
Noname manuscript No.
(will be inserted by the editor)

Evolutionary Trends of Developer Coordination:
A Network Approach

Mitchell Joblin · Sven Apel · Wolfgang Mauerer

Received: date / Accepted: date

Abstract Software evolution is a fundamental process that transcends the realm of technical
artifacts and permeates the entire organizational structure of a software project. By means of
a longitudinal empirical study of 18 large open-source projects, we examine and discuss the
evolutionary principles that govern the coordination of developers. By applying a network-
analytic approach, we found that the implicit and self-organizing structure of developer
coordination is ubiquitously described by non-random organizational principles that defy
conventional software-engineering wisdom. In particular, we found that: (a) developers
form scale-free networks, in which the majority of coordination requirements arise among
an extremely small number of developers, (b) developers tend to accumulate coordination
requirements with more and more developers over time, presumably limited by an upper
bound, and (c) initially developers are hierarchically arranged, but over time, form a hybrid
structure, in which core developers are hierarchically arranged and peripheral developers are
not. Our results suggest that the organizational structure of large projects is constrained to
evolve towards a state that balances the costs and benefits of developer coordination, and the
mechanisms used to achieve this state depend on the project’s scale.

Keywords Software Evolution · Developer Coordination · Developer Networks

Mitchell Joblin
Siemens AG
Wladmirstrasse 3, 91058 Erlangen, Germany
Tel.: +49-176-61335168
E-mail: mitchell.joblin.ext@siemens.com

Sven Apel
University of Passau
Innstr. 33, 94032 Passau, Germany
Tel.: +49-851-5093225
E-mail: apel@uni-passau.de

Wolfgang Mauerer
Technical University of Applied Science Regensburg
Universitätsstrasse 31, 93058 Regensburg, Germany
Tel.: +49-941-9439753
E-mail: wolfgang.mauerer@oth-regensburg.de

ar
X

iv
:1

51
0.

06
98

8v
2

 [
cs

.S
E

]
 1

9
O

ct
 2

01
6

2 Mitchell Joblin et al.

1 Introduction

Change in software is inevitable, and the constant pressure to adapt is a challenge that all
software projects encounter. The necessity of change is not isolated to the software design
and implementation, it permeates through all artifacts and facets of a project including the
entire organizational structure. As the software evolves, the organizational structure building
the software must also evolve to maintain effective coordination between developers. In the
ideal case, a match or congruence is achieved between the coordination requirements implied
by the project’s technical artifact structure and the coordination mechanisms implied by the
developer’s organizational structure (Cataldo et al, 2008).

The need for developer coordination is largely a consequence of software-artifact interde-
pendencies. For example, two developers independently constructing coupled components
must coordinate to avoid violating assumptions embedded in the components’ design. During
software evolution, artifact interdependencies are added, removed, or changed, and local
changes can propagate to dependent artifacts and alter the requirement for developers to
coordinate. Without coherence between the artifact structure and the organizational structure,
developers may lose awareness of new dependencies and their effects (Cataldo et al, 2009;
Sosa et al, 2004). Architectural documentation can help support dependency awareness,
however, it is difficult to maintain accurate documentation for an evolving system, and certain
interdependencies may not be obviously expressed in the source code (e.g., code clones).
Empirical evidence has demonstrated that the loss of interdependency awareness negatively
influences software quality and developer productivity (Espinosa et al, 2007; Cataldo et al,
2009; Cataldo and Herbsleb, 2013).

Our goal to understand the evolution of developer coordination is motivated by specific
scaling constraints known to affect software engineering. One such scaling constraint arises
from the quadratic relationship between team size and the number of possible interactions
between developers. In a group of n developers, each developer can coordinate with n−1
other developers in the group, such that the total number of possible coordination require-
ments is n(n−1) = O(n2). The implication is that, at a critical point, the overhead involved
in coordination exceeds the benefit of having additional developers (Brooks, 1995). Con-
sequently, the organizational structure of successful projects is constrained to evolve in a
manner that mitigates the negative effects of this and other scaling constraints. We expect
that the influence of the scaling constraints will be observable through evolutionary trends of
the organizational structure.

By gaining an understanding of the evolutionary patterns of developer coordination,
software engineering practitioners will be in a better position to identify and respond to
changing coordination requirements. It is well known that adding developers to a project often
reduces overall productivity (Brooks, 1995; Scholtes et al, 2016), but the precise mechanism
behind this phenomenon is not yet well understood. It may be the case that adding developers
to a project negatively interferes with coordination requirements by introducing additional
complexity, which in turn causes decreases in productivity. To address this unknown, we
need to better understand the effect of adding developers on the coordination structure. Once
we have this understanding, we can establish processes for integrating new developers that
minimize the decrease of overall productivity by minimizing the influence to the existing
coordination structure.

Methodologically, we use a network-analytic framework to conduct an exploratory study
on the evolution of developer coordination requirements. As developers complete their
tasks, their contributions to the source code may interact with the contributions of other
developers. To avoid unwanted side effects, developers must coordinate their efforts to ensure

Evolutionary Trends of Developer Coordination: A Network Approach 3

their contributions interact successfully according to the desired outcome. To get a first-
order approximation to the coordination requirements between all developers in a project,
we construct a developer network, such that two developers are connected if they make
contributions to interdependent source code. We study the developer coordination structure,
as embodied in a developer network, with respect to the following three well-known and
statistically well-founded organizational principles:

– Scale freeness. Scale-free networks are characterized by the existence of hub nodes
with an extraordinarily large number of connections, which results in several beneficial
characteristics including robustness and scalability (Dorogovtsev and Mendes, 2013).
Developer networks of this kind are conjectured to tolerate substantial breakdowns in
coordination without significant consequences to software quality (Dorogovtsev and
Mendes, 2013; Cataldo and Herbsleb, 2013).

– Modularity. The local arrangement of nodes into groups that are internally well con-
nected gives rise to a modular structure. Modularity is a notable characteristic of many
complex systems and indicates the specialization of functional modules (Dorogovtsev
and Mendes, 2013). In the case of developer organization, this is the primary orga-
nizational principle used to reduce system-wide coordination overhead and increase
productivity (Brooks, 1995).

– Hierarchy. The global arrangement of nodes into a layered structure, where small
cohesive groups are embedded within larger and less cohesive groups, forms a hierarchy.
Hierarchy is an organizational principle distinct from modularity and scale freeness, and
has been shown to improve the coordination of distributed teams (Hinds and McGrath,
2006). For developer networks, hierarchy suggests the existence of stratification within
the developer roles, and it indicates a centralized governance structure where decisions
are primarily made at the top and passed down through a chain of command.

An important source of change in software projects is developer turnover, and this phe-
nomenon is likely to influence the evolution of the developer network’s structural properties.
Open-source software projects are unique in that their organizational structure is predomi-
nantly self organizing, and they often lack a traditional software-engineering process that
supports coordination (DiBona et al, 1999; Mockus et al, 2002; Mauerer and Jaeger, 2013).
Conceptually, the lack of a centrally prescribed organizational structure enables open-source
software projects to more easily adapt to evolutionary pressures (Sosa et al, 2004; Kotter,
2014). One such evolutionary pressure is generated by developer turnover: the process
where developers withdraw from a project and new developers join. In open-source software
projects, turnover exists in an extreme variety because the majority of developers are pe-
ripheral and characteristically volatile (Mockus et al, 2002; Crowston and Howison, 2005;
Koch, 2004). Typically, a high developer turnover rate is portrayed as a severely detrimental
circumstance that poses a significant threat to the success of a software project primarily
because of knowledge loss effects (Boehm, 1989). Curiously, in large open-source software
projects the harmonious coexistence of a large volatile peripheral group and a comparatively
minuscule core group is ubiquitous (Mockus et al, 2002; Crowston et al, 2006; Dinh-Trong
and Bieman, 2005). For this reason, we focus attention on specific properties of the coordi-
nation structure that support the organization’s ability to benefit from the human resource
of peripheral developers, which are relatively abundant in comparison to core developers,
while at the same time, mitigating the risks implied by peripheral developers’ volatility.
Specifically, we explore whether the structural features observed in the evolution of the
developer network enable open-source software projects to benefit from a large, but unstable,
peripheral developer group. To clarify, we do not posit that turnover is a strictly positive

4 Mitchell Joblin et al.

or negative phenomenon, instead we direct our investigation to the relationship between
developer turnover and the structural features of developer coordination. Furthermore, we
utilize the concept of core and peripheral developers to provide practical context for the
explanation of evolutionary adaptation in the developer networks’ structure. By gaining a
better understanding of how peripheral developers are embedded in the coordination structure
relative to core developers, we benefit from a number of practical insights. For example,
it may turn out that the more experienced developers (typically the core group) and less
experienced developers (typically the peripheral group) are structurally arranged differently to
help support effective coordination and transfer of knowledge between these distinct groups.

Capturing the evolution of developer coordination is challenging and demands advanced
techniques from software repository mining and time series analysis. In our approach, we
make use of sophisticated information retrieval methods to determine where coordination
requirements likely exist. We apply a sliding-window technique to transform the discrete
software changes recorded in the version-control system into a stream of evolving developer
networks. Finally, we analyze the stream of developer networks with network analysis and
statistical techniques to elicit insights into structural properties in a time resolved manner.

By means of a longitudinal empirical study on the evolution of 18 popular open-source
software projects, we will address the following two main research questions (RQ):

RQ1: Change—What evolutionary adaptations are observable in the history of long-lived
open-source software projects concerning the three organizational principles?

RQ2: Growth—What is the relationship between properties of the three organizational
principles and project scale?

As key results of our study, we found that developer networks are scale free when a project
contains a large number of developers and primarily during temporal periods that coincide
with project growth. With respect to modularity, developer networks become increasingly
modular over time until an apparent upper bound is reached. Concerning hierarchy, developers
form a hierarchical coordination structure in the early phases of a project, but over time the
global hierarchy decomposes toward a state where only core developers are hierarchically
arranged. Finally, we found that peripheral developers have significantly higher turnover rates
compared to core developers, and the adaptations observed in the developer coordination
structure presumably help to mitigate the risks implied by the abundant, but highly volatile,
peripheral developer group.
In summary, we make the following contributions:

– We adapt a previously validated network-construction approach to generate and analyze
a temporally-ordered sequence of evolutionary changes that occur in developer networks
by applying a sliding-window technique to extract historical data from version-control
systems.

– We address the research questions of our study by means of detailed analyses of the
entire publicly available history of 18 popular open-source software projects with long
and complex histories, some of which date back more than 23 years. The infrastructure
we developed to perform the analysis is publicly available.

– We demonstrate that developers form organizational structures that are statistically
improbable to occur in purely random networks, which indicates the presence of non-
random organizational principles.

– We identify and discuss a number of general evolutionary trends that describe how
developer networks evolve in software projects with respect to scale freeness, modularity,
and hierarchy.

Evolutionary Trends of Developer Coordination: A Network Approach 5

– We present empirical evidence that groups of core developers are significantly more
stable than groups of peripheral developers and we discuss how the developer network’s
structural features accommodate these two distinct developer groups.

In addition to these contributions, we improve on a number of known methodological
deficiencies in prior empirical studies noted by Crowston et al (2012). Specifically, the
deficiencies include: drawing conclusions from the analysis of very few (often only one)
projects, a lack of attention to the early transitional phases by focusing primarily on successful
projects after they have become well established, the use of coarse-grained data to draw
conclusions, and a general lack of longitudinal studies that explore the different phases of
evolution.

All experimental data and source code are available at a supplementary Web site:
http://siemens.github.io/codeface/emse/ .

2 Background

In the following section, we discuss approaches for abstracting the technical activities of
developers as a network that reflects coordination requirements among developers. We then
introduce the conceptualization of core and peripheral developer roles and conclude with an
introduction to the concepts and definitions of scale-free networks, network modularity, and
network hierarchy.

2.1 Developer Networks

In social sciences, networks are frequently used as a mathematically convenient structure
to study the relationships among a set of actors involved in a mutual activity that is social
in nature. In this sense, developer networks are socio-technical networks, where the mutual
activities are technical in nature, stemming from the software-development process, but still
imply relationships between people. The purpose of constructing a developer network is to
obtain an authentic representation of the developer-coordination requirements implied by
their development activities (Meneely and Williams, 2011; Cataldo et al, 2006; Joblin et al,
2015; Begel et al, 2010). A common approach is to construct a developer network based
on the developers’ contributions to software artifacts by extracting operational data from a
version-control system (Joblin et al, 2015; López et al, 2006; Martinez-Romo et al, 2008;
Jermakovics et al, 2011). In this type of network, the nodes represent developers and edges
placed between developers represent mutual contributions to common technical artifacts.
One drawback of these approaches is that they assume all lines of code within a single
artifact are uniformly interrelated and any relationship between related code that is scattered
across multiple artifacts is neglected. Below, we discuss several possible heuristics—with
varying degrees of precision—to determine when two developers likely have a coordination
requirement. We emphasize that all known approaches rely fundamentally on heuristics and
therefore only provide indications of where coordination requirements exist. Occasionally,
developers are incorrectly portrayed as having a coordination requirement when, in fact, they
do not, or legitimate coordination requirements fail to be represented. For this reason, it is
useful to adopt a probabilistic perspective on developer networks by interpreting the network
edges in terms of a likelihood that developers exhibit a coordination need. An example of
such a perspective is, on average, pairs of developers connected by an edge are more likely

http://siemens.github.io/codeface/emse/

6 Mitchell Joblin et al.

Fig. 1: Three developers edit two semantically coupled functions in separate files (top). The
resulting developer network from applying the original function-based construction method is
shown bottom left. The resulting developer network from applying our enhanced construction
approach that includes the coupling between artifacts is shown bottom right.

to exhibit a coordination requirement compared to pairs of developers not connected by an
edge.

2.1.1 Artifact Contribution

The most popular family of heuristics is based on contributions to a common artifact (e.g., files
or functions) (López et al, 2006; Jermakovics et al, 2011; Martinez-Romo et al, 2008; Meneely
et al, 2008; Meneely and Williams, 2011; Joblin et al, 2015). The rationale is that an artifact
is an abstraction of the software system that represents a bundle of cohesive functionalities,
and developers are constrained to coordinate by virtue of the interdependencies that exist
among the lines of code that compose the artifact. The chosen granularity of the artifact has
implications on the authenticity of the resulting developer network. For example, a coarse
granularity (e.g., files) results in identifying more relationships between developers, but can
decrease accuracy by identifying relationships that are not reflective of reality. In contrast,
a fine granularity (e.g., functions) will increase accuracy, but may omit some developer
relations. In the bottom left portion of Figure 1, we illustrate an example of the fine-grained
heuristic for identifying developer coordination requirements using contributions to common
functions. This particular heuristic has shown promise in constructing accurate developer
networks and was validated by surveying open-source developers regarding the network’s
correctness with respect to reflecting the developers’ perception (Joblin et al, 2015).

It is important to recognize that, in all these approaches, an artifact is simply a means
of grouping lines of code that are assumed to be interrelated. It can be the case, especially

Evolutionary Trends of Developer Coordination: A Network Approach 7

for large artifacts (e.g., God classes) (Olbrich et al, 2009), that many of the lines are in fact
not closely related. Additionally, lines of code can also exhibit meaningful relationships that
transcend the artifact boundaries. An option to overcome these challenges is to choose a
fine-grained artifact (e.g., functions), and then have a means to identify meaningful artifact
relationships that cross the artifact boundary (e.g., using a notion of artifact coupling).

2.1.2 Artifact Coupling

Software systems are intrinsically coupled with complex associations between their arti-
facts (Arias et al, 2011). Through artifact coupling, developer tasks become interdependent,
because changes to one artifact can propagate along the coupling relationship, and developer
coordination is required to manage unintended ripple effects (Arnold and Bohner, 1993).
For this reason, it is beneficial to incorporate the common understanding of software-impact
analysis (Arnold and Bohner, 1993) to support the identification of developer-coordination
requirements by augmenting developer networks with software-coupling information. The
upper portion of Figure 1 illustrates the common situation where developers contribute
to code that is related, but contained in separate functions in separate files. As shown in
the bottom left of Figure 1, without considering the relationship between the artifacts (as
in the function-based heuristic of Section 2.1.1) , the coordination requirement is missing
between developer 1 and the remaining developers. By augmenting the developer network
with coupling information, one is able to recover the missing coordination requirement, as
shown in the bottom right portion of Figure 1.

A diverse set of coupling mechanisms exist in software systems (e.g., function calls,
class inheritance, data dependencies etc.), but prior research has shown that not all coupling
mechanisms are equally reflective of developer perception (Bavota et al, 2013). Coupling
relationships that reflect the developer’s mental model are important for coordination purposes,
because developers will inherently rely on their internal understanding of the system to
coordinate their work with others. Essentially, if a developer perceives their changes to
influence another developer’s work, or vice versa, it is more likely for them to recognize a
need to coordinate their efforts than if there is no expectation of impact. Empirical research
indicates that traditional static and dynamic coupling mechanisms do not closely resemble
developer perception (Bavota et al, 2013), and, the implications of many traditional coupling
mechanisms are understood by the developer because they are explicitly expressed in the
source code (Cataldo et al, 2009). When the implications of a dependency are known then it
is less critical that developers coordinate because the source code serves as a means to avoid
incorrect assumptions about the code. Bavota et al (2013) have shown that semantic coupling
is more indicative of coordination requirements because artifact relationships at the semantic
level are more likely to reflect the developer’s mental model and the implications are less
likely to be fully understood by other developers than structural or dynamic dependencies.

Techniques for extracting coupling relationships that make use of information-retrieval
methods have shown promise in raising the coupling concept to a semantic level that agrees
with developer perception (Bavota et al, 2013). From a purely practical perspective, semantic
coupling is also well suited, because it is programming-language independent, allowing the
comparison between projects implemented in different programming languages. Semantic
coupling is based on the principle that domain knowledge is embedded in the textual content
of the software’s implementation artifacts (i.e., variable identifiers, function names, parameter
names, comments, etc.), and artifacts implementing related domain concepts will share a
common vocabulary (Poshyvanyk et al, 2009). For the purpose of constructing developer
networks, semantic coupling serves as an alternative means to group code together on the

8 Mitchell Joblin et al.

basis of the domain concept they concern. At a high level, the challenge of quantifying
semantic coupling depends on the identification of key terms from the overall implementation
vocabulary that can be used to discriminate between distinct domain concepts. Latent semantic
indexing is often applied together with a term-weighting step called term-frequency inverse
document frequency (TF-IDF) to extract the semantic coupling information (Manning et al,
2008). Similarity between documents is measured using cosine similarity in the latent
space, to determine whether two artifacts are semantically coupled according to a certain
threshold (Poshyvanyk et al, 2009). A More detailed discussion of these topic is provided in
Appendix A.

2.2 Core and Peripheral Developers

All software projects face the situation that developers withdraw at some point and need to
be replaced by new, often less experienced, developers. This process of developer turnover
can present enormous risks to software projects, because crucial knowledge is often lost with
departing developers (Boehm, 1989; Mockus, 2010; Huselid, 1995). Another consequence of
developer turnover is that new developers initially require mentorship, thereby consuming
additional human resources by placing a burden on more experienced developers in the
project. This is one factor that contributes to the well-known phenomenon that adding
developers to a late project causes further delays (Brooks, 1995). In open-source software
projects, developer turnover exists in an extreme variation because the vast majority of
developers have occasional, short-term participation, and generally only a very small number
of core developers have consistent long-term participation (Mockus et al, 2002; Crowston
and Howison, 2005; Koch, 2004). It is extraordinary that open-source software projects are
able to thrive under the extreme conditions of high developer turnover. For this reason, we
dedicate attention to study the evolutionary pressures caused by the significantly different
turnover rates between core and peripheral developers.

Core developers are characterized by prolonged, consistent, and intensive participation
in the project, and they often have extensive knowledge of the system architecture and strong
influence on project decisions (Mockus et al, 2002). In contrast, peripheral developers are
characterized by irregular, and often short-lived, participation in the project. The periph-
eral developer group is the larger of the two, by a significant margin, but core developers
are responsible for doing most of the work (Mockus et al, 2002; Crowston and Howison,
2005). While peripheral developers are an abundant human resource, they also introduce risk
and consume resources. For example, empirical evidence indicates that changes made by
peripheral developers introduce more architectural complexity than changes made by core
developers (Terceiro et al, 2010). Researchers have shown that developer turnover negatively
impacts code quality, in terms of bug density (Foucault et al, 2015). Therefore, a stable
and knowledgeable core developer group is imperative for ensuring system integrity in the
presence of potentially inadequate changes introduced by peripheral developers. However,
it appears to be ubiquitously true that successful open-source software projects are capable
of benefiting from a large number of volatile peripheral developers, while at the same time,
mitigating the associated risks. Since the coordination structure of popular open-source
software projects supports the symbiotic coexistence of a highly volatile peripheral developer
group and a comparatively stable core developer group, we expect to observe adaptations in
the developer network that promote system integrity and effective coordination.

Metrics used to classify a developer as core or peripheral generally quantify the amount
of participation a developer has in the project, such as lines of code or number of commits

Evolutionary Trends of Developer Coordination: A Network Approach 9

contributed (Terceiro et al, 2010; Crowston and Howison, 2005; Robles et al, 2009). A
developer is then assigned to the core group if their level of participation is in the upper
20th percentile; all other developers are considered to be peripheral (Terceiro et al, 2010;
Robles et al, 2009). Metrics based on lines of code and commits pose significant threats
to validity. Since trivial whites space changes, moving code from one file to another, or
code-style changes are all counted the same as new feature code, certain developers may
artificially appear to be extremely active. With respect to using commits for classifying
developers, empirical studies have shown that the variance in commit size is extremely large
in open-source projects and so all commits should not be considered equal (Arafat and Riehle,
2009). An alternative approach is to operationalize developer roles using social-network
analysis concepts, such as degree centrality. Core developers are individuals that are highly
central (e.g., high degree nodes) in the developer network and peripheral developers are
individuals that are not highly central (e.g., low degree nodes). A recent study involving
166 open-source developers found that, while many of the core–peripheral metrics are to
some extent consistent with each other, developer network-based metrics (e.g., degree and
eigenvalue centrality) reflect developers’ perception of roles most accurately (Joblin et al,
2016).

2.3 Scale-Free Networks

Early research characterized the topology of complex networks according to the Erdős-Rényi
(ER) model for random graphs, in which edges are independent and identically distributed
with a fixed probability (Erdős and Rényi, 1959). In the ER model, the network edges are
distributed according to a binomial distribution and the degree distribution is Poisson (i.e.,
exponential). This results in the existence of a “typical” node that is representative of most
nodes in the network, and it is extremely rare to observe “hub” nodes with significantly
more connections. More recently it has been shown that many real-world networks from
fundamentally different domains (e.g., biology, sociology, scientific paper authorship, Internet
routers) exhibit a substantially more organized structure than initially expected (Jeong et al,
2000; Bernard et al, 1988; Barabâsi et al, 2002; Dorogovtsev and Mendes, 2013). This class
of networks obeys a power-law degree distribution and are referred to as “scale-free”. In
this model, there is no notion of a typical node; hubs with many more connections than the
average are common. Scale-free networks exhibit a structure that is the product of organizing
principles that are far from uniform randomness. In the literature, it is hypothesized that
scale-free networks grow according to the organizational principle of preferential attachment,
according to which nodes entering the network have a bias to attach to already well-connected
nodes (Barabási and Albert, 1999). Although, preferential attachment is only one of many
possible explanations for the formation of scale-free networks (Dorogovtsev and Mendes,
2013), it could explain the evolution of open-source software projects, because it is plausible
that new developers with little experience require mentorship from highly knowledgeable
core developers or core developers supervise important parts of the system, which make it
necessary for peripheral developers to coordinate with them. These conditions would then
lead to a situation of preferential attachment and result in a scale-free network.

We are particularly interested in the scale-freeness property of developer networks be-
cause it has a number of beneficial characteristics, including robustness to perturbations (Doro-
govtsev and Mendes, 2013). This means that a random removal of a node is unlikely to disturb
the connectivity of the network (e.g., fracturing the network into isolated subgraphs). In the
case of a software project, robustness indicates that the withdrawal of a random developer

10 Mitchell Joblin et al.

Exponential Power-Law

Fig. 2: An ER random network with an exponential degree distribution (top left) and scale-
free network with a power-law degree distribution (top right). The corresponding degree
distribution for exponential Pr(k;α) = e−αk and power-law Pr(k;α) = k−α are shown (bot-
tom). The power-law distribution contains significantly more weight in the right tail compared
to the exponential distribution. The heavy tail gives rise to the organized structure of the
network where a small number of nodes are hubs and low degree nodes collect around these
hubs.

should not severely destroy the topology of the network (i.e., the organizational structure).
However, it is important to recognize that a network can only be optimized to be robust for
a particular removal mechanism. As mentioned, scale-free networks are extremely robust
to random removals, but the compromise is that they are extremely vulnerable to targeted
removals. That is to say, a removal of only a small number of hub nodes can completely
destroy the network topology. The question is then, does a scale-free topology offer beneficial
characteristics for an open-source software project? The answer to this question depends
on the relative likelihood for withdrawal of core developers (i.e., hub nodes) and peripheral
developers (i.e., low degree nodes). If core developers are indeed less likely to leave the
project compared to peripheral developers, then a scale-free topology is beneficial since
the removal process does not target hub nodes. We will specifically examine these relative

Evolutionary Trends of Developer Coordination: A Network Approach 11

Fig. 3: Three networks illustrating decreasing clustering coefficients (left to right) for the
node labeled v1. In network 1, the clustering coefficient is highest, because many neighbors of
v1 are connected. The neighbors of v1 in network 2 are less connected compared to network
1, thus reducing the clustering coefficient of v1. In network 3, none of the neighbors are
connected and therefore the clustering coefficient is zero.

turnover rates in core and peripheral developers to determine whether a scale-free network
increases the robustness of the project’s structure.

To identify a scale-free network, one must show that the degree distribution is plausibly
described by Pr(k;α) ∝ k−α , where Pr(k;α) is the probability of observing a node with
k connections and α as the power-law scaling parameter. In Figure 2, we illustrate the
differences between an ER random graph and a scale-free network and show the influence
that a power-law degree distribution has on the network topology. In Section 3.4, we will
discuss details of the technique for determining whether an observed network is scale free.

2.4 Network Modularity

The scale-freeness property is a statement about individual nodes and their respective degrees,
but it entirely neglects features regarding the connectivity of a node’s local neighborhood. In
our case, the local neighborhood of developer X is a subnetwork that represents all coordi-
nation requirements between all developers that are connected to developer X . Modularity
captures the connectivity of a node’s local neighborhood by quantifying the extent to which
nodes form connected groups. In the analysis of software-artifact relationships, coupling (the
extent to which an artifact is externally dependent) and cohesion (the extend to which an
artifact is internally dependent) are frequently used. Modularity is expressed as a relationship
between the concepts of coupling and cohesion such that a highly modular structure is one
that exhibits low coupling and high cohesion (Stevens et al, 1974). In a social network,
modularity is high when the neighbors of node i have relations to other neighbors of node i,
which is called a triadic closure. The conjecture is that, for three nodes X , Y and Z, edges
(X ,Y) and (X ,Z) increase the likelihood for edge (Y,Z) to exist by virtue of the commonality
from both Y and Z being connected to X . This natural clustering has been shown to exist in
many real-world networks (e.g., it indicates specialization of function in biological networks
or people with common interests in social networks) (Dorogovtsev and Mendes, 2013).
Similarly, in developer networks, we expect modularity to arise from specialization in the
developer roles and contributions to interdependent tasks. This expectation follows from

12 Mitchell Joblin et al.

Conway’s law, which hypothesizes that the modular structure of a software system should be
reflected in the developer organization (Conway, 1968).

To quantify modularity, we use the well studied clustering coefficient:

ci =
2ni

ki(ki−1)
, (1)

where ni is the number of edges between the ki neighbors of node i (Boccaletti et al, 2006). The
intuition is that ki(ki−1)/2 edges can exist between ki nodes, and the clustering coefficient
is a ratio that reflects the fraction of existing edges between neighbors divided by the total
number of possible edges. For example, if a node has a high clustering coefficient, then many
edges exist between the neighbors of this node. Conversely, if a node has a low clustering
coefficient, then only a few edges exist between neighbors of this node. In Figure 3, three
networks are shown in which the solid node has a decreasing clustering coefficient from left
to right.

2.5 Network Hierarchy

So far, we have introduced scale freeness, which describes the distribution of edges among
nodes, and network modularity, which describes the grouping of nodes according to the local
network structure. The concept of hierarchy brings these two concepts together by addressing
how local groups are arranged relative to each other. In a hierarchical network, there exists
stratification within the network that stems from cohesive groups being embedded within
larger and less cohesive groups. This stratification is manifested as a relationship between the
node clustering coefficient and the number of connections, that is, the node degree (Ravasz
and Barabási, 2003). Nodes with high degree and low clustering coefficient represent the
top of the hierarchy; nodes with low degree and high clustering coefficient are located at the
bottom of the hierarchy. The relationship between node degree and clustering coefficient in
a hierarchical network is described by C(k) ∝ k−1, where C(k) is the clustering coefficient
for a node with degree k (Ravasz and Barabási, 2003). In Figure 4, the difference between
the topology of a hierarchical network and ER random network are shown together with the
corresponding relationship between clustering coefficient and node degree.

To test for the presence of hierarchy, a statistically sound approach is to apply a robust
linear regression technique to solve for the optimal linear model satisfying the functional
form Y = β0 +β1X , where the clustering coefficient is the response variable denoted by Y
and node degree is the predictor variable denoted by X . If the optimal linear model has a
nonzero slope (i.e., β1 < 0) and the slope parameter is statistically different from zero, such
that p < 0.05, where p is that probability that β1 = 0, we can conclude that hierarchy is
present.

Intuitively, the hierarchical relationship between node clustering coefficient and node
degree implies that nodes of high degree tend to be connected to many different groups
that are themselves loosely coupled to each other, meanwhile low degree nodes form highly
connected groups. What makes hierarchy particularly interesting is that it is not explained
solely by preferential attachment and therefore indicates an entirely separate organizational
principle (Ravasz and Barabási, 2003). Hierarchy in developer networks indicates the exis-
tence of an organizational structure that transcends the local network structure and represents
an organizational element that sprawls the network topology at different layers of abstraction
to improve coordination between developers that are members of different groups (Hinds and
McGrath, 2006).

Evolutionary Trends of Developer Coordination: A Network Approach 13

Random Network Hierarchical Network

Fig. 4: ER random network (left) and hierarchical network (right) with corresponding scatter
plot of node degree k versus clustering coefficient C(k). The hierarchical network topology
deviates from randomness by having small cohesive clusters that are embedded withing
larger and less cohesive clusters. The hierarchical topology manifests as a linear dependence
between node degree and clustering coefficient, illustrated by a line with negative slope,
which is not present in ER random networks.

3 Methodology

We now discuss our empirical methodology to study the evolutionary principles of developer
coordination in open-source software projects. The study is divided into two parts: First, we
construct a series of developer networks using historical data stored in the version-control
systems of a set of subject projects. Second, we apply network-analysis techniques to examine
the network topology (scale-freeness, modularity, and hierarchy) as a function of time and
relate the measurements to developer turnover rates in the groups of core and peripheral
developers.

3.1 Developer Network Construction

Our approach is inspired by the framework proposed by Cataldo et al (2008) for identifying
coordination requirements between developers working on interrelated tasks. To capture
a more complete model of the developer coordination (see Section 2.1.1), we improve
on the state of the art (López et al, 2006; Jermakovics et al, 2011; Martinez-Romo et al,

14 Mitchell Joblin et al.

2008; Meneely et al, 2008; Meneely and Williams, 2011; Joblin et al, 2015) by augmenting
developer networks with semantic artifact-coupling information. While our implementation is
one variation that uses a function-level artifact and semantic coupling, this approach naturally
extends to accommodate other artifacts (e.g., configuration files, requirements, documentation
etc.) and coupling mechanisms (e.g., dynamic, structural, co-change etc.). Figure 1 provides
an illustration of the network-construction approach. Specifically, we reconcile the developer-
artifact contribution (see Section 2.1.1) and software-artifact coupling (see Section 2.1.2)
information as follows: We begin by first identifying all developers’ contributions to all
functions in the system and express the contributions of M developers to N functions in an
M×N matrix as

Acontrib =

 f (d1,a1) . . . f (d1,aN)
...

. . .
...

f (dM,a1) . . . f (dM,aN)

 , (2)

where Acontrib is the function-contribution matrix and f (di,a j) represents contributions to
artifact a j by developer di. If a contribution to this artifact was made by this developer, then
the element is 1, otherwise it is zero. Figure 5 depicts a situation where multiple developers
make commits to multiple functions, some of which are coupled. With respect to Figure 5, all
of the commit edges between developers and the functions they contributed to are expressed
in Acontrib, the coupling relationships between functions are expressed in another matrix
described below.

We compute a matrix that represents the semantic coupling between artifacts using latent
semantic indexing (see Section 2.1.2) denoted by Acoupling. We have chosen this specific
approach because it has shown promising results in reflecting developers’ perception of
software coupling (Bavota et al, 2013) (see Section 2). Alternative approaches such as Latent
Dirichlet Allocation would also be suitable for this purpose (Baeza-Yates et al, 1999), but
they have not yet shown to produce valid results, as is the case for latent semantic indexing.
A detailed description of our approach is contained in the Appendix A.

We represent the coupling for N artifacts in an N×N matrix as

Acoupling =

φ(a1,a1) . . . φ(a1,aN)
...

. . .
...

φ(aN ,a1) . . . φ(aN ,aN)

 , (3)

where Acoupling is the artifact-coupling matrix and φ(ai,a j) = 1 if the two artifacts ai and a j
are coupled and φ(ai,a j) = 0 otherwise. In our study, this matrix represents the semantic
coupling between functions. In reference to Figure 5, the coupling edges between all functions
are expressed in Acoupling.

Finally, we combine the information contained in both matrices using the following
operation

Dcoord = Acontrib×Acoupling×A>contrib, (4)

where Dcoord is the developer-coordination matrix, with elements that represent whether a
coordination requirement between two developers exists. Intuitively, the matrix operation
expressed in Equation 4 is computing the developers’ mutual dependencies based on contri-
butions to common artifacts and artifacts that are semantically coupled. The resulting matrix
Dcoord is symmetric with respect to the principal diagonal. For our analysis purposes, a weight

Evolutionary Trends of Developer Coordination: A Network Approach 15

Fig. 5: Three developers make commits to three different functions. Functions f1 and f2 are
shown to have a coupling relationship between them.

on certain edges is not needed and so we assign diagonal elements 0 to prevent the loop edges
from influencing the results.

We will now go through a minimal example to illustrate precisely how this procedure
operates. Suppose that developer d1 makes a commit to function f1, developer d2 makes a
commit to function f2 and f3, and developer d3 makes a commit to function f3. Suppose
also that the functions f1 and f2 are semantically coupled. Figure 5 illustrates this particular
situation. In our framework, the resulting contribution and coupling matrices are as follows.

Acontrib =

f1 f2 f3[]d1 1 0 0
d2 0 1 1
d3 0 0 1

Acoupling =

f1 f2 f3[]f1 1 1 0
f2 1 1 0
f3 0 0 1

(5)

To compute the developer network, we combine the two matrices according to Equation 4.

Dcoord =

1 0 0
0 1 1
0 0 1

×
1 1 0

1 1 0
0 0 1

×
1 0 0

0 1 0
0 1 1

 (6)

=

d1 d2 d3[]d1 1 1 0
d2 1 2 1
d3 0 1 1

(7)

The adjacency matrix correctly expresses an edge between d1 and d2 because of their commits
to coupled functions f1 and f2. Additionally, an edge exists between developers d2 and d3
because they both contributed to function f3.

3.2 Developer Network Stream

In a second step, we capture the time-resolved evolution of developer organization by applying
a graph-data-stream model to the network-construction procedure; a project’s history is

16 Mitchell Joblin et al.

Fig. 6: A sequence of commits are shown in chronological order labeled {c1, . . . ,c9}. Two
subsequent analysis windows denoted by W0 and W1 define which commits are included in
each analysis window. The corresponding parameters for ∆step and ∆window used to define the
sliding window process are also shown. Notice that both W0 and W1 include {c4,c5,c6} so
that there is continuity in temporally close activities performed by developers over subsequent
analysis windows.

segmented into sequential overlapping observation windows, where each observation window
captures a finite range of development activity. To linearlize the development history, we
flatten the master branch of the version-control system, which is essentially the linearization
of a directed acyclic graph. All commits are then temporally ordered using the commit time.
The nth observation window is defined as a set Wn of commits, such that Wn = {committ | t ∈
[t0 +n ·∆step, t0 +n · tstep +∆window]}. Where committ is the commit occurring at time t, t0 is
the time of the initial commit, ∆window is the window size, and ∆step is the step size. Figure 6
provides a depiction of the sliding-window setup for a linearized history of 9 commits. Since
software projects typically have long-term trends (e.g., number of contributing developers),
the evolution is temporally dependent and must be treated as a nonstationary process. This
implies that the statistics (e.g., mean and variance of the metrics) will vary depending on
when the project is observed. To properly analyze project evolution, we use a small enough
observation window (90 days) for which the development activity has been shown to be
quasi stationary (Meneely and Williams, 2011)—a technique that is frequently employed in
other domains with temporally-dependent processes (Huang et al, 1998). To avoid artifacts
that arise from aliasing and discontinuities between the edges of the observation windows,
we opted for an overlapping-window technique (Huang et al, 1998) with a step size that is
half of the window size. While smaller step sizes may be better, because of greater temporal
resolution, we observed that using a smaller step size did not change the results, but did
significantly add to the computational costs. In contrast, increasing the step size so that the
windows did not overlap obscured periodic components in the data.

For each time window, we construct a network to represent the topology of developer
coordination during a finite time range. The sequence of all finite windows generates the
graph stream capturing the dynamic evolution of developer coordination over the entire
project history. Each graph stream is then processed to extract a multivariate time series

Evolutionary Trends of Developer Coordination: A Network Approach 17

composed of the measurements that quantify the concepts of scale freeness, modularity,
hierarchy, in addition to other context features, such as network size.

3.3 Developer Transitions

Developer turnover—the process by which developers enter and withdraw from a project—
provides important insights into the stability of the organizational structure of a project (see
Section 2). We define the stability of a group of developers as the probability that members of
this group leave the project by not committing to the version-control system within 90 days
of any prior commit. We also expand on this concept by not only studying the likelihood that
developers leave a project but also the likelihood of transitioning between different roles in
the project. Particularly, we employ sequential-data modeling techniques to formally address
this aspect of network evolution. We make use of the discrete state Markov model (Bishop,
2006) by assigning a discrete state to every developer in the project for each time window.
In Appendix B, we discuss the trade-off involved in the choice of analysis windows and the
influence it has on the Markov model. In our setting, a developer is able to occupy one of the
following 4 possible states.

Core: active developers with degree in the upper 20th percentile
Peripheral: active non-core developers with non-zero degree
Isolated: active developers with a zero degree
Absent: developers that did not make any commits (i.e. no activity)

We classify developers based on node degree because it has been show to better reflect
developer perception than commit count (Joblin et al, 2016). We consider developers with
a zero degree to be distinct from the peripheral group since these developers tend to be
extremely inactive, often with only a single contribution. To compute the transition proba-
bilities, each developer’s state transitions are expressed by a sequence of random variables
Xt ∈ {s1,s2,s3,s4} that can take on any of the four states. We then employ the Markov
property such that Pr(Xt+1 = x|X1 = x1,X2 = x2, . . . ,Xt = xt) = Pr(Xt+1 = x|Xt = xt). The
assumption is that, to determine the next state transition, only information about the previous
state is required. Using this assumption, we are able to represent developer transitions from
state to state as an N×N transition matrix, in which each element indicates the probability of
transitioning from any state in the state space N to any other state during the entire project’s
evolution. We use a maximum-likelihood estimation to solve for each state transition param-
eter (Bishop, 2006). We experimented with second order Markov chains—more formally
Pr(Xt+1 = x|Xt = xt ,Xt−1 = xt−1)—to test the validity of our assumptions, but the overall
insights do not change and so we only show results for the simpler first order Markov chain.1

Figure 7 provides an example developer transition Markov chain: Core developers stay in
the core state in the following release with a 84% probability, transition to the peripheral
state with 16% probability, with 0.1% probability transition to the isolated state, and with
0.5% probability to the absent state. All transition probabilities are between 0 and 1, and
the sum of all transitions from a single state is equal to 1, to ensure that the conditions for a
probability function are maintained.

1 The second order Markov chain is more complex by including the random variable Xt−1 in the model, but
the vast majority of variance for our data is explained by the first order Markov chain. We concluded that the
increase in model complexity is not justified by the improvement in the model’s fit.

18 Mitchell Joblin et al.

Peripheral

Core

Isolated

Absent

11%
5%

83%

1.7%

16%
0.5%

84%

0.1%
0% 16%

51%

33%

0%

0.8%

0.1%

99.1%

Fig. 7: The developer-group stability for QEMU shown in the form of a Markov chain. In
some states, the addition of outgoing edge probabilities may not equal unity due to rounding
errors.

3.4 Network Topology

To determine whether a network is scale free, one needs to show that the degree distribution
is explained by a power law (see Section 2). There are a number of frequently experienced
pitfalls in trying to test a network for scale freeness, and for this reason, we dedicate significant
effort to ensuring statistical rigor. A necessary but not sufficient condition for power-law
behavior is that the log–log scaled degree distribution is described by a linear relationship,
which makes identifying a power law involved and challenging (Clauset et al, 2009; Goldstein
et al, 2004). Further complicating the situation, it is often the case that empirical data exhibit
a power law only in the tail of the degree distribution, so the power-law model is rarely valid
for the entire set of observations.

In our study, we use a maximum-likelihood technique to solve directly for the power-law
model parameters. Then, we perform a Kolmogorov-Smirnov goodness-of-fit test on the
fitted model. For the moment, let us assume that the lower bound for the power law, kmin,
is known, then the power-law scaling parameter, α , can be solved using to the following
approximation to the maximum-likelihood estimate:

α̂ ' 1+n

[
n

∑
i=1

ln
ki

kmin− 1
2

]−1

, (8)

where n is the number of nodes in the network and ki is the degree of node i (Clauset et al,
2009). The choice of kmin is critical because choosing too low a value will bias the result by
trying to fit a power law to data that do not obey a power law. In contrast, too large a value

Evolutionary Trends of Developer Coordination: A Network Approach 19

results in throwing away useful samples for estimating α and will increase the statistical error.
We solve for the optimal kmin iteratively by selecting a value, solving for α using Equation 8,
and then testing the fit using the Kolmogorov-Smirnov (KS) statistic. The optimal value for
kmin is then chosen based on the best fit according to the KS statistic.

Once we have solved Equation 8 for the best-fit power law, we still do not know whether a
power law is a plausible model for describing the observed data. For this purpose, we perform
a goodness-of-fit test. This test will discern whether the discrepancy can be explained by
finite random sampling or because the power law is not an appropriate model. To perform the
test, we generate an ensemble of synthetic data sets by sampling the fitted power law.2 Then,
we fit a power law to the synthetic data sets. Next, we use the KS statistic to compute the
distance between the empirical distribution and its corresponding fitted power law. We also
compute the KS statistics for each member of the synthetic ensemble and the corresponding
fitted power law (Clauset et al, 2009). Finally, we compute a p value that represents the
fraction of KS statistics from the synthetic data sets that exceed the empirical one. A large p
value indicates that the deviation of the observed data from the fitted model can be attributed
to statistical fluctuation and not to a systematic error from the selection of an inappropriate
model. For p < 0.05, we reject the null hypothesis that the observed data are described by a
power law.

When there are too few samples for statistical tests to be reliable, which is common early
in the project history, we instead use the Gini coefficient (Atkinson, 1970) to characterize the
amount of inequality in the network’s degree distribution. The Gini coefficient is bounded
between 0 and 1, where 1 indicates strong inequality (i.e., possibly scale free); 0 indicates
strong equality (i.e., not scale free). By definition, scale-free networks contain hub nodes,
and as a result, there is strong inequality in the distribution of edges connecting nodes. From
this, we conclude that a high Gini coefficient is a necessary condition for scale freeness, and
if the network has a low Gini coefficient, it cannot be scale free.

4 Study & Results

4.1 Hypotheses

We now present and discuss four hypotheses regarding the evolution of developer coordination.
The hypotheses refine our research questions concerning the patterns observed in the evolution
of developer networks and the relationship between the patterns and project scale (see
Section 1). The mapping between our research questions and hypotheses is the following: H1
is to provide better context for interpreting the other hypotheses, H2 and H4 are related to
RQ1 and RQ2, H3 is related to RQ1.

H1—Core developers (those with a node degree in the upper 20th percentile) exhibit signifi-
cantly greater stability than peripheral developers (those with a node degree in the lower
80th percentile).

When developers withdraw from a project, there are potentially severe consequences as a
result of the loss of knowledge and the additional resources required to mentor new developers
(see Section 2.2). However, many successful open-source software projects have adapted to
benefit from an abundant supply of a group of peripheral developers that is inherently unstable
in comparison to the group of core developers. Since one of the primary driving forces of

2 We chose the number of synthetic data sets to generate to introduce a precision tolerance of two decimal
places in the p value.

20 Mitchell Joblin et al.

change in an organization stems from developer turnover, it is paramount to understand how
an organization structure may be affected by turnover. We expect that the distinct turnover
characteristics of the groups of core and peripheral developers are responsible for some of the
observable structural features in the developer networks. Understanding the stability patterns
of different developer roles can help practitioners to understand the potential risks associated
with each role. If stability is uniform across roles, then it may be hard to implement strategies
or organizational structures that mitigate risk. However, if stability is substantially greater in
one group than in another, it would be sensible to mitigate risk by delegating responsibilities
that demand long-term involvement to those individuals that are most likely to be stable.

H2—Long-term sustained growth, in the number of developers contributing to the project,
coincides with a scale-free developer coordination structure.

It is almost folklore that adding developers to a project often has the opposite of the intended
outcome, which is that adding developers will accelerate development (Brooks, 1995). On
this basis, there are important insights that can be gleaned from observing the changes that
occur in the organizational structure as the project grows. Coordination of a large number of
developers demands specialized coordination mechanisms, because the number of potential
interactions among developers is quadratic in the number of developers (Brooks, 1995).
Additionally, since the peripheral developer group, representing the majority of open-source
software developers, is conjectured to be unstable (see Section 2.2), the implication is
that a healthy developer network must be robust to node removals. Therefore, we expect
that large developer groups self-organize into scale-free networks as an optimization for
mitigating the coordination overhead and achieving resilience to coordination breakdowns
(see Section 2.3). Following the reasoning of Brooks (1995), as the developer network
grows, we expect, at some point, the developer count should stagnate or decrease, because
of ineffective coordination leading to a loss of productivity and developers’ motivation to
participate. It has been shown that, in some situations, Brooks’ law does not apply to open-
source software projects (Koch, 2004), and we hypothesize that scale freeness is a reasonable
principle to explain this observation. Therefore, we expect very large projects to exhibit the
scale-freeness property as a mechanism to maintaining productivity despite the potentially
enormous coordination costs and risks imposed by a large but unstable peripheral developer
group. Finally, scale freeness is an emergent property of a self-organizing system that is
motivated by necessity. Since small developer groups do not benefit from a scale-free network
structure as much as large developer groups, we do not expect small projects with a small
number of developers to form scale-free networks. If scale freeness is required for sustainable
project growth, this information helps us to identify healthy growth profiles in large projects.
Practitioners can make use of this information to promote policies that encourage the addition
of developers to a project in a similar manner as preferential attachment (see Section 2.3) so
that the organizational structure reaches a scale-free state.

H3—Developers initially form loosely connected groups that are not internally well con-
nected (i.e., that have a low modularity). As time proceeds, developer groups tend to become
more strongly connected in terms of the clustering coefficient until an upper bound is reached.

As a project evolves, several factors encourage developers to coordinate, but there are also
opposing forces. Based on prior experience and empirical evidence, software evolution tends
to cause an increase along several project dimensions (e.g., lines of code, complexity, number
of developers, etc.) and will demand increasing levels of coordination between developers to
avoid system degradation (Lehman et al, 1997; Lehman and Ramil, 2001). Furthermore, it
is reasonable to expect that developers will become more familiar with each other and rely

Evolutionary Trends of Developer Coordination: A Network Approach 21

on the knowledge of others for support in the completion of development tasks. Empirical
evidence from studies on various open-source software projects also suggests that developers
tend to specialize on particular artifacts (e.g., subsystems or files) and form groups with
common responsibilities and shared mental models (Koch, 2004; Joblin et al, 2015). These
influences increase modularity in the developer network by causing additional edges to form
in local sub-networks that are dedicated to a particular responsibility. The opposing force
arises from the quadratic scaling between the number of developers and potential coordination
relationships, where the cost of coordination can easily dominate the benefit achieved from
coordination (Brooks, 1995). Therefore, developer coordination is constrained to evolve in a
manner that balances these opposing forces. We expect that an equilibrium exists between the
benefit and cost of coordination, and this will govern the evolution of developer coordination.
If this hypothesis is confirmed, it suggests that the socio-technical environment in which
developers work changes substantially over time. As a result, there are presumably changes in
the coordination challenges that developers face and they would likely benefit from different
techniques and tools to support coordination during different phases of project.

H4—In early project phases, the developer-coordination structure is hierarchically arranged.
As a project grows and matures, the developer-coordination structure will gradually converge
to a network that does not exhibit hierarchy, as the command-and-control structure becomes
more distributed.

A project’s command-and-control structure is responsible for directing the work of others in
a coordinated manner. In the early phases of a project, it is conceivable that the small number
of initial developers have a comprehensive understanding of the global project details and
are capable of effectively coordinating the work with others in a centralized configuration.
In these early project conditions, hierarchy is an effective organizational structure because
it promotes efficiency through regularity and is appropriate when the developer network is
stable (Kotter, 2014). As the project evolves and grows in the number of developers and
system size, developer coordination becomes increasingly formidable, especially, once the
peripheral developer group has grown to be significantly larger than the core developer group.
Empirical evidence indicates that efficiency in large open-source software projects is the
result of self-organizing cooperative and highly decentralized work (Koch, 2004), which
becomes increasingly important as a project grows. The result is that the command-and-
control structure must evolve to become more distributed, because no single person could
reasonably have a comprehensive understanding of the global project state, and distributed
self-organization must take over. Furthermore, hierarchy is an intrinsically inflexible organi-
zational structure that strongly promotes regularity (Kotter, 2014), but as the project evolves,
organizational flexibility becomes increasingly important so that the project can avoid the
detrimental misalignment of organizational structure and the technical structure as a result
of evolution (Sosa et al, 2004). For practitioners, it is often unclear which organizational
structures are suitable for different project conditions. It may be the case that different organi-
zational structures are more appropriate during early project conditions and others during
late project conditions. By addressing this hypothesis, we gather evidence of how successful
open-source software projects evolve with respect to hierarchy.

4.2 Subject Projects

For the purpose of our study, we selected 18 open-source software projects as listed in Table 1.
The subject projects vary in the following dimensions: (a) size (source lines of code, from

22 Mitchell Joblin et al.

Table 1: Overview of subject projects

Developer Count

Project Domain Lang Period SLOC Commits Cur. Max Min

Apache HTTP Server C 05/99–06/15 2M 73K 13 26 2
Chromium User C/++, JS 07/08–06/15 16M 533K 642 1056 71
Django Devel Python 07/05–01/15 400K 38K 98 105 3
Firefox User C/++, JS 03/98–06/15 12M 230K 417 474 62
GCC Devel C/++ 06/91–01/15 7M 137K 117 122 2
Homebrew User Ruby 05/09–06/15 100K 42K 473 525 3
Joomla CMS PHP 09/05–06/15 400K 20K 53 78 2
jQuery Devel JS 03/06–06/15 65K 12K 5 30 2
Linux OS C 04/05–05/15 17M 570K 1445 1512 481
LLVM Devel C/++ 06/01–06/15 1.2M 120K 127 128 3
Mongo Database C/++, JS 10/07–06/15 600K 28K 45 53 2
Node.js Devel C/++, JS 04/09–05/15 5M 23K 19 53 2
PHP Devel PHP, C 04/99–05/15 2.5M 100K 46 66 9
QEMU OS C 11/05–06/15 1M 37K 116 157 2
Qt 4 Devel C++ 03/09–04/15 1.5M 36K 7 122 5
Rails Devel Ruby 11/04–06/15 200K 49K 146 213 2
Salt Devel Python 02/11–06/15 200K 44K 204 205 3
U-Boot Devel C 12/02–06/15 1.2M 32K 114 134 2

50 KLOC to over 16 MLOC, number of developers from 25 to 1000), (b) age (days since
first commit), (c) technology (programming language, libraries), (d) application domain
(operating system, development, productivity, etc.), and (e) version-control system used
(Git, Subversion). We chose these projects because they are all widely deployed, and have
long development histories. The data and list of figures for all projects are available at the
supplementary Web site.

4.3 Developer-Group Stability

To address H1, we now present the results regarding the stability of the groups of core and
peripheral developers. We applied the procedure described in Section 3.3 to construct a
Markov chain representing the transitions between the four possible developer states (core,
peripheral, isolated, and absent). Considering the evolution of all subject projects, the primary
finding is that core developers are significantly less likely to withdraw compared to non-core
developers. In Table 2, we present the Markov chain for each subject project.

Evolutionary Trends of Developer Coordination: A Network Approach 23

Table 2: Probabilities of developer state transitions

absent core isolated peripheral

absent 0.964 0.003 0.007 0.027
core 0.017 0.617 0.010 0.356

isolated 0.322 0.022 0.291 0.365
peripheral 0.181 0.103 0.077 0.639

(a) Apache HTTP

absent core isolated peripheral

absent 0.978 0.001 0.000 0.021
core 0.017 0.698 0.000 0.285

isolated 0.347 0.006 0.136 0.511
peripheral 0.170 0.089 0.003 0.738

(b) Chromium

absent core isolated peripheral

absent 0.982 0.002 0.002 0.015
core 0.095 0.680 0.006 0.218

isolated 0.433 0.022 0.239 0.306
peripheral 0.332 0.081 0.027 0.559

(c) Django

absent core isolated peripheral

absent 0.987 0.000 0.001 0.012
core 0.012 0.700 0.001 0.287

isolated 0.349 0.007 0.208 0.436
peripheral 0.193 0.092 0.017 0.698

(d) Firefox

absent core isolated peripheral

absent 0.992 0.000 0.001 0.007
core 0.000 0.823 0.000 0.177

isolated 0.155 0.001 0.556 0.288
peripheral 0.057 0.050 0.017 0.876

(e) GCC

absent core isolated peripheral

absent 0.969 0.006 0.000 0.026
core 0.246 0.500 0.000 0.253

isolated 0.500 0.000 0.500 0.000
peripheral 0.433 0.095 0.000 0.473

(f) Homebrew

absent core isolated peripheral

absent 0.979 0.002 0.004 0.016
core 0.107 0.638 0.005 0.251

isolated 0.416 0.032 0.348 0.204
peripheral 0.298 0.095 0.051 0.556

(g) Joomla

absent core isolated peripheral

absent 0.980 0.001 0.001 0.018
core 0.051 0.624 0.006 0.318

isolated 0.250 0.125 0.000 0.625
peripheral 0.344 0.088 0.004 0.564

(h) jQuery

absent core isolated peripheral

absent 0.972 0.002 0.001 0.025
core 0.053 0.681 0.001 0.264

isolated 0.401 0.016 0.184 0.399
peripheral 0.291 0.086 0.009 0.614

(i) Linux

absent core isolated peripheral

absent 0.980 0.000 0.003 0.017
core 0.014 0.719 0.002 0.265

isolated 0.351 0.015 0.224 0.409
peripheral 0.187 0.093 0.029 0.690

(j) LLVM

absent core isolated peripheral

absent 0.974 0.000 0.004 0.022
core 0.000 0.691 0.000 0.309

isolated 0.412 0.000 0.329 0.259
peripheral 0.218 0.102 0.021 0.660

(k) Mongo

absent core isolated peripheral

absent 0.972 0.002 0.003 0.023
core 0.119 0.686 0.008 0.187

isolated 0.538 0.015 0.288 0.159
peripheral 0.406 0.081 0.046 0.467

(l) Node.js

absent core isolated peripheral

absent 0.982 0.001 0.004 0.014
core 0.021 0.672 0.008 0.299

isolated 0.353 0.022 0.323 0.302
peripheral 0.198 0.099 0.059 0.643

(m) PHP

absent core isolated peripheral

absent 0.991 0.000 0.001 0.008
core 0.005 0.837 0.001 0.158

isolated 0.164 0.000 0.507 0.330
peripheral 0.109 0.047 0.017 0.828

(n) QEMU

24 Mitchell Joblin et al.

absent core isolated peripheral

absent 0.964 0.003 0.010 0.022
core 0.103 0.564 0.030 0.303

isolated 0.395 0.048 0.349 0.208
peripheral 0.257 0.101 0.055 0.588

(o) Qt 4

absent core isolated peripheral

absent 0.994 0.000 0.000 0.005
core 0.033 0.813 0.000 0.153

isolated 0.185 0.005 0.439 0.372
peripheral 0.147 0.045 0.010 0.798

(p) Rails

absent core isolated peripheral

absent 0.986 0.001 0.001 0.013
core 0.020 0.834 0.001 0.146

isolated 0.162 0.003 0.545 0.290
peripheral 0.137 0.047 0.014 0.803

(q) Salt

absent core isolated peripheral

absent 0.980 0.003 0.001 0.016
core 0.121 0.589 0.006 0.283

isolated 0.440 0.027 0.167 0.365
peripheral 0.341 0.096 0.030 0.533

(r) U-Boot

For illustration, we describe the Markov chain for QEMU as a representative of the
primary result. Reading across the row labeled “core” of the table for QEMU, we see that
core developers are very unlikely to leave the project with only a 0.5% chance. In comparison
to developers in the peripheral state and isolated state, the chance of becoming absent is
11% and 16% respectively. We see that it is a common phenomenon that the core developers
are 5 to 10 times less likely to leave a project in comparison to peripheral developers. This
result is convincing evidence that the groups of peripheral and isolated developers, or more
generally non-core developers, are significantly less stable than core developers. Furthermore,
we see that, once a developer enters the absent state, there is an overwhelming probability that
the developer will not return to the project. This result suggests, once a developer becomes
absent for a single revision, in most cases, she will not participate in contributing code in the
future. Since entering the absent state most likely indicates a total lost of the individual and
any valuable knowledge they possess, the peripheral developers introduce risk through their
volatility.

For all subject projects, our data indicate that the core developer group is significantly more
stable than the peripheral developer group, and on this basis, we accept H1.

4.4 Scale Freeness

We now discuss the results of applying the procedure described in Section 3.4 to address H2.
The primary goal is to determine whether a power-law degree distribution is a plausible model
for describing the observed developer networks and thus can be characterized as scale-free
networks. We must eliminate Apache HTTP from this evaluation because the project has
too few developers, and the statistical error with small sample sizes can lead to inaccurate
conclusions (Clauset et al, 2009). For the remaining 17 projects, if the goodness-of-fit p value
is greater than 0.05, we can confidently conclude that the network is scale free.

One primary finding, which is true for 17 subject projects, is that the scale-freeness
property is temporally dependent, which means that this property is not universally present
with respect to time. This is notable because it is a distinctly different view point from prior
studies that approached the topic of scale freeness from a temporally static perspective (López
et al, 2006). To illustrate this result, a typical chronological profile is shown in the left portion
of Figure 8, taken from LLVM. The top figure illustrates the network growth in terms of
the number of developers contributing to the project, and the bottom figure illustrates the

Evolutionary Trends of Developer Coordination: A Network Approach 25

0

50

100

0.0

0.2

0.4

D
eveloper C

ount
G

ini C
oefficient

2003 2005 2007 2009 2011 2013 2015

Time

Not Scale Free

Scale Free

(a) LLVM

0

20

40

0.0

0.1

0.2

0.3

0.4
D

eveloper C
ount

G
ini C

oefficient

2011 2013 2015

Time

Not Scale Free

Scale Free

(b) Node.js

Fig. 8: Evolutionary profile for entire history of LLVM and Node.js. Time series are shown
for the Gini coefficient (bottom) and the number of developers (top). A smooth curve is fitted
to the observations with the 99% confidence interval shown in gray. The shape of the data
points indicates whether the network was scale free for a given point in time.

Gini coefficient. Each sample point represents a measurement for a single developer network
that is computed for a single development time window. The shape of the sample point
represents whether the network is scale free during the given development window. To help
draw attention to the general trends in the data, a smooth curve has been fitted using locally
weighted scatterplot smoothing, with 99% confidence intervals in gray.

The evolutionary profile of a project is typically composed of the following three distinct
temporal phases. The initial phase, which can last for a number of years, is characterized by
extremely limited growth in the number of contributing developers. In Figure 8, for LLVM,
this phase occurs from the project’s beginning in 2002 until 2006. During this period, the
network exhibits high levels of coordination equality, because most developers are similar
with respect to the degree of coordination with other developers and so the coordination
requirements are uniformly distributed among all developers. The magnitude of coordination
equality in the network is quantified using the Gini coefficient of the corresponding degree
distribution. This is shown in Figure 8, for LLVM, where we see an initially low Gini
coefficient (i.e., high equality). A low Gini coefficient indicates that, during this initial phase,
most developers are similar in their degree of coordination with others, and the network is
not scale free (i.e., it lacks the characteristic hub nodes discussed in Section 3.4).

In the second phase, we see that projects reach a critical mass point, at which a positive
trend component is visible in the number of contributing developers. For LLVM (see Figure 8),
this transition point occurred in late 2006 to early 2007 and the second phase lasts until mid
2011. Following the transition point, super-linear growth with an increasing slope occurs
until the end of the analysis period. During that time, the Gini coefficient also has a positive
trend component, indicating that the network has progressively less equality, because hub
nodes, with significantly more coordination requirements than the average developer, begin
to form. During this phase, the scale-freeness property emerges for the first time, but the
state of being scale free is initially unstable. Most of the projects become scale free once

26 Mitchell Joblin et al.

the network size has reached roughly 50 developers, but in no case does a network exceed
a size of 86 developers without first becoming scale free. The only exception is for Linux
because we did not have sufficient data to observe the early phases. The number of developers
contributing to the project when the first appearances of scale freeness occurs is shown in
Table 2 for all projects under the column label “SF Size”. Overall, the two important results
from this phase are that, during time periods with much less than 50 developers, developer
equality is relatively high and scale freeness is not a common property. In contrast, during
periods that significantly exceed 50 developers, developer networks are predominantly scale
free. Essentially, the scale-freeness property appears to be dependent on the network size and
the time of observation.

In 12 projects (Chromium, Django, Firefox, GCC, Homebrew, Joomla, Linux, LLVM,
QEMU, Rails, Salt, and U-Boot), a third phase is visible in which the scale-freeness property
stabilizes and is rarely lost. In Figure 8 for LLVM, this phase begins shortly after mid 2011
and extends until the end of the analysis period. By means of a visual inspection of the time-
series data, a number of patterns is clearly visible. In all of the projects that achieve stable
scale freeness (i.e., a scale-free state that is maintained over several consecutive analysis
windows), they demonstrate the capability of long-term sustained (e.g., over the period of
several years), and often accelerating, growth in the number of contributing developers. This
is visible in Figure 8 for LLVM, where we observe an increasing slope in the number of
developers year over year, and growth continues on until the end of the analysis period. In
the other 6 projects (Apache HTTP, jQuery, Mongo, Node.js, Qt 4, and PHP), scale freeness
is either never achieved, remains unstable indefinitely, or is lost indefinitely. The growth
profile in these 6 projects is very different from the projects that achieve stable scale freeness,
and growth appears to be unsustainable because project growth rates decrease with time and
often the number of contributing developers even drops. An example of these two distinct
cases is presented in Figure 8, where LLVM reaches stable scale freeness and has long
term accelerating growth. In contrast, Node.js does not achieve stable scale freeness and has
unsustainable growth with long-term loss of developers. The percentage of time each project
spends in a scale-free state is shown in Table 2 under column “% SF”. The measurements
indicate that the large projects that have had long term growth spend a significantly larger
percentage of time in a scale-free state in comparison to projects without long-term sustained
growth.

A scale-free network is characterized based on whether the tail of the degree distribution
is described by a power law (see Section 3.4). A rarely addressed yet important factor, though,
is the proportion of nodes that are described by the power law. We illustrate this point in
Figure 9, where the tail region described by the power law excludes the majority of developers
of the Linux kernel. We found that, in all projects, the proportion of developers that are
described by the power law is low and typically ranges between 20%–50%. We saw that,
there is an inverse relationship between the network size and the percentage of developers that
are characterized by a power law. We illustrate the results for all projects in Table 2, where
column “kmin” represents the lower bound for the power-law distribution, column “% Dev SF”
represents the percentage of developers the are described by the power-law distribution, and
column “SF Dev” represents the absolute number of developers described by the power-law
distribution. These measurements are taken from the most recent analysis period, and the
corresponding analysis windows are provided in Table 2.

We found two interesting outlier projects with respect to the presence of the scale-freeness
property. For PHP and jQuery, the network size reached a peak at roughly 50 developers
for several months yet never reached a stable scale-free state. After the peak, both projects
experienced years of continuous loss of developers and never recovered. Another interesting

Evolutionary Trends of Developer Coordination: A Network Approach 27

kmin

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
Node degree

D
en

si
ty

Observed

Power law (fitted)

Fig. 9: Power law fitted to the degree distribution for Linux. The power-law distribution
describes the developers with a degree greater than kmin, the majority of low degree developers
are not described by a power law.

outlier is Firefox, where during the period of September 2009 to December 2009, the network
was frequently and unexpectedly not scale free. While the definitive cause of the disruption
is unknown, we learned that, during this period, Firefox experienced severe release problems
resulting in a major revision being released one year late.3 It is interesting to note that
the network-structure disturbances were observable several months before the first public
announcement of release problems.

In summary, our study suggests that open-source software projects lack a scale-free structure
in the initial phases while the developer network scale is small. In developer networks where
growth significantly exceeds 50 developers, we always observe the emergence of scale
freeness and no project ever grew beyond 86 developers without first becoming scale free.
The caveat is that the scale-freeness property is temporally dependent, and in some projects,
remains in an oscillatory state indefinitely. Overall, we accept H2.

4.5 Modularity

The clustering coefficient is a means to measure the extent to which developers form cohesive
groups. In Figure 10, we present the evolution of developer networks with respect to their
clustering coefficients for all subject projects. The evolution of each project is illustrated by
a time series that represents the mean clustering coefficient with a light gray boundary to
indicate the 99.5% confidence interval. There is one evolutionary profile, in particular, that
describes the majority of the subject projects. This profile is characterized by a positive trend
component (i.e., increasing clustering coefficient) that smoothly converges to a clustering
coefficient range of 0.45–0.55. For the projects that do not fit this profile, the positive trend
component is not observable, possibly because we do not have a complete project history. For
example, the development of the Linux kernel was started in 1996, but the publicly available
Git repository only has commits dating back until early 2005. In Table 2, we present the
results of the mean clustering coefficients (column “µcc”) and variances (column “σ2

cc”) for
the most recent revisions of each project.

3 http://www.cnet.com/news/mozilla-pushes-back-firefox-3-6-4-0-deadlines/

http://www.cnet.com/news/mozilla-pushes-back-firefox-3-6-4-0-deadlines/

28 Mitchell Joblin et al.

Table 2: Developer network structural measurements

Scale Free Modularity Hierarchy

Project S.F. size %S.F. kmin % Dev S.F. # Dev S.F. µcc σ2
cc β1early β1late

Apache HTTP N/A 0.00 7 0.46 6 0.49 0.12 -1.14 -0.85
Chromium 71 97.60 1012 0.08 53 0.44 0.04 -0.40 -0.35
Django 42 25.00 49 0.60 59 0.57 0.04 -2.32 -0.51
Firefox 73 90.60 481 0.07 30 0.48 0.05 -0.43 -0.27
GCC 36 55.90 164 0.26 30 0.43 0.04 -0.73 -0.40
Homebrew 80 87.50 355 0.49 230 0.61 0.02 -1.28 -0.29
Joomla 55 20.00 2 0.66 35 0.38 0.16 -1.67 -0.66
jQuery 30 1.41 5 0.80 4 0.47 0.10 -2.09 -1.66
Linux 515 98.80 1521 0.05 69 0.58 0.05 -0.28 -0.25
LLVM 46 32.70 51 0.24 30 0.45 0.08 -2.22 -0.39
Mongo 51 3.28 30 0.67 30 0.38 0.07 -2.30 -0.53
Node.js 35 16.30 1 0.47 9 0.16 0.10 -2.30 -1.33
PHP 46 14.60 29 0.65 30 0.45 0.08 -0.85 -0.44
QEMU 37 61.00 88 0.27 31 0.53 0.05 -2.19 -0.35
Qt 4 86 43.80 3 0.86 6 0.68 0.12 -0.50 -0.92
Rails 38 69.20 55 0.21 30 0.58 0.08 -2.17 -0.34
Salt 32 82.20 89 0.36 74 0.55 0.07 -0.95 -0.31
U-Boot 41 64.60 41 0.58 66 0.60 0.05 -1.39 -0.29

S.F. size – network size at first appearance of scale freeness
% S.F. – percent of time the project exhibits scale freeness
kmin – minimum bound on the power-law distribution
% Dev S.F. – percent of developers described by the power-law distribution
Dev S.F. – number of developers described by the power-law distribution
µcc – mean value of clustering coefficient for latest development cycle
σ2

cc – variance of clustering coefficient for latest development cycle
β1early – slope parameter for an early development cycle
β1late – slope parameter for the most recent development cycle

The only project which does not closely adhere to the general pattern of convergence is
Qt. The exceptional behavior seen in Qt is likely a consequence of the significant decrease in
the number of active developers and possibly represents an evolutionary anti-pattern. The
number of developers contributing to Qt is high until 2011 (see Figure 11), but this period
is followed by several years of rapid decline. Similarly, we see that the mean clustering
coefficient profile fits the general pattern until 2011, where the value suddenly drops and
then oscillates before a radical upswing. It is worth noting that Qt is the only subject project
exhibiting this pattern, and it is similarly the only subject project that has had such significant
decline in number of contributing developers.

For the majority of the projects, the fact that they do not ever significantly exceed
a clustering coefficient of 0.55 suggests that there is a limitation to the distribution of
coordination requirements in the local developer neighborhood. To give a reference point, a
clustering coefficient of 0.5 for a node means that there are edges between half of the nodes
neighbors. We observe that there is a preference to achieve a state where roughly half of every
developer’s neighbors also have a coordination requirement (i.e., an edge). The evolutionary
profiles of our subject projects indicate that developer networks evolve according to a process
that promotes coordination requirements increasing up to a maximum, but that prevents the
formation of coordination requirements between too many developers. There appears to be no
non-zero lower bound on the clustering coefficient, but in all cases, an initially low clustering
coefficient does tend to converge towards a clustering coefficient of 0.5. The implication of

Evolutionary Trends of Developer Coordination: A Network Approach 29

Fig. 10: Clustering-coefficient time series for all subject projects. The light gray area indicates
the 99.5% confidence interval.

30 Mitchell Joblin et al.

Fig. 11: Developer count and mean clustering coefficient evolution for Qt with the standard
error bars for the mean clustering coefficient included. The significant decline in devel-
oper count co-occurs with instability in the clustering coefficient, indicating that departing
developers have a significant impact on the local connectivity of the developer network.

a bound is that no observation should ever violate the bound by crossing it. In this sense,
we are not able to prove that the upper limit that we observed will never be violated. The
statement that we are able to make at this point is that the observations made on these 18
subject projects are evidence that a bound may exist. Particularly, the smooth convergence
(i.e. gradual decrease in first derivative) to this upper limit is indicative of a bound that is not
likely to be crossed in the future.

To better understand the mechanism behind the tendency for developers to form cohesive
groups, we examined the relationship between network size (i.e., number of developers) and
clustering coefficient. In all cases, we found that the clustering coefficient increases with
the network size, however, this dependency decreases as the network size increases. This
relationship is shown for subject project Django in Figure 12, which illustrates a roughly
logarithmic relationship between network size and clustering coefficient. This is a notable
result because, in the ER random graph described in Section 2.3, the clustering coefficient
decreases with network size, and in many real-world networks, clustering coefficient and
network size are independent (Albert and Barabási, 2002). From this observation, we conclude
that developer networks form groups according to a non-random organizational principle
that is also different from the preferential-attachment model used to explain many real-world
scale-free networks.

Evolutionary Trends of Developer Coordination: A Network Approach 31

0.2

0.3

0.4

0.5

0.6

0 25 50 75 100

Network Size

M
ea

n
C

lu
st

er
in

g
C

oe
ffi

ci
en

t

Fig. 12: Clustering coefficient versus network size for the history of Django, with a light gray
boundary to indicate the 99.5% confidence intervals.

It has been hypothesized that, at a critical upper bound, the cost incurred from the overhead
of coordination exceeds the benefit of coordinating (Brooks, 1995). Our results indicate that
this bound indeed does exist and that developer coordination is constrained to evolve in a
manner that promotes groups to form but not to exceed an upper bound. The evidence shown
here is not definitive proof of a bound, but it is supportive of the conjecture that a bound
exists. Thus, we accept H3.

4.6 Hierarchy

In Section 2.5, we introduced the concept of hierarchy in terms of its relation to scale freeness
and modularity: hierarchy is mathematically defined by a linear dependence between the log-
transformed clustering coefficient and the node degree. We illustrate the results of applying
the method described in Section 2.5 in Figure 13, where the evolution of hierarchy in an
early stage (top) and late stage (bottom) is shown for Firefox. In the early state, we are
able to see that the network exhibits global hierarchy, because a linear model of the form
Y = β0 +β1X describes the observed data, where X is the degree of a developer and Y is
the clustering coefficient. In Section 2.5, we showed that a hierarchical network has the
property that the log-transformed degree and log-transformed clustering coefficient exhibit
a linear dependence. The results indicate that the linear model achieves a good fit, which
is evident by an R2 value of 0.894. Furthermore, the p value indicates that the linear model
slope parameter β1 is significantly different from zero, and so we can conclude that global
hierarchy is present. In the late stage (bottom figure), the linear model no longer describes
the global set of developers, instead it only describes the high degree nodes. In this case, we
can conclude that a global hierarchy is no longer present and hierarchy predominantly exists
in the high degree core developer group.

The principal evolutionary trend with respect to hierarchy is the following: In early stages,
developers are arranged in a global hierarchy. In later stages, a hybrid structure emerges,
where only the core developers are hierarchically arranged, but the global hierarchy is no
longer present. We observed that there is a smooth transition between the early and late
stages, shown for Firefox in Figure 13, which leads to a gradual deconstruction of the global
hierarchy. The gradual deconstruction process is shown in Figure 14, where we illustrate the

32 Mitchell Joblin et al.

R^2 = 8.94e−01
p value = 7.77e−58

R^2 = 9.10e−01
p value = 2.42e−82

1999−06−21

2015−06−27

1.00

0.50

0.25

1.00

0.50

0.25

10 100

Node Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Fig. 13: Early and late stage hierarchy of Firefox. The fitted linear model is superimposed on
a scatter plot of node degree versus clustering coefficient. In the early stage (top), the linear
model describes the complete data set indicating global hierarchy. In the late stage (bottom),
global hierarchy is not present since only the high-degree nodes are described by the linear
model. The linear model in the late stage has been fitted only to the high degree nodes.

continuous evolution of hierarchy over the entire history of LLVM. Each sample represents
the slope parameter β1 of the linear model describing the hierarchy in the project at a single
point in time. We see that hierarchy is most significant (largest negative slope) at the start and
is progressively lost until virtually no global hierarchy is present (i.e., near zero slope) in the
most recent revision. The results for all projects are shown in Table 2, where column “β1early ”
represents the linear-model slope parameter at an early stage and column “β1late ” represents
the slope parameter at a late stage. The early stage represents the earliest analysis window
with more than five developers present, and the late stage represents the most up-to-date
analysis window. We are able to see that, in all projects except one (Qt 4), β1early < β1late

indicating that the hierarchy has diminished over time.
The results certainly suggest that, from a global perspective, developer hierarchy dimin-

ishes with time, but the mechanism responsible for the transformation is not obvious. To
investigate this process further, we examined the high-degree nodes (i.e., core developers)
and found that they are hierarchically arranged at all times. Furthermore, the mechanism for
decomposing the global hierarchy is established through the introduction of low-degree and
mid-degree nodes, which do not obey the hierarchy established by the high degree nodes. In
essence, the developers become divided into two high-level organizational structures: The
highest-degree nodes (core developers) are hierarchically arranged and the mid-to-low-degree
nodes (peripheral developers) are not hierarchically arranged. This is visible in the late stage
scatter plot of Figure 13, where beyond the break point (at a degree of roughly 250), the
nodes obey a linear dependence and are thus hierarchically arranged. This evidence suggests

Evolutionary Trends of Developer Coordination: A Network Approach 33

that the differences between core and peripheral developers are not entirely explained by their
distinct participation levels, but they are also distinct in how they are structurally embedded
in the organization.

As a project grows and becomes more complicated along numerous dimensions, we expected
changes in the command-and-control structure. The expected trend was towards greater
distribution of influence, which would manifest as the elimination of a global hierarchy. Our
results indicate that, over time, hierarchy vanishes by the introduction of a large number of
low and mid-degree developers that do not arrange into a hierarchy. We did also find evidence
that extremely high-degree developers remain hierarchically arranged over time, though,
they only constitute a very small faction of the project’s developers. Overall, we accept H4,
because the hypothesis is a statement regarding the global structure and, in that sense, the
evidence indicates that global hierarchy vanishes over time.

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●

●●●●

●●
●

●

●●●●
●●

●
●

●
●

●
●

●
●●

●
●

●

●●
●

●

●
●●●●●●●●

●
●●

●
●●●

●●●●

−2.0

−1.5

−1.0

−0.5

0.0

2004 2006 2008 2010 2012 2014

Time

Li
ne

ar
 M

od
el

 S
lo

pe

Fig. 14: Evolution of hierarchy for the entire history of LLVM. The gray area indicates the
99% confidence interval, and error bars denote the standard error on the slope estimate. The
trend indicates that hierarchy is decreasing over time as the linear model slope β1 tends
towards zero.

5 Threats to Validity

External Validity. We draw our conclusions from a manual selection of 18 open-source
software projects. The manual selection and the choice to analyze only open-source soft-
ware projects is a threat to external validity. We mitigated the consequences by choosing a
wide variety of projects that differ in many dimensions and constitute a diverse population.
Furthermore, we considered the entire history to prevent temporally biasing our results. We
specifically chose only large projects with very active histories because our contributions
are focused on understanding complexity in developer coordination, and in small projects
(e.g., less than 10 developers), the coordination challenges are less severe. Due to certain
limitations of our current analysis infrastructure, we are unable to include complete analyses
of software ecosystem projects, such as Eclipse4, because they are typically distributed among
multiple repositories.

4 https://eclipse.org/

https://eclipse.org/

34 Mitchell Joblin et al.

Internal Validity. We examined the evolution of developer networks over time, however, it is
conceivable that factors other than time have an influence on the observed trends, threatening
internal validity. By considering the influence of network size, we accounted for the most
likely confounding factor. Furthermore, we found that the trends are often consistent across
several projects, and we rigorously employed statistical methods to avoid drawing conclusions
from insignificant fluctuations in the data.

Construct Validity. Our methodology relies, to some extent, on the integrity of the data in the
version-control system to generate a valid developer network, threatening construct validity.
Since the version-control system is a critical element of the software-engineering process, it
is unlikely that the data would be significantly corrupt. In terms of network construction, the
heuristics we rely on have been shown to generate authentic developer networks, but do omit
some edges (Joblin et al, 2015). However, a few omitted edges would not severely impact the
conclusions of our study. Furthermore, our enhancement of this form of developer networks to
recover omitted edges is based on a technique that has been shown to authentically represent
system coupling (Bavota et al, 2013). The operationalizations of scale freeness, modularity,
and hierarchy are thoroughly studied and well-established concepts in the area of network
analysis. We further relied on the degree of nodes to operationalize the concept core and
peripheral developers. Although the application concepts from social network analysis to
socio-technical developer networks is relatively new, empirical evidence is accumulating that
suggests the metrics are reliable and valid (Meneely and Williams, 2011; Joblin et al, 2015,
2016).

6 Discussion & Perspectives

The results of our study on the evolution of developer networks revealed several intriguing
patterns. We will now discuss the relevance and potential explanation for these network
patterns by linking them to software-engineering principles. Specifically, we discuss a likely
model for growth of a project, a source of pressure for developers to become more coordinated
with time, and the benefits of a hybrid organizational structure that is hierarchical for core
developers and non-hierarchical for peripheral developers.

RQ1: Our first research question asked what evolutionary adaptations are observable in the
evolution of developer networks. In terms of scale freeness, we saw that projects do not
begin in a scale-free state, instead this property emerges over time. Initially, the structure of
developers exhibits high homogeneity and then, over time, hub nodes (i.e., very involved
developers) appear that are responsible for a disproportionately large number of coordination
requirements. We also saw that adaptations occur in the modularity of developer networks.
Developers are loosely clustered initially, but, over time, clustering increases and gradually
converges to a state where half of every developer’s neighbors have coordination requirements.
Finally, the structural property of hierarchy also changes over the course of time. Initially,
projects have a globally hierarchical organization. Over time hierarchy is lost, as peripheral
developers are introduced to the network, which do not assimilate into the hierarchy. Still,
hierarchy is always maintained for the highly-connected core developers.

RQ2: Our second research question focused on the relationship between these changes in the
organizational structure and the scale of a project. Most of our subject projects experience
steady growth over time. Presumably, many of the evolutionary principles we observed are

Evolutionary Trends of Developer Coordination: A Network Approach 35

closely related to the increasing scale of the project. For a couple of projects, we saw the
growth stagnate or the overall size decrease. In these projects, we saw the reverse of what
was seen during project growth. For example, the scale-free property was lost and clustering
decreases. At this point, our results suggest a strong dependence between the scale of a
project and the properties of its organizational structure. It appears that projects of different
size exhibit different structural features of the organization. This result is interesting to
the general software-engineering community, because it suggests that, when determining
how to organize developers, it is crucial to consider how many developers will be involved
in the implementation. In projects with few developers (e.g., less than 30), it may not be
necessary to have developers that are highly dedicated to coordinating the work of others,
and each developer can essentially occupy equivalent structural positions in the organization.
However, in a very large project (e.g., 30 or more), it may be crucial to have developers
entirely dedicated to coordinating the work of other developers and to occupy hub positions
that span the organizational structure.

Scale freeness: To better understand the growth behavior of developer networks, we ex-
amined the relationship between a project’s growth state (increasing or decreasing) and
the scale-freeness property of its developer network. The model of preferential attachment,
which is the predominant generative model for scale-free networks, has the simultaneous
requirements that the network must grow and that new nodes have a preference to attach
to already well-connected nodes (Barabási and Albert, 1999). We found that, in this regard,
the evolution of developer networks into a scale-free state is consistent with the model for
preferential attachment. For several projects, the scale-freeness property is only observable
during network growth and is lost during periods of growth stagnation or decrease, as shown
for Node.js in Figure 8. Furthermore, the loss of the scale-freeness property often precedes the
stagnation or loss of developers. While it would be premature to make any strong statement
about causality, the combination of correlation and preceding in time makes the loss of the
scale-free state a conceivable predictor for the loss of growth in the project. These results
suggest that, if a project grows beyond a certain size, the coordination structure will exhibit
strong inhomogenity in the distribution of coordination requirements among developers. It
seems that there is a driving force that encourages a relatively small group of developers to
bear the majority of the coordination burden. As a project achieves a large size (50 developers
or more), this need for hub nodes in the coordination structure appears to be more critical.
Software engineers should consider the project size when determining how to distribute the
tasks among developers and how modes of collaboration between the multiple development
sites should be realized.

Modularity: In Section 4.5, we noted that an increasing clustering coefficient is a common
evolutionary trend. This is a curious result because, in the ER random graph model (see
Section 2.3), the clustering coefficient decreases with increasing network size, while in
the preferential-attachment model, the clustering coefficient is independent of network
size (Ravasz and Barabási, 2003). So, this result begs the question of what the driving
force behind this unique evolutionary trend is. From the theory of software evolution, we
expect that the natural tendency for an architecture is to become more strongly coupled over
time, as complexity increases and initially clean abstraction layers deteriorate (Lehman and
Ramil, 2001), which has been observed also in practice (Mens et al, 2008). Additionally,
Conway’s law suggests that the organizational structure and the structure of technical artifacts
produced by the organization are constrained to mirror each other (Conway, 1968). Based
on these principles, we hypothesize that the evolution of the artifact structure is the driving

36 Mitchell Joblin et al.

force that influences developers to become more coordinated. Software engineers should be
conscientious of the increasing demand on developers to coordinate with more developers as
the software evolves. In the later stages of a project, it may be critical to shift more attention
towards mechanisms that support effective coordination between developers. It may even
be necessary to reduce the task load on developers in later stages of a project, to ensure that
the coordination requirements receive sufficient attention; otherwise a decrease in software
quality is a legitimate threat.

Hierarchy & Stability: One of the most intriguing characteristics of open-source software
projects is the strongly inhomogeneous distribution of effort between core and peripheral
contributors (Koch, 2004; Toral et al, 2010; Mockus et al, 2000). This characteristic is distinct
from typical commercial development setups and is conceivably responsible for enabling
open-source software projects to scale without reducing overall productivity, which violates
conventional software-engineering wisdom (Koch, 2004). Typically, core and peripheral
developers are classified based on the number of commits, lines of code, or e-mails they
contributed (Joblin et al, 2016). Interestingly, we discovered that the differences between
the two groups are also observable in their organizational structure and stability, where the
group of core developers is both hierarchically organized and relatively stable, but the group
of peripheral developers is both unstable and not hierarchically organized. We think that the
reason for peripheral developers not assimilating into the hierarchy stems from pressures
to form a hybrid organizational structure that promotes regularity while also remaining
flexible. The process of software development demands a high degree of consistency and, for
this reason, hierarchies are appropriate organizational structures. However, hierarchies are
intrinsically inflexible structures (Kotter, 2014). In open-source software projects, there is
pressure for the organizational structure to remain flexible because, as we have shown, open-
source software projects have high developer turnover rates for the peripheral developers,
who constitute the majority of the contributors. It is conceivable that the existence of a
hybrid organizational structure is even a signal of project health by indicating that the
organization has responded to the adaptation pressures that are present in open-source
software development. To the wider software-engineering community, this result indicates
that a software project may benefit from embedding developers into the organizational
structure differently depending, on their experience level and likelihood of leaving the project.
For example, a hierarchy can be an efficient structure when the members of the hierarchy
a not likely to exit the hierarchy. In the same way that open-source software development
avoids embedding the volatile peripheral developers into the hierarchy composed of core
developers, it may offer benefit for any software project to avoid integrating inexperienced or
potentially volatile developers into their hierarchical organizational structure.

7 Related Work

Lopez et al. first studied developer coordination by linking developers based on mutual con-
tributions to modules for a static snapshot of three open-source software projects. They found
that developer networks are not scale free, based on a visual inspection of the cumulative
degree distribution (López et al, 2006). Jermakovics et al. constructed networks based on
contributions to files for three projects, and they developed a graph-visualization technique
to represent the developer organizational structure (Jermakovics et al, 2011). Toral et al.
constructed developer communication networks based on the Linux kernel e-mail archives
between 2001 and 2006 (Toral et al, 2010). They found that participation inequality is present

Evolutionary Trends of Developer Coordination: A Network Approach 37

in the communication network, and they introduced a core–peripheral-developer classifica-
tion scheme. We differentiate our work by analyzing the entire project history and viewing
developer coordination as an evolutionary process. Our network-construction procedure has
demonstrated valid results with respect to capturing developers’ perception of who they
collaborate with and reveals a statistically significant community structure, which is obscured
by the more coarse-grained approaches used in prior work (Joblin et al, 2015). Additionally,
we use a fully automated and statistically rigorous framework to reduce subjectivity, and we
draw our conclusions from 18 projects instead of just two or three. We build on prior work by
explaining the commonly observed network features (e.g., participation inequality) in terms
of the important structural concepts of scale freeness, modularity, and hierarchy.

Louridas et al. studied structural dependencies between classes and packages of 9 software
systems using static source-code analysis techniques (Louridas et al, 2008). They found
that power-law distributions are a ubiquitous phenomenon in the dependency structure by
fitting a line to the log-scale degree distribution. Our work is complementary by identifying
power-law distributions in developers’ coordination requirements. This is a step towards an
empirical validation of Conway’s law by showing that a necessary condition is met regarding
the match between the organizational structure and technical artifact structure.

While there is a number of theories regarding developer turnover and its effects, current
empirical results are limited. Foucault et al. examined the relationship between internal
and external developer turnover on software quality in terms of bug density (Foucault
et al, 2015). Consistent with current theories, they found that high external turnover has a
negative influence on module-level bug density. Others have explored factors that contribute
to developer turnover and motivations for long-term involvement (Yu et al, 2012; Hynninen
et al, 2010; Schilling et al, 2012). Mockus found that developers leaving projects negatively
influence code quality, while new developers entering the project have no influence (Mockus,
2010). Oddly, the results of Mockus and Foucault et al. do not agree, which may suggest that
the influence of turnover is dependent on additional context factors. In our work, we primarily
focused on the relationship between the turnover characteristics of core and peripheral
developer groups and how these distinct groups are structurally embedded in the organization.
We use the distinct turnover rates to rationalize the evolution of the developer network as an
optimization process.

Godfrey et al. were the first to study software evolution in open-source software and
found that the Linux kernel violates principles of software evolution by achieving super-linear
growth at the system level (Godfrey and Tu, 2000). This was later supported by evidence
extracted from the version control system of 8621 projects on SourceForge.net (Koch, 2004).
Koch found that large open-source software projects violate several laws of software evolution
established for commercial projects (Koch, 2004). Specifically, they showed that developer
productivity is independent of the number of developers in the project—a direct violation of
Brooks’ law (Brooks, 1995). Furthermore, participation inequality is common and increases
with the system size—a result that we confirmed—but the increase in inequality does not
influence developer productivity. Koch proposed that strict modularization, self-organization,
and highly decentralized work are responsible for the high efficiency seen in open-source
software projects, but this was never verified (Koch, 2004). In our study, we found that our
more detailed methodology, which considers source-code structure and software coupling,
supports prior observations. Furthermore, we were able to extend the body of knowledge
by directly studying the evolution of coordination structures that are conjectured to be
responsible for the remarkable properties of open-source software projects.

38 Mitchell Joblin et al.

8 Conclusion

From an organizational perspective, open-source software projects are an extreme example
of large-scale globally-distributed software engineering, and as such, represent a unique
opportunity to study developer-coordination mechanisms. Despite the lack of mandated
organizational structures, we found that open-source software projects are constrained to
evolve according to non-random organizational principles.

Extracting and processing the operational data stored in the version-control system proved
to be challenging. By pairing our network-construction procedure with a sliding-window
technique, we were able to identify important insights that would be hidden in a temporally
static view. In addition, we enhanced the developer networks by using information retrieval
approaches to gain a more rich view of the coordination requirements that exist between
developers. We see these technical contributions as meaningful steps towards advancing the
techniques for mining software repositories.

Based on our longitudinal study of 18 open-source software projects, we found that, in
projects exceeding 50 developers, the coordination structure becomes scale free. We also
found that there is a tendency for an increasing number of coordination requirements to
appear among groups of developers, but the increasing trend is likely limited by a particular
upper bound, where coordination requirements exist between roughly half of every developers
neighbors. Additionally, we discovered that developers are hierarchically arranged in the early
phases of a project, but in later phases the global hierarchy vanishes and a hybrid structure
emerges, where core developers form the hierarchy and peripheral developers exist outside
the hierarchy. With this result, we demonstrated that core and peripheral developers—which
are traditionally defined based on their level of participation—also differ in how they are
structurally embedded in the project’s coordination structure. Overall, the adaptations that we
observed in the structural features balance the opposing constraints of supporting effective
coordination and achieving robustness to developer withdrawal. Finally, we discussed how
these structural features enable a project in benefiting from a large, but volatile, peripheral
developer group, while at the same time, supporting effective coordination and regularity
between the much more stable core developer group. From these results, it is clear that
significant structural changes occur in the coordination structure of a project over time,
and particularly as developers are added. These insights provide valuable information to
software engineering practitioners by highlighting the impact that adding developers has
on the coordination structure. With this knowledge we can begin to establish strategies for
integrating new developers that try to minimize the disruption to the existing coordination
structure.

Apart from the general patterns that explain the majority of subject projects, we also noted
a number of interesting deviations from the general patterns. For example, during a period of
time, when Firefox was experiencing notable project delays and turmoil within the developer
community, we observed that scale freeness suddenly disappeared. In Node.Js, there was an
oscillatory behavior to the number of contributing developers and the scale-freeness property
was lost whenever the project was not in a growing state. Finally, for the few projects that
never became scale free, or only for a brief time, a developer group larger than 60 was never
sustainable and the number of contributing developers decreased shortly after reaching a
maximum, as was the case for PHP, jQuery, and Apache HTTP. It was often the case that
projects deviating significantly from the general patterns were experiencing other negative
project conditions such as significant loss in the number of active developers.

Since large-scale studies of software evolution are rare, and studies on the coordination
structure are even more rare yet, we see our work as an important step towards understanding

39

the coordination mechanisms that are present in large-scale globally-distributed software
engineering. We hope that, by making our analysis infrastructure publicly available, we lower
the barrier to contributing to this field of research and accelerate the pace of progress.

Appendices
A
Function-level Semantic Coupling

To determine function-level semantic coupling, we first extracted the implementation for
each function in the system, including all source code and comments. We then employed
well-established text-mining preprocessing operations with minor modifications for our
specific domain requirements. In this framework, each function is treated as a “document” in
the text-mining sense of the word, and then the document collection was processed use the
following processing operations.

Preprocessing. The preprocessing stage primarily focuses on reducing word diversity and
elimination of words that contain little information. Stemming is to used to reduce words
to their root form by removing suffixes (e.g., “ing”, “ly”, “er”, etc.) from each word in the
document. Stemming is necessary because, even though a root word may have several forms
by adding suffixes, it typically refers to a relatively similar concept in all forms. In software
engineering, there is a number of variable-naming conventions, such as letter-case separated
(e.g., CamelCase) or delimiter separated words that need to be tokenized appropriately.
We added additional preprocessing stages to specifically handle proper tokenization of
popular naming conventions. For example, the function identifier “get user” or “getUser” are
separated into the two words “get” and “user”. One simple example of why this is important
is that getters and setters interacting with the same attribute would be incorrectly understood
as distinct concepts without appreciating the variable-naming conventions. The final stage of
the preprocessing is to remove words that are known not to contain useful information based
on a-priori knowledge of the language. For example, words such as “the” are not helpful
in determining the domain concept of a document. Removing these words is beneficial for
the computational complexity and results by reducing the problem’s dimentionality and
attenuating noise in the data.

Term Weighting. After the preprocessing stage, we arrange all remaining data into a term–
document matrix, for mathematical convenience. A term–document matrix is an M×N
matrix with rows representing terms and columns representing documents. For example, an
element of the term–document matrix TDi, j is non-zero when document d j contains term ti.
All elements of the term–document matrix are integer weights that indicate the frequency of
occurrence of a given term in a given document. We then apply a weight transformation to the
term–document matrix based on the statistics of occurrence for each term. Intuition suggests
that not all terms in a document are equally important with regard to identifying the domain
concept. The goal of the weighting transformation is to increase the influence of terms that
help to identify distinct concepts and that decrease the influence of the remaining terms. The
particular weighting scheme we applied is called term frequency-inverse document frequency:

tf-idft,d = tft × log
N
dft

. (9)

40

The term tf t represents the global term frequency across all documents. The second term
is the logarithm of the inverse document frequency, where N is the number of documents
in the total collection and dft is the number of documents that term t appears. Upon closer
inspection, one can recognize that Equation 9 is: (a) greatest when a term is very frequent,
but only appears in a small number of documents, (b) lowest when a term is present in
all documents, and (c) between these two extreme cases when a term is infrequent in one
document or occurs in many documents.

Latent Semantic Indexing. Even for a modest-sized software project, the number of terms
used in the implementation vocabulary easily exceeds the thousands. The problem with this
becomes evident when adopting the vector-space model, where we consider a document as
a vector that exists in a space spanned by the terms that comprise the document collection.
Fortunately, this very high dimensional space is extremely sparse, which allows us to project
the documents into a lower dimensional subspace, which makes the semantic similarity
computation tractable. We achieve this using a matrix decomposition technique that relies
on the singular value decomposition called latent semantic indexing. An added benefit of
this technique is that it is capable of correctly resolving the relationships of synonymy and
polysemy in natural language (Baeza-Yates et al, 1999). Furthermore, latent semantic indexing
has shown evidence to be valid and reliable in the software-engineering domain (Bavota et al,
2013).

Semantic Similarity. In the final step of the analysis, we determine semantic coupling by
computing the similarity between all document vectors projected onto the lower dimensional
subspace attained from applying latent semantic indexing. We operationalize the similarity
between two document vectors in the latent space using cosine similarity

similarity(da,db) =
da ·db

‖da‖‖db‖
, (10)

where the numerator is the dot product between the two document vectors and the denominator
is the multiplication of the magnitude of the two document vectors. Intuitively, cosine
similarity expresses the difference in the angle between the two document vectors; it equals 1,
when the two vectors are parallel, and 0, if they are orthogonal. Two source-code artifacts are
then considered to be semantically coupled if the cosine similarity exceeds a given threshold.
We experimented extensively with a number of thresholds by manually inspecting the results
and judging whether the functions were, in fact, semantically related using architectural
knowledge of a well-known project5. We found that a threshold of 0.65 was able to identify
most semantic relationships with only a very small number of false positives. We did, however,
cautiously chose the threshold to optimize to avoid false positives rather than false negatives.

B
Analysis Window Selection

We chose to use a sliding-window approach in our study to generate the time-resolved
series of developer networks. Another option would have been to analyze the project using
non-overlapping windows, but this can lead to problematic edge discontinuities between the
analysis windows. For example, a set of several related changes to the software could be

5 http://siemens.github.io/codeface/

http://siemens.github.io/codeface/

41

divided between two different analysis windows, even though the changes occurred temporally
close together. For this reason, a sliding-window approach superior to the alternative for our
purposes, but we also recognized that overlapping windows could influence the appearance
of developer transitions (see Section 3.3), because a commit can appear in two contiguous
analysis windows. To test whether the overlapping windows distorts the overall outcome, we
compared all Markov chains using non-overlapping windows with those using overlapping
windows. The comparison revealed that, in all projects, our conclusion that core developers
are more stable than peripheral developers is true regardless of which windowing strategy is
used. In most cases, using non-overlapping windows increased the probability that a core or
peripheral developer leaves the project, but peripheral developers are always significantly
more likely to leave. For example, in QEMU, using overlapping windows, core and peripheral
developers leave a project with 0.5% and 10.9% chance respectively. In the case of non-
overlapping window this changes to 13% chance for core and 55% chance for peripheral.
The data for both sets of Markov chains are included on the supplementary Web site.

Acknowledgements This work has been supported by the German Research Foundation (AP 206/4, AP 206/5,
AP 206/6).

References

Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Reviews of modern
physics 74(1):47

Arafat O, Riehle D (2009) The commit size distribution of open source software. In: Proc.
International Conference on Systems Sciences, IEEE, pp 1–8

Arias TBC, van der Spek P, Avgeriou P (2011) A practice-driven systematic review of
dependency analysis solutions. Empirical Software Engineering 16(5):544–586

Arnold RS, Bohner SA (1993) Impact analysis-towards a framework for comparison. In:
Proc. International Conference on Software Maintenance, IEEE, pp 292–301

Atkinson AB (1970) On the measurement of inequality. Journal of Economic Theory 2(3):244–
263

Baeza-Yates R, Ribeiro-Neto B, et al (1999) Modern Information Retrieval. Addison-Wesley
Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science

286(5439):509–512
Barabâsi AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social

network of scientific collaborations. Physica A: Statistical mechanics and its applications
311(3):590–614

Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) An empirical study
on the developers’ perception of software coupling. In: Proc. International Conference on
Software Engineering, IEEE, pp 692–701

Begel A, Khoo YP, Zimmermann T (2010) Codebook: Discovering and exploiting relation-
ships in software repositories. In: Proc. International Conference on Software Engineering,
ACM, pp 125–134

Bernard HR, Killworth PD, Evans MJ, McCarty C, Shelley GA (1988) Studying social
relations cross-culturally. Ethnology 27(2):155–179

Bishop CM (2006) Pattern recognition and machine learning. Springer
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure

and dynamics. Physics reports 424(4):175–308
Boehm BW (ed) (1989) Software Risk Management. IEEE

42

Brooks FP (1995) The mythical man-month. Addison-Wesley
Cataldo M, Herbsleb JD (2013) Coordination breakdowns and their impact on development

productivity and Software Failures. IEEE Transactions on Software Engineering 39(3):343–
360

Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification of coordination
requirements: Implications for the design of collaboration and awareness tools. In: Proc.
Conference on Computer Supported Cooperative Work, ACM, pp 353–362

Cataldo M, Herbsleb JD, Carley KM (2008) Socio-technical congruence: A framework
for assessing the impact of technical and work dependencies on software development
productivity. In: Proc. International Symposium on Empirical Software Engineering and
Measurement, ACM, pp 2–11

Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software dependencies, work
dependencies, and their impact on failures. IEEE Transactions on Software Engineering
35(6):864–878

Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM
Review 51(4):661–703

Conway ME (1968) How do committees invent. Datamation 14(4):28–31
Crowston K, Howison J (2005) The social structure of free and open source software devel-

opment. First Monday 10(2)
Crowston K, Wei K, Li Q, Howison J (2006) Core and periphery in free/libre and open source

software team communications. In: Proc. International Conference on System Sciences,
IEEE, pp 118.1–

Crowston K, Kangning W, Howison J, Wiggins A (2012) Free/libre open-source software de-
velopment: What we know and what we do not know. ACM Computing Surveys 44(2):7:1–
7:35

DiBona C, Ockman S, Stone M (eds) (1999) Open sources: Voices from the open source
revolution. O’Reilly Media & Associates, Inc.

Dinh-Trong TT, Bieman JM (2005) The FreeBSD project: A replication case study of open
source development. IEEE Transactions on Software Engineering 31(6):481–494

Dorogovtsev SN, Mendes JF (2013) Evolution of networks: From biological nets to the
Internet and WWW. Oxford University Press

Erdős P, Rényi A (1959) On random graphs. Publicationes Mathematicae 6:290–297
Espinosa JA, Slaughter SA, Kraut RE, Herbsleb JD (2007) Familiarity, complexity, and team

performance in geographically distributed software development. Organization Science
18(4):613–630

Foucault M, Palyart M, Blanc X, Murphy GC, Falleri JR (2015) Impact of developer turnover
on quality in open-source software. In: Proc. International Symposium on Foundations of
Software Engineering, ACM, pp 829–841

Godfrey MW, Tu Q (2000) Evolution in open source software: A case study. In: Proc.
International Conference on Software Maintenance, IEEE, pp 131–142

Goldstein M, Morris S, Yen G (2004) Problems with fitting to the power-law distribution.
European Physical Journal B–Condensed Matter 41(2):255–258

Hinds P, McGrath C (2006) Structures that work: Social structure, work structure and
coordination ease in geographically distributed teams. In: Proc. Conference on Computer
Supported Cooperative Work, ACM, pp 343–352

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH
(1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis. Proc Royal Society of London A: Mathematical, Physical
and Engineering Sciences 454(1971):903–995

43

Huselid MA (1995) The impact of human resource management practices on turnover,
productivity, and corporate financial performance. Academy of Management Journal
38(3):635–672

Hynninen P, Piri A, Niinimaki T (2010) Off-site commitment and voluntary turnover in GSD
projects. In: Proc. International Conference on Global Software Engineering, IEEE, pp
145–154

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization
of metabolic networks. Nature 407(6804):651–654

Jermakovics A, Sillitti A, Succi G (2011) Mining and visualizing developer networks from
version control systems. In: Proc. International Workshop on Cooperative and Human
Aspects of Software Engineering, ACM, pp 24–31

Joblin M, Mauerer W, Apel S, Siegmund J, Riehle D (2015) From developer networks to
verified communities: A fine-grained approach. In: Proc. International Conference on
Software Engineering, IEEE, pp 563–573

Joblin M, Apel S, Hunsen C, Mauerer W (2016) Classifying developers into core and
peripheral: An empirical study on count and network metrics, preprint at http://arxiv.
org/abs/1604.00830

Koch S (2004) Profiling an open source project ecology and its programmers. Electronic
Markets 14(2):77–88

Kotter JP (2014) Accelerate: Building Strategic Agility for a Faster-moving World. Harvard
Business Review Press

Lehman MM, Ramil JF (2001) Rules and tools for software evolution planning and manage-
ment. Annals of Software Engineering 11(1):15–44

Lehman MM, Ramil JF, Wernick PD, Perry DE, M W (1997) Metrics and laws of software
evolution the nineties view. In: Proc. Software Metrics Symposium, IEEE, pp 20–32

López L, Robles G, Jesús, Herraiz I (2006) Applying social network analysis techniques to
community-driven libre software projects. International Journal of Information Technology
and Web Engineering 1(3):27–48

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Transactions on
Software Engineering and Methodology 18(1):2:1–2:26

Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cam-
bridge University Press

Martinez-Romo J, Robles G, Gonzalez-Barahona JM, Ortuño-Perez M (2008) Using social
network analysis techniques to study collaboration between a FLOSS community and a
company. In: Open Source Development, Communities and Quality, Springer, pp 171–186

Mauerer W, Jaeger MC (2013) Open source engineering processes. Information Technology
55(5):196–203

Meneely A, Williams L (2011) Socio-technical developer networks: Should we trust our
measurements? In: Proc. International Conference on Software Engineering, ACM, pp
281–290

Meneely A, Williams L, Snipes W, Osborne J (2008) Predicting failures with developer
networks and social network analysis. In: Proc. Foundations of Software Engineering,
ACM, pp 13–23

Mens T, Fernández-Ramil J, Degrandsart S (2008) The evolution of Eclipse. In: Proc. Inter-
national Conference on Software Maintenance, IEEE, pp 386–395

Mockus A (2010) Organizational volatility and its effects on software defects. In: Proc.
International Symposium on Foundations of Software Engineering, ACM, pp 117–126

Mockus A, Fielding RT, Herbsleb J (2000) A case study of open source software development:
The Apache server. In: Proc. International Conference on Software Engineering, IEEE, pp

http://arxiv.org/abs/1604.00830
http://arxiv.org/abs/1604.00830

44

263–272
Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software

development: Apache and Mozilla. ACM Transactions Software Engineering Methodology
11(3):309–346

Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact of code smells:
A case study of two open source systems. In: Proc. of the International Symposium on
Empirical Software Engineering and Measurement, IEEE, pp 390–400

Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T (2009) Using information retrieval based
coupling measures for impact analysis. Empirical Software Engineering 14(1):5–32

Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Physical
Review E 67(2):026,112

Robles G, Gonzalez-Barahona J, Herraiz I (2009) Evolution of the core team of developers
in libre software projects. In: Proc. International Working Conference on Mining Software
Repositories, IEEE, pp 167–170

Schilling A, Laumer S, Weitzel T (2012) Who will remain? An evaluation of actual person-job
and person-team fit to predict developer retention in FLOSS projects. In: Proc. International
Conference on System Sciences, IEEE, pp 3446–3455

Scholtes I, Mavrodiev P, Schweitzer F (2016) From aristotle to ringelmann: A large-scale
analysis of team productivity and coordination in open source software projects. Empirical
Software Engineering 21(2):642–683

Sosa ME, Eppinger SD, Rowles CM (2004) The misalignment of product architecture and
organizational structure in complex product development. Manage Sci 50(12):1674–1689

Stevens WP, Myers GJ, Constantine LL (1974) Structured design. IBM Systems Journal
13(2):115–139

Terceiro A, Rios LR, Chavez C (2010) An empirical study on the structural complexity
introduced by core and peripheral developers in free software projects. In: Proc. Brazilian
Symposium on Software Engineering, IEEE, pp 21–29

Toral S, Martı́nez-Torres M, Barrero F (2010) Analysis of virtual communities supporting oss
projects using social network analysis. Information and Software Technology 52(3):296–
303

Yu Y, Benlian A, Hess T (2012) An empirical study of volunteer members’ perceived turnover
in open source software projects. In: Proc. International Conference on System Sciences,
IEEE, pp 3396–3405

	1 Introduction
	2 Background
	3 Methodology
	4 Study & Results
	5 Threats to Validity
	6 Discussion & Perspectives
	7 Related Work
	8 Conclusion
	A Function-level Semantic Coupling
	B Analysis Window Selection

