon annihilation
operator that destroys a single photon in mode k and obeys[

â(k), â(k ′)
†
]

= δ(k − k ′)
[
â(k), â(k ′)

]
= 0. (2)

In this paper, we restrict ourselves to electric fields in one dimension. This means we assume
a fully collinear propagation of the interacting fields along one axis in a single spatial mode,
as e.g. given inside a waveguiding structure, since a three-dimensional treatment does not offer
further physical insight into the properties of the process and complicates the calculations.

The Hamiltonian of the FC process consists of two parts. The Hamiltonian H (x)
0 describes

the free propagation of the electromagnetic waves through the medium for each of the involved
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fields [30],

Ĥ (x)
0 (t)=

2ε0 A n3
kx

0

c

∫
dz Ê

(−)

x (z, t)Ê
(+)

x (z, t), (3)

where x represents either the pump p or the two interconverted fields a, c and the factor in front
of the Hamiltonian appears due to the normalization of the electric field operators in (1) [30].
The interaction Hamiltonian of the FC process is given by [16, 17, 34, 35]

Ĥ (FC)
I (t)= ε0

∫
dz χ (2)(z) E (+)

p (z, t)Ê
(+)

a (z, t)Ê
(−)

c (z, t)+ h.c. (4)

E (+)
p (z, t) labels the pump field driving the FC process and Ê

(+)

a (z, t), Ê
(−)

c (z, t) are the two
fields that are interconverted. In the derivation of this Hamiltonian, we used the rotating wave
approximation and hence only consider the FC terms of the nonlinear optical process while
neglecting the PDC and further nonlinear interactions. We further assume that the nonlinearity
is constant throughout the material. The pump field driving the FC process is a strong optical
wave and is consequently treated as a classical wave:

E (+)
p (z, t)= E (−)∗

p (z, t)=Ap

∫
dk α [ω(k)] exp [ı(kz −ω(k)t)] . (5)

HereAp labels the pump amplitude and α [ω(k)] its spectral distribution ranging from δ(ω−ωc)

for cw-laser sources up to more complicated forms in the case of pulsed laser systems. We
further assume that the pump field is not depleted during propagation through the crystal since
only a minor part of the strong pump beam is lost during the FC process.

Combining (3) and (4), the FC process is described by the overall Hamiltonian:

ĤFC(t)= Ĥ (a)
0 (t)+ Ĥ (c)

0 (t)+ Ĥ (FC)
I (t). (6)

There are a variety of different constants involved in the definition of the FC Hamiltonian in (6)
(see (1), (3), (5) and (4)). However, these do not change the qualitative behaviour of the process.
In the remainder of this paper, we merge all of them into a coupling value depicting the overall
efficiency of the FC process rendering the presented calculations independent of individual
notations.

4. FC: general properties

From the FC Hamiltonian in (6), we are able to calculate the unitary transformation [9, 36, 37]
generated by the FC process, with the help of the Schrödinger equation [36, 37]:

ÛFC = T exp

[
−

i

h̄

∫
dt ĤFC(t)

]
. (7)

This unitary Û FC describes the transformation of the beams during propagation through the
crystal, i.e. the transformation from the light fields impinging on the crystal â(in) and ĉ(in) to the
output fields â(out) and ĉ(out) (see figure 1).

In (7) the time-ordering operator T is crucial, because the electric field operators in
Ĥ FC(t) are time dependent. In turn, the Hamiltonian does not commute at different points
in time, which renders finding a solution difficult. Nevertheless the structure of (7) gives
valuable insights into the properties of the system, because the Hamiltonian in (7) is bilinear
in its electric field operators if the pump is treated as a classical wave. The solution hence
takes, in the Heisenberg picture, the form of a linear unitary Bogoliubov transformation

New Journal of Physics 15 (2013) 053038 (http://www.njp.org/)

http://www.njp.org/


6

[38–41]:6

â(out)(ω)=

∫
dω′Ua(ω, ω

′) â(in)(ω′)+
∫

dω′Va(ω, ω
′) ĉ(in)(ω′),

(8)
ĉ(out)(ω)=

∫
dω′Uc(ω, ω

′) ĉ(in)(ω′)−

∫
dω′Vc(ω, ω

′) â(in)(ω′).

In the scope of this paper, the conversion from â(in) → ĉ(out) depicts SFG and ĉ(in) → â(out) DFG.
The functions Ua/c(ω, ω

′) in (8) define which parts of the different frequencies of the input
beams pass the crystal unperturbed, whereas the Va/c(ω, ω

′) functions give the portions of the
beams that are converted.

In order to unravel the underlying structure, we use the constraint that the FC process
is a unitary transformation and hence (8) is a canonical operator transformation [38, 40, 41].
This imposes several conditions on the properties of the solution, which we study in detail in
appendix A. Under this constraint and with the help of the Bloch–Messiah decomposition, we
rewrite (8) as

Â
(out)

k = cos(rk) Â
(in)

k + sin(rk) Ĉ
(in)

k ,
(9)

Ĉ
(out)

k = cos(rk) Ĉ
(in)

k − sin(rk) Â
(in)

k ,

where Âk and Ĉk are broadband single-photon destruction operators [42] defined as

Â
(out)

k =

∫
dω ϕk(ω) â(out)(ω), Ĉ

(out)

k =

∫
dω ξk(ω) ĉ(out)(ω),

(10)
Â
(in)

k =

∫
dωψk(ω) â(in)(ω), Ĉ

(in)

k =

∫
dω φk(ω) ĉ(in)(ω).

In essence, an ultrafast FC process converts ultrafast optical pulses given by the mode shapes
ψk(ω) and φk(ω) into the pulse modes ϕk(ω) and ξk(ω). The conversion efficiency of each mode
k is given via sin2(rk).

Note that this principle also provides the underlying concept for considering the overall FC
process as a quantum pulse gate or quantum pulse shaper [16–18]. Depending on the efficiency
of the process it transmits the incoming pulses unperturbed or switches them via FC. The crucial
parameters of this transformation are firstly the conversion efficiencies sin2(rk) and secondly the
ultrafast mode shapes ϕk(ω), ξk(ω), ψk(ω) and φk(ω) that define the range of frequencies that
are interconverted.

5. FC: analytical model excluding time-ordering effects

Unfortunately, it is not trivial to evaluate (7) due to the time-ordering operator T in front of the
exponential function. Neglecting these time-ordering effects, however, enables us to build an
analytical model of FC, which is highly beneficial, for practical purposes, since it enables quick

6 Solving the process via the Heisenberg equation of motion (see section 6) yields a linear operator-
valued differential equation. Linear operator-valued differential equations are solved by a linear Bogoliubov
transformation [38, 41], i.e. the solution will be of the form (8). Furthermore with the help of the Bloch–Messiah
reduction, discussed in appendix A, we are able to rewrite the general linear Bogoliubov transformation into the
form depicted in (9).
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and straightforward access to the process properties7:

ÛFC = exp

[
−

i

h̄

∫
dt ĤI(FC)(t)

]
. (11)

This formula is identical to (7) except that we drop the time-ordering operator T and work in
the interaction picture. It enables us to directly perform the time integration in the exponential
function. While it is possible to perform this calculation using the electric field operators as
defined in (1), we are able to considerably simplify these calculations by working with the
electric field operators in the ω-representation [32]:

Ê
(+)
(z, t)= Ê

(−)†
(z, t)

= i

(
h̄

4πε0c A n(ω0)

) 1
2
∫

dω
√
ω exp [i(k(ω)z −ωt)] â(ω). (12)

We also perform our calculations in the interaction picture. This means we move into a new
reference frame where the effects of free propagation are not present and hence do not need to
consider the free propagation Hamiltonians. Finally, we assume a crystal featuring a constant
χ (2)-nonlinearity extending from −

L
2 to L

2 . After a straightforward calculation we obtain

ÛFC = exp

[
−

i

h̄

(∫
dωa

∫
dωc f (ωa, ωc)â(ωa)ĉ

†(ωc)+ h.c.

)]
, (13)

where f (ωa, ωc) is defined as

f (ωa, ωc)= B α (ωc −ωa) sinc

(
1k(ωa, ωc)L

2

)
. (14)

Here we merged all constants into the overall factor B and 1k(ωa, ωc)= kp(ωc −ωa)+
ka(ωa)− kc(ωc). Details of this calculation are given in [16].

With the help of the singular-value-decomposition (SVD) theorem [45], we recast this
solution in the broadband mode formalism presented in (9). At first we diagonalize the
Hamiltonian by decomposing the exponent in (13), via a Schmidt decomposition, as

−
ı

h̄
f (ωa, ωc) =

∑
k

(−rk)ψk(ωa)φ
∗

k (ωc),

(15)
−

ı

h̄
f ∗(ωa, ωc)=

∑
k

rkψ
∗

k (ωa)φk(ωc).

Here both {ψk(ωa)} and {φk(ωc)} each form a complete set of orthonormal functions and
rk ∈R+. Employing equation (15) we rewrite the unitary FC transformation in (13) as

ÛFC = exp

[∑
k

(−rk)

∫
dωa ψk(ωa)â(ωa)

∫
dωcφ

∗

k (ωc)ĉ
†(ωc)

+rk

∫
dωaψ

∗

k (ωa)â
†(ωa)

∫
dωcφk(ωc)ĉ(ωc)

]
. (16)

7 For a discussion of the physical meaning of the time-ordering operator in the context of PDC and FC, please
have a look at the work of Brańczyk [28, 43, 44].
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With the help of the broadband mode operators defined in (10), it takes on the form

ÛFC = exp

[∑
k

(−rk)
(

ÂkĈ
†

k − Â
†

kĈk

)]
=

⊗
k

exp
[
(−rk)

(
ÂkĈ

†

k − Â
†

kĈk

)]
. (17)

In the Heisenberg pictures, it reads [39]

Â
(out)

k = cos(rk) Â
(in)

k + sin(rk)Ĉ
(in)

k ,
(18)

Ĉ
(out)

k = cos(rk)Ĉ
(in)

k − sin(rk) Â
(in)

k .

This simplified analytical model features exactly the structure required by the canonical
commutation relations discussed in section 4. Only the additional fact that the input modes
and output modes in this simplified model are always of identical shape differs from the general
solution (9).

It is evident that this treatment ignoring time-ordering effects enables a straightforward
analytical solution of the FC process. In some cases, even the SVD can be performed
analytically and hence no computational effort is required at all [46]. This enables the efficient
engineering and design of FC processes as long as the applied approximations hold.

6. FC: rigorous theory including time-ordering effects

In order to obtain a rigorous solution of FC, we cannot neglect the effects of time-ordering.
For this reason we change our analysis method and regard the FC process in the Heisenberg
picture. This approach has already been utilized for FC in nonlinear optical fibres in [12, 18]
and is common for PDC [25–27, 30, 47–51]. In order to solve the corresponding Heisenberg
equations of motion, we adapt the work of Kolobov on type-I PDC in [30] to FC, which provides
a rigorous and complete solution of the FC process. To simplify the calculations we redefine
the electric field operators in (1) according to [30] by dropping the constants, which would
otherwise complicate the formulae without adding new insights:

â(z, t)=
1

√
2πk0

∫
dk

√
ω(k) exp [i (kz −ω(k)t)] â(k),

(19)
ĉ(z, t)=

1
√

2πk0

∫
dk

√
ω(k) exp [i (kz −ω(k)t)] ĉ(k).

The Heisenberg equation of motion for â(z, t) reads

d

dt
â(z, t)=

ı

h̄

[
ĤFC(t), â(z, t)

]
. (20)

Adapting the work of [30] we obtain two operator-valued integro-differential equations
describing the FC process including time-ordering effects:

∂

∂z
ε̂a(z, ω)= −

i

h̄
D∗

∫
dω′ε(−)p (z, ω′

−ω) exp
[
−i1k(ω, ω′)z

]
ε̂c(z, ω

′),

(21)
∂

∂z
ε̂c(z, ω)= −

i

h̄
D

∫
dω′ε(+)p (z, ω−ω′) exp

[
i1k(ω′, ω)z

]
ε̂a(z, ω

′).
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Here we separated the interaction from the propagation effects by transforming our operators
into the interaction picture, similar to the analytical solution in section 5. For this purpose we
introduced the electric fields

ε̂a(z, ω)= â(z, ω) exp [−ika(ω)z] ,
(22)

ε̂c(z, ω)= ĉ(z, ω) exp [−ikc(ω)z] ,

ε(−)p (z, ω)= E (−)
p (z, ω) exp

[
ikp(ω)z

]
.

Finally we used the abbreviation 1k(ω, ω′)= kp(ω
′
−ω)− kc(ω

′)+ ka(ω). Note that, between
the two formulae in (21), the variables ω and ω′ in the 1k and εp functions are flipped. By
defining

f (ω, ω′, z)= −
i

h̄
D∗ε(−)p (z, ω′

−ω) exp
[
−ı1k(ω, ω′)z

]
, (23)

we may write (21) in a more compact notation:

∂

∂z
ε̂a(z, ω)=

∫
dω′ f (ω, ω′, z) ε̂c(z, ω

′),

(24)
∂

∂z
ε̂c(z, ω)= −

∫
dω′ f ∗(ω′, ω, z) ε̂a(z, ω

′).

A detailed derivation of (24) is given in [44].

6.1. Solving the differential equations

In order to obtain the dynamics of the FC process, the differential equations in (24) have to be
solved. Usually operator-valued differential equations cannot readily be evaluated and, in the
case of FC, this is complicated by the fact that we have to solve integro-differential equations,
since we consider the conversion of many frequencies simultaneously. However, note that (24) is
linear in its operators and hence classical solution methods like the split-step Fourier inversion
method have been applied [18, 25, 26]. In the special case of a cw-pump laser, the integral
in (24) vanishes and it is even possible to find analytical solutions [30].

In this paper we apply a different approach—introduced by Mauerer in [47]—exploiting
the fact that the structure of the solution is already known: it is a linear operator
transformation (8). Using (8) and (24) we obtain two pairs of classical integro-differential
equations [27]:

∂

∂z
Ua(z, ω, ω

′′)= −

∫
dω′ f (ω, ω′, z)Vc(z, ω

′, ω′′),

∂

∂z
Vc(z, ω, ω

′′)=

∫
dω′ f ∗(ω′, ω, z)Ua(z, ω

′, ω′′) (25)

and
∂

∂z
Uc(z, ω, ω

′′)= −

∫
dω′ f ∗(ω′, ω, z)Va(z, ω

′, ω′′),

∂

∂z
Va(z, ω, ω

′′)=

∫
dω′ f (ω, ω′, z)Uc(z, ω

′, ω′′) (26)

which cover the complete dynamics of the FC process.
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We solve these coupled integro-differential equations using an iterative approach. For the
pair in (25) this means we first formally integrate both differential equations along z, where we
assume a medium of length L , as in the analytical solution discussed in section 5,

Ua(z, ω, ω
′′)= δ(ω−ω′)−

∫ L
2

−
L
2

dz
∫

dω′ f (ω, ω′, z)Vc(z, ω
′, ω′′),

(27)

Vc(z, ω, ω
′′)=

∫ L
2

−
L
2

dz
∫

dω′ f ∗(ω′, ω, z)Ua(z, ω
′, ω′′).

Here we also included our knowledge about the initial solution. If no interaction takes place, the
process is described by the identity operation â(out)

(ω)= â(in)(ω) and ĉ(out)
(ω)= ĉ(in)(ω) from

which follows

Ua(z, ω, ω
′′)= Uc(z, ω, ω

′′)= δ(ω−ω′′),
(28)

Va(z, ω, ω
′′)= Vc(z, ω, ω

′′)= 0.

Starting with the initial solution for Ua(z, ω, ω′′) we then perform the two integrations in (27)
and obtain a preliminary Vc(z, ω, ω′′). This is then used to obtain a new Ua(z, ω, ω′′). We repeat
this iterative procedure till the functions converge.

The same method is applied to the second set of differential equations defining Uc(z, ω, ω′′)

and Va(z, ω, ω′′), which gives us the complete time-ordered solution of the FC process. The
implementation of this algorithm is discussed in appendix D, where we also elaborate on the
numerical accuracy of the applied method8.

7. FC: comparison between simplified analytical and rigorous approaches

In order to quantify the discrepancies between the two approaches presented in sections 5 and 6
we simulate an almost uncorrelated FC process where only the first optical mode rk is strongly
excited [16], since this is the case where the differences between the different models are most
prominent. Furthermore, this configuration also corresponds to quantum pulse gate operation of
FC [16–18]. The exact simulation parameters are given in appendix C.

The obtained FC efficiencies sin2(rk) and pulse shapes are displayed in figure 2. The figures
in the column on the left show the conversion efficiencies sin2(rk), whereas the two columns on
the right present the corresponding mode functions ϕ1(ν), ψ1(ν), φ1(ν) and ξ1(ν) for the first
optical mode featuring the highest conversion efficiency, where ϕ1(ν) andψ1(ν) as well as φ1(ν)

and ξ1(ν) are of identical shape.
In the low-conversion case, i.e. in the case of low pump powers, depicted in figure 2(a),

both models yield identical results. When, with strong pump beams, unit conversion efficiency is
approached, as shown in figure 2(b), first discrepancies between the different models start to ap-
pear. The mode functions derived from the rigorous model show a small broadening and the con-
version efficiency in the very first mode rises slower as expected from the analytical approach.
The second mode however rises faster. This means the whole system moves from a single-mode
to a multi-mode operation. Significant differences between the two theories occur when we
choose to use even higher pump powers as depicted in figure 2(c). The conversion efficiencies,

8 The program code, written in Python, can be downloaded from the publications section on our website. The
current url is http://physik.uni-paderborn.de/ag/ag-silberhorn/publications/.
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Figure 2. Comparison between the rigorous and the analytical approach in
uncorrelated few-mode ultrafast FC. In the low-conversion regime, presented in
(a), both approaches evaluate to identical results (6.4/6.3% conversion efficiency
in the first mode in the analytical/rigorous model). Approaching unit efficiency
in (b) the two approaches start to show differences (100/89% conversion
efficiency in the first mode), which become significant when optical gains beyond
unity are considered in (c) (30/99% conversion efficiency in the first mode).

in the rigorous model, presented in figure 2(c), remain at unit conversion efficiency once they
reach this value. In contrast they drop in the analytical model. Furthermore, the rigorous model
predicts a significant broadening of the corresponding mode shapes in the high-gain regime.

8. FC: implications for experimental implementations

In summary, the analytical model accurately describes FC in the low-gain regime. In the high-
gain regime, when conversion efficiencies about unity are reached, complicated non-trivial
deviations from the analytical model have to be taken into account and a rigorous treatment
of FC is necessary. For most experimental setups and applications it is hence perfectly justified
to apply the simplified analytical model to minimize the computational effort, as long as its
limitations are kept in mind.

Especially affected, however, are FC processes that serve as quantum pulse gates [16–18].
In theory, a perfect quantum pulse gate converts a single optical mode with unit efficiency.
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However, as is evident from figure 2, the time-ordering effects move the FC process from the
single-mode regime towards a more multi-mode behaviour. This effect fundamentally limits
the gate performance at high conversion efficiencies. One could, in principle, use advanced
engineering techniques such as hypergrating structures to reduce the multi-mode character in the
state [52], yet still the time-ordering effects seem to remain a fundamental limitation. Whether
or not it is actually possible to engineer single-mode quantum pulse gates including the effects
of time-ordering remains an open research question.

Furthermore, our rigorous model shows that the pump power dependence of FC with
only a few optical modes rk strongly deviates from the expected sinusoidal pattern. According
to the simplified model, one would expect that with increasing pump power the conversion
efficiency shows a sin2 dependence on the pump amplitude. However, according to our
rigorous model strong deviations from this behaviour appear, when uncorrelated FC processes
are considered. Instead of simply decreasing after unit conversion efficiency is reached, the
conversion efficiency of the first optical mode remains at unity despite rising pump powers.
While this quite unexpected behaviour is not present in FC processes featuring a multitude of
optical modes rk , it has to be taken into account when single- or few-mode FC experiments are
performed.

9. Parametric down-conversion (PDC): overview

To date, most experimental implementations of type-II PDC aim for the generation of photon
pairs [1]. This is achieved by driving the type-II PDC process with very low pump powers, where
the whole system can be treated using first-order perturbation theory [24]. However, considering
the demand for high photon-pair generation rates in current quantum optical experiments, higher
and higher pump powers are applied in type-II PDC experiments [53, 54]. In this regime,
perturbation approaches focusing on photon-pair generation are not sufficient any more and
higher-order effects have to be taken into account. In order to mathematically describe type-II
PDC in the high-gain regime, we extend our theoretical framework for FC processes to type-II
PDC, covering both degenerate and non-degenerate configurations.

The principle of type-II PDC is sketched in figure 3. A strong pump beam decays inside
a nonlinear optical material into two beams commonly labelled as signal and idler. In full
generality, the generated output state created by type-II PDC is a finitely squeezed EPR-state or
twin-beam state9.

As in the FC case, we do not restrict ourselves to a discussion of the type-II PDC process
in the monochromatic picture, but extend the theories to the multi-mode picture including the
interaction of many frequencies. This is especially important when the type-II PDC process is
pumped by pulsed laser systems [53, 54].

PDC in the high-gain regime has already been extensively studied. Wasilewski and
Lvovsky investigated type-I PDC and its generation of squeezed states in ultrafast pulse modes
in [25, 26], while [48] studies its spatio-temporal structure. Type-II PDC processes in the high-
gain regime have been investigated as well [27, 50, 51], yet with a focus on the correlations
between the signal and idler beams. The theoretical framework for FC processes, presented
in this paper, however, enables us to extend the work of Wasilwewski and Lvovsky [25, 26]

9 Type-II PDC emits EPR-states, whereas type-I PDC generates squeezed states. Type-I PDC is discussed in
[25, 26].
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Figure 3. Sketch of the type-II PDC process. A strong pump beam decays inside
the nonlinear optical material into two beams usually labelled as signal â and
idler b̂, forming a finitely squeezed EPR-state.

on ultrafast type-I PDC to type-II PDC processes. We investigate the amount of generated EPR
squeezing in the high-gain regime, the corresponding ultrafast mode shapes and the implications
for experimental implementations.

10. PDC: Hamiltonian

The interaction Hamiltonian of the type-II PDC process—using electric field operators as
defined in (1) and the corresponding approximations—takes on the form

Ĥ (PDC)
I (t)= ε0

∫
dz χ (2)(z) E (+)

p (z, t)Ê
(−)

a (z, t)Ê
(−)

b (z, t)+ h.c. (29)

As in the FC process we assume a strong pump field exceeding the amplitudes of the signal
and idler fields by several orders of magnitude and hence treat it as a classical field propagating
undepleted through the medium (see (5)).

Using the free space propagation Hamiltonian from (3) and the interaction Hamiltonian
from (29) the process of type-II PDC is given by the overall Hamiltonian:

ĤPDC(t)= Ĥ (a)
0 (t)+ Ĥ (b)

0 (t)+ Ĥ (PDC)
I (t). (30)

While, at first glance, the process of type-II PDC seems very different from the process of
FC, comparing the interaction Hamiltonian of PDC in (29) and FC in (4) reveals that they both
feature bilinear Hamiltonians—the pump is treated as a classical field—with an almost identical
structure and hence share many mathematical properties.

It is therefore straightforward to extend our presented FC calculations to type-II PDC. In
order to avoid repetition we are going to only state the results and elaborate on the differences
and similarities to the process of FC. A detailed derivation is given in [44].

11. PDC: general properties

The general solution of (30) takes on the form of a linear operator transformation [40, 41]:

â(out)(ω)=

∫
dω′Ua(ω, ω

′) â(in)(ω′)+
∫

dω′Va(ω, ω
′) b̂(in)†(ω′),

(31)
b̂(out)(ω)=

∫
dω′Ub(ω, ω

′) b̂(in)(ω′)+
∫

dω′Vb(ω, ω
′) â(in)†(ω′).
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This solution is constrained by the fact that it has to form a canonical transformation
[25, 40, 41]. Under this restriction we are able to rewrite it as

Â
(out)

k = cosh(rk) Â
(in)

k + sinh(rk)B̂
(in)†
k ,

(32)
B̂(out)

k = cosh(rk)B̂
(in)
k + sinh(rk) Â

(in)†

k ,

where Âk and B̂k are defined as broadband single-photon destruction operators [42]:

Â
(out)

k =

∫
dω ϕk(ω) â(out)(ω), B̂(out)

k =

∫
dω ξk(ω) b̂(out)(ω),

(33)
Â
(in)

k =

∫
dωψk(ω) â(in)(ω), B̂(in)

k =

∫
dω φk(ω) b̂(in)(ω).

The details of this procedure are given in appendix B.
According to (32) the type-II PDC process generates a number of finitely squeezed EPR-

states [9] generated in ultrafast optical pulse modes Âk and B̂k . The crucial parameters of this
transformation are firstly the EPR amplitudes rk , which give both the amount of generated EPR
squeezing— EPR squeezing[dB] = −10 log10(e

−2rk )—and the number of emitted EPR states,
and secondly the mode shapes ϕk(ω), ξk(ω), ψk(ω) and φk(ω), which define the shape in which
the EPR-states are emitted.

12. PDC: analytical model excluding time-ordering effects

As in the FC case, presented in section 5, we first solve the process excluding time-ordering
effects10. Again we use the electric fields in the frequency domain (12) and move into the
interaction picture. Retracting the steps from section 5 we obtain

ÛPDC = exp

[
−

i

h̄

(∫
dωa

∫
dωb f (ωa, ωb)â

†(ωa)b̂
†(ωb)+ h.c.

)]
, (34)

where f (ωa, ωb) is defined as

f (ωa, ωb)= B α(ωa +ωb) sinc

(
1k(ωa, ωb)L

2

)
(35)

and1k(ωa, ωb)= kp(ωa +ωb)− ka(ωa)− kb(ωb). Again using the broadband mode formalism,
we are able to write Û PDC in the Heisenberg formalism. It takes on the form

Â
(out)

k = cosh(rk) Â
(in)

k + sinh(rk)B̂
†(in)
k ,

(36)
B̂(out)

k = cosh(rk)B̂
(in)
k + sinh(rk) Â

†(in)

k .

The details of this calculation are given in [10].
This result exhibits exactly the structure imposed by the canonical commutation relation

in (32), except for the fact that, as in the FC case, the input and output modes are of identical
shape.

In conclusion, the analytical model ignoring time-ordering effects enables a
straightforward solution of the type-II PDC process, which enables the efficient engineering
and design of type-II PDC processes as long as the applied approximations hold.

10 The physical meaning of the time-ordering operator in type-II PDC is discussed in the work of Brańczyk
[28, 43].
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13. PDC: rigorous theory including time-ordering effects

Having elaborated on solving type-II PDC neglecting time-ordering effects, we further built a
rigorous model of the process. For this purpose we adapt the approach presented in section 6.

Repeating exactly the same steps as in section 6, we obtain two operator-valued integro-
differential equations describing the type-II PDC process:

∂

∂z
ε̂a(z, ω)=

∫
dω′ f (ω, ω′, z) ε̂†

b(z, ω
′),

∂

∂z
ε̂b(z, ω)=

∫
dω′ f (ω′, ω, z) ε̂†

a(z, ω
′) (37)

with

f (ω, ω′, z)= −
i

h̄
DE (+)

p (z, ω +ω′) exp
[
i1k(ω, ω′)z

]
. (38)

Here we introduced the shorthand 1k(ω, ω′)= kp(ω +ω′)− ka(ω)− kb(ω
′). The structure of

this result is very similar to the equations derived by [25, 27, 47], which serves as a nice cross
check of our calculations. Also take note of the switch of ω and ω′ in f in the two equations
in (37).

13.1. Solving the differential equations

Since the structure of the two differential equations describing the type-II PDC process in (37)
is identical to those describing the FC process in (21) and (24), we apply the same solution
method as presented in section 6.1.

We obtain four classical integro-differential equations. Two for Ua(z, ω, ω′) and
Vb(z, ω, ω′):

∂

∂z
Ua(z, ω, ω

′′)=

∫
dω′ f (ω, ω′, z)V ∗

b (z, ω
′, ω′′),

(39)
∂

∂z
Vb(z, ω, ω

′′)=

∫
dω′ f (ω′, ω, z)U ∗

a (z, ω
′, ω′′).

And two for Ub(z, ω, ω′) and Va(z, ω, ω′):

∂

∂z
Ub(z, ω, ω

′′)=

∫
dω′ f (ω′, ω, z)V ∗

a (z, ω
′, ω′′),

(40)
∂

∂z
Va(z, ω, ω

′′)=

∫
dω′ f (ω, ω′, z)U ∗

b (z, ω
′, ω′′).

The initial conditions are

Ua(z, ω, ω
′′)= Ub(ω, ω

′′, z)= δ(ω−ω′′),
(41)

Va(z, ω, ω
′′)= Vb(ω, ω

′′, z)= 0.

These classical integro-differential equations are very similar to those derived by Brambilla
in [27]. As in the FC case, they can be solved via an iterative approach. Details of this calculation
and the numerical errors in the solution method are given in appendix F. The program code,
written in Python, is available, together with the FC code, on our website.
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Figure 4. Comparison between the rigorous and the analytical approach
in (almost) uncorrelated few-mode type-II PDC. For low down-conversion
rates, presented in (a) (〈n〉 = 0.07/0.07 in the analytical/rigorous model),
both approaches evaluate to identical results. Only in the case of rising EPR
squeezing values in (b) (〈n〉 = 2.80/4.08 in the analytical/rigorous model), with
EPR squeezing values about 12 dB, the two approaches start to show minor
differences, which become more prominent when even higher EPR squeezing
values are considered (c) (〈n〉 = 39.39/279.87 in the analytical/rigorous model).
(The process parameters are given in appendix E.)

14. PDC: comparison between simplified analytical and rigorous approaches

As in the FC case, presented in section 7, we consider an almost uncorrelated process pumped
by ultrafast pump lasers, to compare the different approaches presented in sections 12 and 13,
since this is the case where the differences are most prominent. The process properties are given
in appendix E, whereas the numerical implementation is detailed in appendix F.

This analysis yielded the individual mode functions and corresponding rk-values. While
the rk-parameters are, in principle, sufficient to describe the optical gain, we further
evaluated the corresponding EPR squeezing values—obtained via the relation squeezing[dB] =

−10 log10(e
−2rk )—together with mean photon numbers—〈n〉 =

∑
k sinh2(rk)—to ease the

comparison with experimental implementations. We depicted the obtained EPR squeezing
values together with the mode shapes in figure 4 for rising pump powers from (a) to (c).
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The corresponding mean photon numbers are stated in the corresponding figure caption. The
figures in the column on the left show the EPR squeezing and the corresponding mean photon
number of the complete state, whereas the two columns on the right present the corresponding
mode functions ϕ1(ν), ψ1(ν), φ(ν) and ξ1(ν) for the first optical mode, where ϕ1(ν) and ψ1(ν)

as well as φ1(ν) and ξ1(ν) are of identical shape. The ‘Analytical model’ labels the solution
excluding time-ordering effects as presented in section 12 and the ‘Rigorous model’ label marks
the rigorous solution from section 13.

Up to EPR squeezing values of 12 dB, corresponding to mean photon numbers of about
〈n〉 = 4, presented in figure 4(b), the two approaches give identical results, only when EPR
squeezing values beyond this bound are considered, significant differences between the two
models start to appear. The rigorous model predicts more EPR squeezing than the analytical
model and the time ordering leads to a broadening of the mode shapes in the high-gain regime.

15. PDC: implications for experimental implementations

In summary we expanded the work of Wasilewski and Lvovsky [25, 26] to type-II PDC. The
analytical model accurately describes type-II PDC in the low-gain regime up to EPR squeezing
values of 12 dB, where minor deviations start to appear. Only for extremely high EPR squeezing
values, in the range of 20 dB and higher, complicated non-trivial deviations from the analytical
model appear and give significant contributions that require a rigorous treatment of type-II
PDC. For most experimental setups and applications, it is hence perfectly justified to apply
the simplified analytical model to minimize the computational effort, as long as its limitations
are kept in mind.

To date, type-II PDC processes are mainly used for three purposes: the generation of EPR-
states [53, 54], entangled photon-pair generation [6–8] and the heralding of single photons
[2, 4, 55], especially pure single photons [3, 56, 57].

Considering experiments aiming to generate EPR-states in ultrafast optical modes
[53, 54], time-ordering effects have to be taken into account as soon as EPR squeezing values
exceeding 12 dB are considered. In contrast to FC processes, however, the time-ordering effects
are beneficial to the performance of the sources. They lead to much higher EPR squeezing
values as predicted by the simplified analytical model.

When the generation of entangled photon-pairs is considered, higher-order photon-pair
contributions are detrimental to the performance of the source; it is hence necessary to pump
these type-II PDC processes with the lowest pump power available. In this regime, time-ordering
effects can be neglected and the analytical model is fully sufficient to investigate the impacts of
higher-order photon-number effects on the quality of the generated entanglement.

In the case of heralding single photons from type-II PDC, the first theoretical descriptions
restricted themselves to a description of type-II PDC using first-order perturbation theory [24].
With the brightness of PDC sources steadily increasing attention has fallen on the effects of
higher-order photon numbers on the purity of the heralded states [58–60]. For the heralding of
single photons from PDC, however, it has been shown that the required mean photon numbers
for optimal rates and purity are about one 〈n〉 = 1 [61]. In this regime our simplified analytical
model, presented in section 12, is sufficient to appropriately model the process. This is very
beneficial for the engineering of advanced single-photon sources, since this enables quick and
straightforward analytical calculations, which greatly enhances the engineering process.
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16. Conclusion

In conclusion, we developed two models for the nonlinear optical processes of FC and
type-II PDC, taking into account higher-order photon-number effects. The presented rigorous
numerical model relies on the solution of coupled differential equations, whereas ignoring time-
ordering effects enabled us to construct an analytical solution.

Our analysis revealed that the presented analytical model gives accurate results for many
experimental configurations. In the case of FC processes below unit conversion efficiency,
the analytical model is sufficient. At unit conversion efficiency, however, the rigorous model
has to be applied, which predicts a significant decrease in the performance of quantum pulse
gate applications. Type-II PDC is accurately described by the analytical model up to EPR
squeezing values of 12 dB, which is sufficient to model type-II PDC in entangled photon-
pair generation and single-photon heralding experiments. Above the 12 dB bound, however,
the rigorous approach has to be applied, which predicts an enhanced EPR squeezing generation
rate.
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Appendix A. FC: canonical transformation conditions

The FC process in (8) is a unitary process. In the Heisenberg picture, we are able to write the
FC unitary Û FC as an operator transformation. For the operator transformation to represent a
unitary process, the transformation has to preserve the canonical commutation relations. This
imposes several restrictions on the structure of the solution. We evaluate these by extending the
calculations from [40, 41] to FC. At first we rewrite (8) in the more compact notation

â(out)
i = u(a)i j â(in)j + v(a)i j ĉ(in)j ,

ĉ(out)
i = u(c)i j ĉ(in)j − v

(c)
i j â(in)j , (A.1)

where i and j label the individual frequencies of the electric fields and summation over repeated
indices is understood. These two input–output relations must preserve[

âi , â†
j

]
=

[
ĉi , ĉ†

j

]
= δi j ,

(A.2)[
âi , ĉ†

j

]
= 0.

Using (A.1) and (A.2) we obtain three conditions for FC:

UaU †
a + VaV †

a = UcU
†
c + VcV †

c = I, (A.3)

UaV †
c − VaU †

c = 0. (A.4)
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Furthermore the commutation relations have to be preserved for the inverse transformation as
well:

â(in)i = u∗(a)
j i â(out)

j − v
∗(c)
j i ĉ(out),

j

ĉ(in)i = u∗(c)
j i ĉ(out)

j + v∗(a)
j i â(out)

j . (A.5)

With (A.5), the canonical commutation conditions in (A.2) yield the restrictions:

U †
a Ua + V †

c Vc = U †
c Uc + V †

a Va = I, (A.6)

U †
a Va − V †

c Uc = 0. (A.7)

Equations (A.3), (A.4), (A.6) and (A.7) impose several constraints on the solution. However,
they are rather unintuitive representations of the symmetries governing the FC process, yet with
the help of the Bloch–Messiah reduction [41] it is possible to unravel their underlying structure.
As a first step, we decompose the four matrices Ua, Va,Uc, Vc as

Ua = Au
a Du

a Bu†
a , Va = Ava Dv

a Bv†
a ,

Uc = Au
c Du

c Bu†
c , Vc = Avc Dv

c Bv†
c , (A.8)

where A and B are unitary matrices and D is a diagonal matrix with real entries. This definition
is equivalent to a SVD except for the fact that we allow the individual elements in D to exhibit
negative values11.

The matrices UaU †
a and VaV †

a are Hermitian and (A.3), implies that they commute; hence
both are diagonalized by the same unitary matrix P:

P UaU †
a P†

= D, P VaV †
a P†

= D′. (A.9)

With the help of the decomposition in (A.8) they can be written as

P Au
a Du2

a Au†

a P†
= D, P Ava Dv2

a Av
†

a P†
= D′. (A.10)

And we obtain Au
a = Ava. From (A.3) using UcU †

c and VcV †
c we infer in a similar manner

Au
c = Avc . Evaluating the conditions for the inverse transformation using (A.6) yields Bu

a = Bv
c

and Bu
c = Bv

a . Consequently the decomposition in (A.8) can be written as

Ua = Aa Du
a B†

a , Uc = Ac Du
c B†

c ,

Va = Aa Dv
a B†

c , Vc = Ac Dv
c B†

a . (A.11)

Using the matrices in (A.11) in conjunction with the conditions in (A.3) we further obtain

Du2

a + Dv2

a = I, Du2

c + Dv2

c = I. (A.12)

This implies that the individual elements of the D matrices have to obey cos (rk) and sin (rk)

behaviour. Applying the conditions in (A.6) to the transformation matrices in (A.11) results in

Du2

a + Dv2

c = I, Du2

c + Dv2

a = I, (A.13)

from which we conclude that Du2

a = Du2

c = Du2
and Dv2

a = Dv2

c = Dv2
. Taking everything into

account, the final decomposed FC matrices read

Ua = Aa Du B†
a , Uc = Ac Du B†

c ,

Va = Aa DvB†
c , Vc = Ac DvB†

a , (A.14)

Du2
+ Dv2

= I.
11 The reason for this extension of the SVD becomes clear in (A.16).
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In the original representation, we consequently require

Ua(ω, ω
′)=

∑
k

ϕ∗

k (ω) cos(rk)ψk(ω
′),

Va(ω, ω
′)=

∑
k

ϕ∗

k (ω) sin(rk)φk(ω
′),

(A.15)
Uc(ω, ω

′)=

∑
k

ξ ∗

k (ω) cos(rk)φk(ω
′),

Vc(ω, ω
′)=

∑
k

ξ ∗

k (ω) sin(rk)ψk(ω
′).

From these symmetry relations the FC process in (8) must, in the Heisenberg picture, form a
multitude of beam-splitter relations in orthogonal optical modes:

Â
(out)

k = cos(rk) Â
(in)

k + sin(rk)Ĉ
(in)

k ,
(A.16)

Ĉ
(out)

k = cos(rk)Ĉ
(in)

k − sin(rk) Â
(in)

k ,

where we defined

Â
(out)

k =

∫
dω ϕk(ω)â

(out)(ω), Ĉ
(out)

k =

∫
dω ξk(ω)ĉ

(out)(ω),

(A.17)
Â
(in)

k =

∫
dωψk(ω)â

(in)(ω), Ĉ
(in)

k =

∫
dω φk(ω)ĉ

(in)(ω).

Note however that the canonical commutation relations do not demand that the input and output

modes are of identical shape. In principle the input modes Â
(in)

and output modes Â
(out)

could
feature completely different spectral mode functions ϕk(ω) and ψk(ω) but still form a canonical
and hence unitary solution.

Appendix B. PDC: canonical transformation conditions

As in the case of FC, the type-II PDC process is described by a unitary transformation; hence
it must preserve the canonical commutation relations. Retracting the calculation in appendix A
and adapting the work from [40, 41] to type-II PDC, they read

UaU †
a − VaV †

a = UbU †
b − VbV †

b = I, (B.1)

UaV T
b − VaU T

b = 0. (B.2)

For the inverse transformation they evaluate to

U †
a Ua − (V †

b Vb)
T

= U †
b Ub − (V †

a Va)
T

= I, (B.3)

U †
a Va − (U †

b Vb)
T

= 0. (B.4)
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With the help of the SVD theorem and (B.1), (B.2) and (B.4) the four matrices of a general
type-II PDC process in (31) are restricted to the form

Ua(ω, ω
′)=

∑
k

ϕ∗

k (ω) cosh(rk)ψk(ω
′),

Va(ω, ω
′)=

∑
k

ϕ∗

k (ω) sinh(rk)φ
∗

k (ω
′),

(B.5)
Ub(ω, ω

′)=

∑
k

ξ ∗

k (ω) cosh(rk)φk(ω
′),

Vb(ω, ω
′)=

∑
k

ξ ∗

k (ω) sinh(rk)ψ
∗

k (ω
′).

From these symmetry relations, the type-II PDC process (31) consists of multiple twin-beam
squeezers in orthogonal optical modes12:

Â
(out)

k = cosh(rk) Â
(in)

k + sinh(rk)B̂
(in)†
k ,

(B.6)
B̂(out)

k = cosh(rk)B̂
(in)
k + sinh(rk) Â

(in)†

k ,

where we defined

Â
(out)

k =

∫
dω ϕk(ω)â

(out)(ω), B̂(out)
k =

∫
dω ξk(ω)b̂

(out)(ω),

(B.7)
Â
(in)

k =

∫
dωψk(ω)â

(in)(ω), B̂(in)
k =

∫
dω φk(ω)b̂

(in)(ω).

Note however that, as in the FC case, the canonical commutation relations do not demand that
the input and output modes are of identical shape.

Appendix C. FC: simulated FC processes

In our simulation of FC, we did not restrict ourselves to a specific crystal material or wavelength
range, but created a generic model of the process. For this purpose we first moved from the
(ω, ω′)-system to the parameter range (ν, ν ′) relative to the central frequencies of the FC process
(ω0, ω

′

0). In the simulation we work with a Gaussian pump distribution, as created by pulsed
laser systems. The pump distribution in (14) and (21) takes on the form

α(ν− ν ′)= Ep exp

[
−
(ν− ν ′)2

2σ 2

]
, (C.1)

where Ep labels the pump amplitude and σ the pump width. The second function we have to
adapt is the phase-matching function 1k(ω, ω′)= kp(ω

′
−ω)− kc(ω

′)+ ka(ω). As a first step,
we perform a Taylor expansion of the individual k(ω) terms up to first order about their central
frequency ω0:

k(ω)≈ k(ω0)+
d

dω
k(ω0) (ω−ω0)︸ ︷︷ ︸

ν

. (C.2)

12 In principle, the twin-beam squeezer has a phase degree of freedom [9], which we absorb in the definition of the
electric field operators Âk and B̂k .
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This is justified since we restrict ourselves to nonlinear processes not too broad in frequency
(slowly varying envelope approximation 1ω� ω0) far from any singularities in the dispersion
relation. At the central frequencies the process, per definition, displays perfect phase-matching
kp(ω

′

0 −ω0)− kc(ω
′

0)+ ka(ω0)= 0 and the phase-matching function simplifies to

1k(ν, ν ′)=
d

dω
kp(ω

′

0 −ω0)(ν
′
− ν)−

d

dω
kc(ω

′

0) ν
′ +

d

dω
ka(ω0) ν. (C.3)

The three remaining parameters d
dωkp(ω

′

0 −ω0), d
dωkc(ω

′

0) and d
dωka(ω0)—the inverse group

velocities of the three interacting beams—define the material properties of the system and can
be adjusted accordingly.

This compact notation enables us to simulate any FC process with the help of just six
parameters. The width and amplitude of the pump beam, the group velocities of the three
interacting waves and the length of the nonlinear medium.

In order to evaluate (almost) uncorrelated FC with few optical modes rk , as depicted in
figure 2, we applied σ = 0.98190, d

dωkp(ω
′

0 −ω0)= 3.0, d
dωkc(ω

′

0)= 1.5, d
dωka(ω0)= 4.5 and a

crystal of length L = 2. The pump amplitude Ep is adjusted to give the desired conversion rates.

Appendix D. FC: numerical implementation

In order to obtain the time-ordered solutions, we solved the classical differential equations
in (25) and (26) which give the functions Ua(z, ω, ω′′), Uc(z, ω, ω′′), Va(z, ω, ω′′) and
Vc(z, ω, ω′′) describing the FC process.

In the numerical implementation of FC we used a sampling of 500 points for each
frequency degree of freedom and 500 points in the z-direction to discretize the functions
Ua(z, ω, ω′′), Uc(z, ω, ω′′), Va(z, ω, ω′′), Vc(z, ω, ω′′) and f (ω, ω′, z). We evaluated the
successive integrations in (27) via the trapezoid rule until the solutions converged. The actual
solution defining the overall process properties is given by the matrices at the end of the crystal
Ua(z =

L
2 , ω, ω

′′), Uc(z =
L
2 , ω, ω

′′), Va(z =
L
2 , ω, ω

′′) and Vc(z =
L
2 , ω, ω

′′).
We checked the accuracy of the result in a variety of ways. At first we evaluated the

canonical transformation conditions in (A.3), (A.4), (A.6) and (A.7). For example in the case
of (A.4) we calculated∫

dω′Ua

(
z =

L

2
, ω, ω′

)
Vc

(
z =

L

2
, ω′′, ω′

)∗

−

∫
dω′Va

(
z =

L

2
, ω, ω′

)
Uc

(
z =

L

2
, ω′′, ω′

)∗

= D(diff)

(
z =

L

2
, ω, ω′

)
(D.1)

and determined the distance of D(diff)(z =
L
2 , ω, ω

′) from the expected zero matrix and
consequently the error in the solution via

error =

∫
dω

∫
dω′D(diff)(z =

L
2 , ω, ω

′)

0.5
[∫

dω
∫

dω′|Va(z =
L
2 , ω, ω

′)| +
∫

dω
∫

dω′|Uc(z =
L
2 , ω, ω

′)|
] . (D.2)

In all presented cases the obtained error was below 0.000 27.
We also checked the numerical Schmidt decompositions of Ua(z =

L
2 , ω, ω

′′),
Uc(z =

L
2 , ω, ω

′′), Va(z =
L
2 , ω, ω

′′) and Vc(z =
L
2 , ω, ω

′′) to verify the mode properties
derived in appendix A. During this process the decompositions of Ua(z =

L
2 , ω, ω

′′)
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and Uc(z =
L
2 , ω, ω

′′) showed numerical issues, these however could be resolved by
decomposing Ua(z =

L
2 , ω, ω

′′)U †
a (z =

L
2 , ω, ω

′′), U †
a (z =

L
2 , ω, ω

′′)Ua(z =
L
2 , ω, ω

′′), Uc(z =
L
2 , ω, ω

′′)U †
c (z =

L
2 , ω, ω

′′) and U †
c (z =

L
2 , ω, ω

′′)Uc(z =
L
2 , ω, ω

′′) instead. The obtained
modes from these four matrices provided much improved stability especially in the high-gain
regime. Using these Schmidt modes, we verified that the obtained Schmidt values of the U and
V matrices behaved like cos(rk)

2 + sin(rk)
2
= 1 with errors below 0.0001. We also asserted that

the decompositions yielded the functions ϕk, ψk, φk, ξk with symmetries as detailed in (A.15),
which were fulfilled within numerical accuracy.

The program code, written in Python, published on our website, is able to directly create the
investigated FC processes and also performs all mentioned tests. It further enables the simulation
of actual FC processes. In this case the unit for the length of the crystal has to match with the
inverse group velocities and the unit for the width of the pump beam with the applied units for
ν and ν ′.

Appendix E. PDC: simulated PDC processes

As in the simulation of FC processes in appendix C, we did not restrict ourselves to a specific
crystal material and wavelength range but created a generic model of the process. Again we first
move from the (ω, ω′)-system to the parameter range (ν, ν ′) relative to the central frequencies
of the type-II PDC process (ω0, ω

′

0). As in the FC case, we used a Gaussian pump distribution
for the simulation, which in (35) and (38) is given by

α(ν + ν ′)= Ep exp

[
−
(ν + ν ′)2

2σ 2

]
, (E.1)

where Ep labels the pump amplitude and σ the pump width. The second function we have to
adapt is the phase-matching function 1k(ω, ω′)= kp(ω +ω′)− ka(ω)− kb(ω

′). As a first step
we perform a Taylor expansion of the individual k(ω) terms up to first order about their central
frequency ω0:

k(ω)≈ k(ω0)+
d

dω
k(ω0) (ω−ω0)︸ ︷︷ ︸

ν

. (E.2)

This is justified since we restrict ourselves to nonlinear processes not too broad in frequency
(slowly varying envelope approximation1ω� ω0) far from any singularities in the dispersion.
At the central frequencies the process, per definition, displays perfect phase-matching kp(ω

′

0 +
ω0)− ka(ω0)− kb(ω

′

0)= 0 and the phase-matching function simplifies to

1k(ν, ν ′)=
d

dω
kp(ω

′

0 +ω0)(ν
′ + ν)−

d

dω
ka(ω0) ν−

d

dω
kb(ω

′

0) ν
′. (E.3)

The three remaining parameters d
dωkp(ω

′

0 +ω0), d
dωka(ω0) and d

dωkb(ω
′

0)—the inverse group
velocities of the three interacting beams—define the material properties of the system and can
be adjusted accordingly.

This compact notation enables us to simulate any type-II PDC process with the help of just
six parameters: the width and amplitude of the pump beam, the group velocities of the three
interacting waves and the length of the nonlinear medium.

In order to evaluate an (almost) uncorrelated type-II PDC case, with few optical modes rk ,
quite similar to the source discussed in [53], as depicted in figure 4, we applied σ = 0.96231155,
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d
dωkp(ω0 +ω′

0)= 3.0, d
dωka(ω0)= 4.5, d

dωkb(ω
′

0)= 1.5 and a crystal of length L = 2. The pump
amplitude Ep is adjusted to give the desired EPR squeezing values.

Appendix F. PDC: numerical implementation

In order to obtain the time-ordered solutions, we solved the classical differential equations
in (39) and (40), which give the functions Ua(z, ω, ω′′), Ub(z, ω, ω′′), Va(z, ω, ω′′) and
Vb(z, ω, ω′′) describing the type-II PDC process.

In the numerical implementation of type-II PDC, we used a sampling of 500 points for
each frequency degree of freedom and 500 points in the z-direction to discretize the functions
Ua(z, ω, ω′′), Ub(z, ω, ω′′), Va(z, ω, ω′′), Vb(z, ω, ω′′) and f (ω, ω′, z). As in the FC case, we
evaluated the successive integrations via the trapezoid rule until the solutions converged. The
actual solution defining the overall process properties is given by the matrices at the end of the
crystal Ua(z =

L
2 , ω, ω

′′), Ub(z =
L
2 , ω, ω

′′) Va(z =
L
2 , ω, ω

′′) and Vb(z =
L
2 , ω, ω

′′).
We checked the accuracy of the result in a variety of ways. At first we evaluated the

canonical transformation conditions in (B.1)–(B.4). For example, in the case of (B.2) we
evaluated∫

dω′Ua

(
z =

L

2
, ω, ω′

)
Vb

(
z =

L

2
, ω′′, ω′

)
−

∫
dω′Va

(
z =

L

2
, ω, ω′

)
Ub

(
z =

L

2
, ω′′, ω′

)

= D(diff)

(
z =

L

2
, ω, ω′

)
(F.1)

and determined the distance of D(diff)(z =
L
2 , ω, ω

′) from the expected zero matrix and
consequently the error in the solution via

error =

∫
dω

∫
dω′D(diff)(z =

L
2 , ω, ω

′)

0.5
[∫

dω
∫

dω′|Va(z =
L
2 , ω, ω

′)| +
∫

dω
∫

dω′|Ub(z =
L
2 , ω, ω

′)|
] . (F.2)

In all presented cases the obtained error was below 0.000 014.
We also checked the numerical Schmidt decompositions of Ua(z, ω, ω′′), Ub(z, ω, ω′′),

Va(z, ω, ω′′) and Vb(z, ω, ω′′) to verify the mode properties derived in appendix B.
During this process the decompositions of Ua(z, ω, ω′′) and Ub(z, ω, ω′′) showed numerical
issues, these however could be resolved by decomposing Ua(z, ω, ω′′)U †

a (z, ω, ω
′′),

U †
a (z, ω, ω

′′)Ua(z, ω, ω′′), Ub(z, ω, ω′′)U †
b (z, ω, ω

′′) and U †
b (z, ω, ω

′′)Ub(z, ω, ω′′) instead.
The obtained modes from these four matrices provided much improved stability especially in
the high-gain regime. Using these Schmidt modes, we verified that the obtained Schmidt values
of the U and V matrices behaved like cosh(rk)

2
− sinh(rk)

2
= 1 with errors below 0.0002. We

also asserted that the decompositions yielded the functions ϕk, ψk, φk, ξk with symmetries as
detailed in (B.5), which were fulfilled within numerical accuracy.

The program code, written in Python, published on our website, is able to directly create
the investigated type-II PDC processes and also performs all mentioned tests. It further enables
the simulation of actual type-II down-conversion processes. In this case, the unit for the length
of the crystal has to match with the inverse group velocities and the unit for the width of the
pump beam with the applied units for ν and ν ′.
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