
Real-Time Android: Deterministic Ease of Use

Wolfgang Mauerer,1, ∗ Gernot Hillier,1 Jan Sawallisch,1 Stefan Hönick,2 and Simon Oberthür2

1Siemens AG, Siemens Corporate Research and Technologies, Otto-Hahn-Ring 6, 81739 Munich, Germany
2Heinz Nixdorf Institute, University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

The rapid ascent of Android to one of the most influential platforms for mobile devices and tablets
shows that the platform meets the preferences of end-users and developers with consistent usability
and a convenient development environment targeted at the needs of the many instead of a specialised
few. Being based on the Linux kernel, it inherits the rich and mature feature set which made Linux
the number one embedded operating system in just a few years.

The Android stack, however, only uses and provides a small subset of those features. Real-time
capabilities, which enabled Linux for a much broader embedded audience, were not considered in
the Android design. By introducing a real-time capable Android appliance, we add a crucial Linux
building block combining the benefits of both realms.

Besides presenting the software architecture, we discuss our efforts in augmenting the Android
stack with RT capabilites in a minimally invasive way, provide effort measurements, and present a
performance evaluation based on a prototype implemented using a Motorola Xoom tablet featuring
our architecture extensions.

I. INTRODUCTION

In stark contrast to the user-centric and -friendly world
of Android that also spreads into the application devel-
oper realm, solid real-time (RT) capabilites are the al-
most exclusive concern of Linux in the industrial em-
bedded domain. Frugality dominates the many solutions
that bear no resemblance to the colourful Android uni-
verse. This is a significant drawback when devices require
user interaction. While the learning curve for an Android
phone is deemed minimal even for technically unenthusi-
astic users, comparatively simple tasks (like Stroustrup’s
infamous use of his own telephone) can become daunting
with ill-designed human-machine interfaces [14]. Anal-
ogously, programmers versed in desktop application de-
velopment face considerable obstacles when turning their
attention to embedded Linux work.

The combined real-time Android system is supposed
to provide remedies for both, users and programmers of
embedded real-time systems. Besides, our work also has
applications in machine consolidation: Steadily increas-
ing computational power available in embedded systems,
fuelled by a trend towards multi- and many-core systems,
make it likely that the traditionally independent tasks of
RT control and human-machine interface (HMI) provi-
sion will be served by a single hardware instance. This ne-
cessitates appropriate basis software architectures, which
we present in this paper.

Additionally, we report on practical experiments with
an prototypal implementation of our architecture on a
Motorola Xoom tablet with Android 3.1. Equipped with
an Nvidia Tegra 2 T20 (dual core ARM Cortex-A9), a
ULP GeForce GPU, 1 GiB of main memory and 32 GiB
of eMMC NAND flash memory, it ranges among the most
powerful embedded ARM platforms available in the first
generation of Android tablets.

∗ wolfgang.mauerer@siemens.com

II. ARCHITECTURE

A. Kernel

RT support by the operating system kernel is obviously
a mandatory requirement for RT architectures. With An-
droid being irrevocably tied to the Linux kernel, this sug-
gests using one of the stock real-time solutions for Linux
kernels. A cornucopia of approaches was introduced over
time (e.g., RTAI [18], RTLinux [19], Xenomai [21], pre-
empt rt [4]). We have given focus to preempt rt, mostly
because the code is predicted to appear fully integrated
into mainline Linux sometime in the near future.

It is important to emphasise that preempt rt is not
a RT kernel in the classical academic sense; owing to
the complexity of the Linux kernel, it is impossible to
prove upper bounds on all operations under all possible
circumstances. However, statistical verification and test
mechanisms have been established [6] that allow to de-
termine upper latency bounds. The approach has gained
considerable acceptance in industry.

B. Userland

The Android userland is heavily based on the Dalvik
virtual machine (DVM), which is essentially a Java vir-
tual machine founded on a register- instead of a stack-
based architecture [2]. Two possible approaches to aug-
ment the system with RT capabilities are therefore [12]:

o Replace the Dalvik VM with a classical, RT ca-
pable JVM (see Ref. [16]), and adapt the Android
userland where necessary.

o Augment the DVM with real-time capabilities,
leveraging techniques and design patterns from ex-
isting RT-JVM implementations.

2

Following a code analysis, we estimated that the effort
for any of these approaches exceeds not only our con-
strained developer resources, but would also in general
provide an insufficient return on investment. Instead, we
decided to largely separate the Java and RT components,
as the architecture diagram in Figure 1 summarises.

Application Framework

Libs
Android Runtime

Applications

Linux Real-Time

Core Libs

Dalvik VM

Real-Time
Applications

Communication
Channel

FIG. 1. Architecture diagram of our real-time Android im-
plementation.

The architecture mandates that RT components are
written in C (or any other low-level language that can
target the machine directly without intermediate transla-
tion by a non-RT VM). We have used transactional tech-
niques [1, 7] to allow for data exchange between the ap-
plication domain (based on Java and the Android APIs)
and the real-time domain.

C. Data exchange

When setting up a data exchange path between real-
time and non real-time tasks, special care needs to be
taken to not introduce unbounded delays in the RT do-
main. One of the simplest ways to communicate between
two processes is to set up a dedicated region of shared
memory that is available to both partners, and to use
mutual exclusion to avoid data corruption. This sce-
nario, however, can easily leads to unbounded latencies:
By locking the shared region in the non-RT task, the RT
task be be delayed indefinitely when the lock needs to
be acquired there1. We therefore employ a synchronisa-
tion algorithm that is similar to Linux sequence locks (se-
qlocks) combined with a publish-subscribe pattern. This

1 This can even lead to priority inversion when the non real-time
task is itself blocked by a third task with a priority in-between
both communication partners. Effectively, the mid-prio task now
blocks the high-prio (RT) task. There are solutions for such
situations—however, avoiding them in the first place is always
desirable.

allows for lock-free communication in both directions and
is always wait-free for the real-time part. Data is stored
in a special shared memory region which is locked into
physical RAM.

When the real-time process wants to modify the shared
data, it increments an atomic counter before and after
the write access – odd counter values therefore signal an
on-going write operation. The reader retries any inter-
leaved read operations until an identical counter value is
observed before and after the read access (when an odd
value is observed before the read, a wait cycle can be in-
serted since it is clear that the data are currently being
modified). In the opposite direction, when the non-RT
part acts as producer, it creates a modified copy of the
data in a second buffer. Finally, it checks whether the
copy source is still consistent and unchanged, and atom-
ically switches between the buffers.

This ensures that the HMI layer can issue directives to
the control part (e.g., to adapt algorithmic parameters),
while the RT layer can pass data (e.g., information about
noteworthy events) to the HMI part.

III. IMPLEMENTATION AND EVALUATION

A. Basis Component Integration

While the vanilla kernel neither fully supports real-
time aspects nor all the Android extensions, the corre-
sponding patch stacks are provided as source additions
(respectively as git repositories [3]) to selected versions
of the Linux kernel

Unfortunately, preempt rt is only available for a lim-
ited number of base kernels, see Table I. Patches
required for the Xoom board (and supplied by Mo-
torola/Google [13] in their board support package (BSP)
are based on Linux 2.6.36 [20], with no ports for other
kernel releases.2 The Android patch stack is available for
nearly every recent kernel release.

2 Notice that the generic Nvidia Tegra platform infrastructure is
integrated into the mainline Linux kernel, and is at the time of
writing being actively developed by Google [9]. However, sup-
port for the Xoom board (on top of the platform code) is not
mainlined.

3

Component Version Release Date
Linux Kernel 2.6.33 24. Feb. 2010

2.6.36 20. Oct. 2010
2.6.39 19. May 2011
3.0 22. Jul. 2011

preempt rt 2.6.33
patch stack 3.0

3.2,4

Android 2.6.25,27,29,32 Immediately
patch stack 2.6.35–39 after kernel

3.0 releases
3.3,4

Xoom BSP 2.6.36

TABLE I. Versions and release dates of relevant basis compo-
nents.

The components that are most difficult to port across
kernel versions are the BSP and preempt rt. This, essen-
tially, suggests two integration strategies:3

o Based on the preempt rt release 2.6.33, back-port
the BSP from 36 to 33, and forward-port the An-
droid patch set from 32 to 33.

o Based on the preempt rt release 3.0, forward-port
the BSP from 2.6.36 to 3.0, and integrate the An-
droid patches into the result.

Code analysis and experiments revealed that the latter
option can be realised with less effort than the first al-
ternative. This is especially because during the 8 months
long development cycle between 2.6.33 and 2.6.36, much
crucial infrastructure for the Tegra platform was merged
into the mainline kernel and would need to be back-
ported. The overall substantial amount of changes con-
tinuously faced by the Linux kernel [11] forms another
strong argument against a back-port of large bodies of
code across multiple kernel releases.

A graphical outline of our integration strategy is shown
in Figure 2. Combining the preempt rt and Android
patches turned out to be uninvolved; the stacks are
mostly orthogonal. Section III G provides quantitative
details on the porting efforts.

B. Shared-memory

Android doesn’t use classical POSIX shared memory,
but provides ashmem, the Android “Anonymous Shared

3 Another alternative is to start with the BSP kernel 2.6.36, and
forward-port preempt rt from 33 to 36. Unfortunately, the pre-
empt rt extensions do not just modify crucial core components
of the kernel, but are also only available as one large patch file for
2.6.33, which means that the required effort would by far exceed
the other variants.

F
or

w
ar

d

B
S

P

A
nd

ro
id

P
re

em
pt

 R
T

V
a

ni
lla

V
an

ill
a

V
a

n
ill

a

FIG. 2. Source code integration strategy for kernel compo-
nents required to support the preempt rt extensions and the
Android userland.

Memory Subsystem”. Ashmem is specifically designed to
allow shrinking when the system is in a low-memory sit-
uation. For real-time operation, however, locking shared
pages in physical memory is desirable, which is not sup-
ported by Ashmem.

Therefore, we introduced a custom shared memory
provider for Android.

ShmemClient1.cc

Binder

ShmemServer.cc

data data

active

mmap()
OS

getShmem();
getBase();

ShmemClient2.java

getByteBuffer();
getSeqCount();

sequence count

FIG. 3. The shared-memory server ShmemServer allocates
a shared region. Native as well as Java processes can get a
reference to the region via Binder remote method invocation
and afterwards access it directly for data exchange.

A system service creates the shared memory region via
the mmap() system call and registers itself at Binder,

4

the Android inter process communication central. All
programs which want to use the shared memory region
need to obtain a reference via Binder calls. Native clients
receive a pointer they can use directly, while a JNI library
provides access methods for Android apps that make data
and the sequence counter available as Java data types
(ByteBuffer and int).

C. Demonstration

A simple setup to ensure that responses to external
stimuli can indeed be satisfied under hard temporal con-
straints is given in Figure 4. Although the Tegra platform
offers real-time capable GPIO pins in abundance, they
are unfortunately physically inaccessible on the Xoom
board. The “official” communication interface is based
on USB, which is an inherently problematic protocol in
real-time contexts.

To circumvent the problem, we abuse two GPIO pins
integrated into the HDMI video cable: One is supplied
with periodic signals from a signal generator. Upon sig-
nal reception, the system is notified via interrupt. The
threaded interrupt handler (subjected to regular kernel
scheduling, but running at real-time priority) sets up a
timer, which upon expiration emits a signal via the sec-
ond GPIO pin. This pin, in turn, is connected to an
oscilloscope. Given stimulus frequency and timer dura-
tion, it is therefore possible to determine system latencies
with an external measurement.

The demonstration exposes two main requirements of
a real-time Android platform: Appropriate hardware
to implement the HMI concept (especially accelerated
graphics chips and a multi-touch capable display), and
a sufficient amount of real-time capable input/output
ports, for instance, serial lines or GPIO ports.

Unfortunately, no commercially available platform
known to us satisfies all requirements,4 so an appropri-
ate co-design of hardware and software is required from
the very onset of a real-time Android implementation
project.

D. Challenges

The major aim of our work was directed at merging RT
Linux techniques and the Android HMI capabilities. Un-
fortunately, evaluating Android development platforms
as provided by several major ARM manufacturers ex-
posed numerous hardware deficiencies regarding the pre-
requisites for a proper Android user experience, espe-
cially a suitable form factor and state-of-the-art touch

4 Some system vendors offer evaluation platforms that formally
satisfy both, but they typically require considerable polishing to
reach commercial grade hardware usability.

screen capabilities. Consequently, we focused on Android
consumer tablets as development platform. Owing to
GPL [10] provisions, the kernel trees need to be made
available in source form, including necessary hardware
drivers.

Under the assumption of stable hardware support and
minimal driver porting efforts, we planned most person-
power on integrating the Android mechanisms with RT
features. Contrariwise, it turned out that Android and
preempt rt integrated cleanly, while forward ports of the
BSP patch sets exceeded the estimations by orders of
magnitude. One of the prevalent issues was to isolate
BSP patches from (often sub-optimally tended) manu-
facturer kernel trees.5

For the eventually selected Xoom platform, porting the
BSP required less, but still substantial involvement—the
numbers discussed in Section III G clearly indicate that
the manual effort for this task considerably outweighs the
RT-Android integration work.

It is worth emphasising that the ease of porting de-
pends not only on the kernel, but on the availability of
the source code for the complete platform: The Android
userland is largely governed by BSD-like licenses, which
implies that Google is not bound to release them to the
general public [10]. While the latest version of the An-
droid platform is conveniently available in source form
(even including proper revision control history) at the
time of writing, the situation was different when this work
was performed: Only binary images of Android 3.1 were
available. As an illustrative example, ioctl ABI changes
in the graphics subsystem forced us to provide compati-
bility code so that the userland was also operational on
kernel 3.0. With the source code available, the issue could
have been solved by a simple recompilation.

E. Architectural Flexibility

Interestingly, we did not observe any potential issues
with the Android stack that would put any particu-
lar real-time implementation for Linux into advantage.
Ipipe/Xenomai [21], or also more focused implementa-
tions as presented in Ref. [5] would serve as equally apt
basis technologies. While details of the transactional
data exchange between RT and non-RT parts of the sys-
tem would likely require some adaption, the core concept
can remain identical.

5 As a specific example, take Samsung’s BSP for the Galaxy Tab
using Linux 2.6.32.9: The revision seems tantalisingly close to
kernel 2.6.33 supported by the preempt rt patch set. We learned,
though, that the BSP was based on an internal Samsung ker-
nel tree intermingling crucial device and board support patches
with hundreds of unrelated modifications from different source
trees. It also contained a considerably modified USB core based
on Linux 2.6.29. Irregardless of any other tasks, extracting all
mandatory patches from this kernel tree already exceeded the
predicted cumulative porting efforts.

5

Output Signal

HDMI-Output-Pin:
„5V enable“

HDMI-Input-Pin:
„hot plug detect“

Input Signal

Interrupt Latency

Signal Generator Oscilloscope

Timer Latency

Android Device
„Motorola Xoom“

HDMI cable

FIG. 4. Experimental setup to demonstrate time-constrained reactions of the real-time Android prototype to an external
stimulus. See the text for details.

F. Latency Measurements

To ensure that no code paths leading to unacceptable
latencies remain in our architecture, we have performed
the usual measurements based on synthetic tests (see,
e.g., Ref. [6]). To obtain more comprehensive informa-
tion about how the overall observed latency is composed
of contributions by individual kernel actions, additional
instrumentation based on the Ftrace framework [17] was
used in the data collection phase. The results of a typical
measurement run are visualised in Figure 5.6

The measurement is based on a userland application
with RT priority that registers timers on a temporally
equidistant grid. The difference between the moment
when the timer is supposed to expire and the moment
when the test program reacts to the expiration is ob-
served as latency, which has to be bounded to fulfil the
RT premise. Several contributions (illustrated in Fig. 5)
sum up to the total latency :

o The Expiration delay measures the difference be-
tween the moments when the hardware timer was
scheduled to expire, and when it actually expired.

o The duration between timer expiration and the
start of high resolution timer (HRT) processing7

is denoted as HRT handler delay.

6 Owing to the unavailability of means to automatically stimulate
hardware touch-screen events, the length of the measurement
interval used to obtain the data is not yet fully satisfactory.

7 High resolution timers are the backbone of preempt rt time hand-
ling; they improve upon classical Linux timers whose resolution
is insufficient for RT requirements.

o The time required to process the HRT handler is
the HRT duration

o After HRT handler processing, control needs to be
passed to the userland RT application. Schedule
in accounts for the duration between the in-kernel
decision to request control for the task, and the
actual invocation.

o To measure the difference between expected timer
expiration and current time, the application needs
to use the getclock mechanism to learn the current
time. The overhead of this operation is labelled as
Getclock.

The bottom portion of Fig. 5 shows a boxplot (i.e., a
non-parametric statistical summary, see, e.g., [15]) of the
latency distribution for each contribution; the individual
events are represented by jittered dots. By connecting
the contributions of the 10 largest total latencies, we see
that they are consistently composed of outliers in each
category, which allows us for inferring that the upper
bounds are solely caused by general system effects, not
by any asynchronous events that would necessitate code
modification.

Before the described state was reached, some kernel
optimisations were required; the most notable modifica-
tions are needed for the display subsystem which, in its
original form, relies heavily on flushing all system caches,
causing unacceptable latencies of tens of milliseconds.

G. Efforts

To provide an indication on how much effort is re-
quired to construct a basis kernel for a real-time capa-

6

Getclock results
available

Handler
scheduled in

HRT
finished

HRT
processing

Tim
er

fires

Tim
er

expected

3µs 5µs 7µs 30µs 20µs

t

FIG. 5. Component-resolved latency measurements (top: il-
lustration, bottom: results). Parallel to executing the syn-
thetic benchmark, the system was subjected to substantial
non-realtime load. See the text for a detailed discussion.

ble Android system, Figure 6 shows how many patches
(classified by component) were required on top of vanilla
Linux 3.0. While the individual patches exhibit consider-
able variation in size and complexity, there is no bunching
of higher or lower complexity in any particular compo-
nent. Taken cum grano salis, the numbers offer reason-
ably accurate guidance.

[1] J. Anderson, S. Ramamurthy and K. Jeffay, Real-Time
Computing with Lock-Free Shared Objects, ACM Trans-
actions on Computer Systems, 1997

[2] D. Bernstein, Dalvik VM Internals, Google I/O Confer-
ence, 2008

[3] S. Chacon: Pro Git, Apress, 2009
[4] H. Egger, C. Emde und Th. Gleixner, Linux: Embedded

für alle, Elektronik Embedded 11/2011
[5] R. Graf, Transparent Hard Real Time Behavior, a new

Linux-Based Approach, Proc. Emb. World 2010
[6] C. Emde, Echtzeit im Echtheits-Test, Elektronik 4/2011
[7] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-

gramming, Morgan Kaufmann, 2008
[8] Git repository for Android kernel contributions: https:

//android.googlesource.com/kernel/common.git

[9] Git repository for Tegra platform support devel-
opment: https://android.googlesource.com/kernel/

tegra.git

[10] A. M. St. Laurent, Understanding Open Source & Free
Software Licensing, O’Reilly, 2004

[11] W. Mauerer, Professional Linux Kernel Architecture, Wi-
ley/Wrox, 2008

[12] C. Maya et al., Evaluating Android OS for Embedded
Real-Time Systems, Proc. 6th Int. WS on OS Plat. for
Emb. RT Appl., 2010.

[13] Motorola Xoom BSP home page: http://sourceforge.

net/motorola/xoom/home/Home/

[14] D. Norman, The Design of Everyday Things, Perseus
books, 2002

[15] R. Peck and J. L. Devore, Statistics, Brooks/Cole, 2011
[16] D. Rollella and J. Gosling, The Real-Time Specification

for Java, IEEE Computer 33(6), 2000
[17] S. Rostedt, Finding Origins of Latencies Using Ftrace.

Proc. RT Linux WS., 2009
[18] RTAI Project home page: http://www.rtai.org

[19] RTLinux project home page: http://www.rtlinuxfree.
com

[20] Vanilla kernel distribution web site: http://www.

kernel.org

[21] Xenomai Project home page: http://www.xenomai.org

7

0

20

40

60

And
ro

id
Fixe

s
BSP

BSP F
ixe

s

Gen
er

ic

La
te

nc
y

Pre
em

pt
_R

T F
ixe

s

of

 P
at

ch
es

0

50

100

150

200

250

300

And
ro

id
Fixe

s
BSP

And
ro

id

BSP F
ixe

s

Gen
er

ic

La
te

nc
y

Pre
em

pt
_R

T

Pre
em

pt
_R

T F
ixe

s

of

 P
at

ch
es

FIG. 6. Number of patches required to augment the vanilla Linux kernel 3.0 with capabilities for both, real-time and Android
support. To emphasise the manual effort (red) required beyond the mechanic application of readily available, but large patch
stacks (blue) for preempt rt and the Android specific components, the left hand side omits these data. A complete summary is
provided on the right hand side; please note the considerably larger ordinate span. The patches were categorised by a subjective
manual selection.

