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Abstract. When solving propositional logic satisfiability (specifically
3SAT) using quantum annealing, we analyze the effect the difficulty
of different instances of the problem has on the quality of the answer
returned by the quantum annealer. A high-quality response from the
annealer in this case is defined by a high percentage of correct solutions
among the returned answers. We show that the phase transition regard-
ing the computational complexity of the problem, which is well-known
to occur for 3SAT on classical machines (where it causes a detrimen-
tal increase in runtime), persists in some form (but possibly to a lesser
extent) for quantum annealing.
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1 Introduction

Quantum computers are an emerging technology and still subject to frequent
new developments. Eventually, the utilization of intricate physical phenomena
like superposition and entanglement is conjectured to provide an advantage in
computational power over purely classical computers. As of now, however, the
first practical breakthrough application for quantum computers is still sought
for. But new results on the behavior of quantum programs in comparison to
their classical counterparts are reported on a daily basis.

Research in that area has cast an eye on the complexity class NP: It con-
tains problems that are traditionally (and at the current state of knowledge
regarding the P vs. NP problem) conjectured to produce instances too hard for
classical computers to solve exactly and deterministically within practical time
constraints. Still, problem instances of NP are also easy enough that they can
be executed efficiently on a (hypothetical) non-deterministic computer.
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The notion of computational complexity is based on classical computation in
the sense of using classical mechanics to describe and perform automated compu-
tations. In particular, it is known that in this model of computation, simulating
quantum mechanical systems is hard. However, nature itself routinely “executes”
quantum mechanics, leading to speculations [20] that quantum mechanics may
be used to leverage greater computational power than systems adhering to the
rules of classical physics can provide.

Quantum computing describes technology exploiting the behavior of quan-
tum mechanics to build computers that are (hopefully) more powerful than
current classical machines. Instead of classical bits b ∈ {0, 1} they use qubits
q = α |0〉 + β |1〉 where α, β, |α|2 + |β|2 = 1, are probability amplitudes for the
basis states |0〉 , |1〉. Essentially, a qubit can be in both states 0 and 1 at once.
This phenomenon is called superposition, but it collapses when the actual value
of the qubit is measured, returning either 0 or 1 with a specific probability and
fixing that randomly acquired result as the future state of the qubit. Entangle-
ment describes the effect that multiple qubits can be in superpositions that are
affected by each other, meaning that the measurement of one qubit can change
the assigned probability amplitudes of another qubit in superposition. The com-
bination of these phenomena allows qubits to concisely represent complex data
and lend themselves to efficient computation operations.

The technological platform of quantum annealing is (unlike the generalized
concept of quantum computing) not capable of executing general quantum-
mechanical computations, but is within current technological feasibility and
available to researchers outside the field of quantum hardware. The mechanism
specializes in solving optimization problems and can (as a trade-off) work larger
amounts of qubits in a useful way than current quantum-mechanically complete
platforms.

In this paper, we evaluate the performance of quantum annealing (or more
specifically, a D-Wave 2000Q machine) on the canonical problem of the class
NP, propositional logic satisfiability for 3-literal clauses (3SAT) [14]. As we note
that there is still a remarkable gap between 3SAT instances that can be put on
a current D-Wave chip and 3SAT instances that even remotely pose a challenge
to classical solvers, there is little sense in comparing the quantum annealing
method to classical algorithms in this case (and at this early point in time for
the development of quantum hardware). Instead, we are interested in the scaling
behavior with respect to problem difficulty. Or more precisely: We analyze if and
to what extent quantum annealing’s performance suffers under hard problem
instances (like classical algorithms do).

We present a quick run-down of 3SAT and the phenomenon of phase transi-
tions in Sect. 2 and continue to discuss further related work in Sect. 3. In Sect. 4
we describe our experimental setup and then present the corresponding results
in Sect. 5. We conclude with Sect. 6.
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2 Preliminaries

Propositional logic satisfiability (SAT) is the problem of telling if a given formula
in propositional logic is satisfiable, i.e., if there is a assignment to all involved
Boolean variables that causes the whole formula to reduce to the logical value
True. As such, the problem occurs at every application involved complex con-
straints or reasoning, like (software) product lines, the tracing of software depen-
dencies or formal methods.

It can be trivially shown that (when introducing a linear amount of new
variables) all SAT problems can be reduced to a specific type of SAT problem
called 3SAT, where the input propositional logic formula has to be in conjunctive
normal form with all of the disjunctions containing exactly three literals.

For example, the formula Ψ = (x1 ∨x2 ∨x3)∧ (¬x1 ∨x2 ∨x3) is in 3SAT form
and is satisfiable because the assignment (x1 �→ True, x2 �→ True, x2 �→ True)
causes the formula to reduce to True. The formula Φ = (x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨
¬x1 ∨ ¬x1) is also in 3SAT form but is not satisfiable.

Definition (3SAT). A 3SAT instance with m clauses and n variables is given
as a list of clauses (ck)0≤k≤m−1 of the form ck = (l3k ∨ l3k+1 ∨ l3k+2) and a list of
variables (vj)0≤j≤n−1 so that li is a literal of the form li ∈ ⋃

0≤j≤n−1{vj ,¬vj}.
A given 3SAT instance is satisfiable iff there exists a variable assignment (vj �→
bj)0≤j≤n−1 with bj ∈ {True,False} so that

∧
0≤k≤m−1 ck reduces to True when

interpreting all logical operators as is common. The problem of deciding whether
a given 3SAT instance is satisfiable is called 3SAT.

3SAT is of special importance to complexity theory as it was the first problem
which was shown to be NP-complete [14]. This means that every problem in NP
can be reduced to 3SAT in polynomial time. It follows that any means to solve
3SAT efficiently would thus give rise to efficient solutions for any problem in NP
like graph coloring, travelling salesman or bin packing.

Despite the fact that for NP-complete problems in general no algorithm is
known that can solve all problem instances of a problem efficiently (i.e., in
polynomial time), it is within the scope of knowledge that “average” problem
instances of many NP-complete problems, including 3SAT, are easy to solve [10].
In Ref. [37] this characteristic is described with a phase transition. The boundary
of the phase transition divides the problem space into two regions. In one region,
a solution can be found relatively easily, because the solution density for these
problems is high, whereas in the other region, it is very unlikely that problems
can contain a correct solution at all. Problems that are very difficult to solve are
located directly at this phase boundary [10].

It can be observed that, with randomly generated 3SAT instances, the prob-
ability of finding a correct solution decreases abruptly when the ratio of clauses
to variables α = m/n exceeds a critical value of αc [36]. According to [35] this
critical point is αc ≈ 4.267 for randomly generated 3SAT instances. In the sur-
rounding area of the critical point, finding a solution (i.e., deciding if the instance
is satisfiable) is algorithmically complex. Figure 1 illustrates this phenomenon.
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Fig. 1. Phase transition of 3SAT. The bottom plot shows the computational time
required to determine satisfiability of randomly chosen 3SAT instances with a specific
clauses-to-variables ratio α on a standard solver. The area around the critical point
αc ≈ 4.267 is shaded in blue. The upper portion shows the probability that instances
with a particular ratio α are solvable. In the region around the critical point, it is hard
to determine whether a problem instance can be fulfilled with a concrete allocation or
not. (Color figure online)

To assess the solution quality of randomly generated 3SAT instances we gen-
erate instances in every complexity region. The results are discussed in Sect. 5.

3 Related Work

It is one of the cornerstones of complexity theory that solving NP-complete deci-
sion problems is strongly believed to be not efficiently possible [14,40]. Any NP-
complete problem can also be cast as an optimization problem, which allows for
employing well-known optimization algorithms to find approximate solutions—
typical methods include tabu search [22,23] and simulated annealing [11,27].
Countless other efficient approximation methods, together with an elaborate
taxonomy on approximation quality (how much does a given solution differ from
a known global optimum?) and computational effort (how many time steps are
required until an approximate solution that satisfies given quality goals is avail-
able?), have been devised [6].

An intriguing connection that has received substantial attraction exists
between (computational) NP-complete problems and the (physical) concept of
phase transitions, as detailed in Sect. 2. First investigations of the phenomenon
have been performed by Kirkpatrick et al. [28]; Monasson et al. first suggested
a connection between the type of phase transition and the associated computa-
tional costs of a problem [37]. From the abundant amount of more recent inves-
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tigations, we would like to highlight the proof by Ding et al. [16] that establishes
a threshold value for the phase transition. Our work benefits from the above
insights by selecting the “most interesting”, i.e., computationally hardest, sce-
narios as investigation target.

The idea of obtaining solutions for NPO (NP optimization) problems by
finding the energy ground state (or states) of a quantum mechanical system was
used, for instance, by Apolloni et al. [4,5] to solve combinatorial optimization
problems. The general idea of quantum annealing has been independently re-
discovered multiple times [2,3,21,26].

Quantum annealing techniques are usually applied to solving NP-complete
decision problems, or optimization problems from class NPO. Lucas [30] reviews
how to formulate a set of key NP problems in the language of adiabatic quantum
computing, i.e., quadratic unconstrained binary optimization (QUBO). In par-
ticular, problems of the types “travelling salesman” or “binary satisfiability” that
are expected to have a major impact on practical computational applications if
they can be solved advantageously on quantum annealers have undergone a con-
siderable amount of research [7,24,39,41,44,46]. Further effort has been made
on combining classical and quantum methods on these problems [19].

Comparing the computational capabilities of classical and quantum comput-
ers is an intriguing and complex task, since the deployed resources are typically
very dissimilar. For instance, the amount of instructions required to execute a
particular algorithm is one of the main measures of efficiency or practicability
on a classical machine, whereas the notion of a discrete computational “step” is
hard to define on a quantum annealing device. Still, multiple efforts have been
made towards assessing quantum speedup [42,43]. For the quantum gate model,
a class of problems exhibiting quantum speedup has been found lately [9]. Inter-
est in quantum computing has also spawned definitions of new complexity classes
(e.g., [29,38]), whose relations to traditional complexity classes have been and
are still subject to ongoing research [8,32].

These questions hold regardless of any specific physical or conceptual imple-
mentation of quantum computing since their overall computational capabilities
are known to be largely interchangeable; for instance, McGeoch [33] discusses
the equivalence of gate-based and adiabatic quantum computing. Consequently,
our work focuses not on comparing quantum and classical aspects of solving
particular problems, but concentrates on understanding peculiarities of solving
one particular problem (3SAT, in our case) in-depth.

Formulating 3SAT problems on a quantum annealing hardware has been pre-
viously considered [12,13,18], and we rely on the encoding techniques presented
there. Van Dam [45] and Farhi [17] have worked on analyzing the complexity of
solving general 3SAT problems. Hsu et al. have considered the complexity-wise
easier variation 2SAT as a benchmarking problem to compare various parameter
configurations of their quantum annealer [25].
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4 Experimental Setup

Quantum annealing is an optimization process that can be implemented in hard-
ware. It is built upon the adiabatic theorem that provides conditions under which
an initial ground-state configuration of a system evolves to the ground state of
another configuration that minimizes a specific user-defined energy function [33].
As in the real world the required conditions for the theorem can only be approx-
imated, the results of quantum annealing are not deterministically optimal but
show a probabilistic distribution, ideally covering the desired optimal value.

D-Wave’s quantum annealer is the first commercial machine to implement
quantum annealing. Its interface is built on two equivalent mathematical mod-
els for optimization problems called Ising and QUBO, the latter of which will
be used for the work of this paper. Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problems can be formulated as a quadratic matrix Qij . Quantum
annealing then searches for a vector x ∈ {0, 1}n so that

∑
i

∑
j<i Qijxixj +∑

i Qixi is minimal. The promise of quantum annealing is that—using quantum
effects—specialized hardware architectures are able to solve these optimization
problems much faster than classical computers in the future.

The main goal of this paper is to analyze the inherently probabilistic distribu-
tion of return values generated by quantum annealing when trying to solve hard
optimization problems. We choose to demonstrate such an analysis on 3SAT
because it is the canonical problem of the class NP, which is a prime target for
research on performance improvements via quantum technology with respect to
classical computers [30,34].

4.1 Defining 3SAT as a QUBO

3SAT is usually not formulated as an optimization problem (see Sect. 2), or
defined by an equivalent QUBO problem, as is required by the annealer. Thus,
we require a (polynomial-time) translation of any 3SAT instance into a QUBO
so that the solutions generated by the quantum annealer can be translated back
to solutions of the initial 3SAT instance.

Following [12,13], we translate 3SAT into the Weighted Maximum Indepen-
dent Set (WMIS) problem and then translate the WMIS instance into a QUBO
(we find it convenient to specify the polynomial coefficients in matrix form).
We omit the details of this process and instead refer to op. cit. and Lucas [30].
However, we shall briefly discuss the implications of the translation process.

A 3SAT instance, that is, a formula with m clauses for n variables, requires a
QUBO matrix of size 3m × 3m with the solution vector x ∈ {0, 1}3m. The solu-
tion can be thought of as using a qubit for each literal in the initial formula and
thus consisting of a triplet of qubits for each 3SAT clause. This usually means
that we have much more qubits than variables in the formula. Nonetheless, a
QUBO solution is mapped to a value assignment for the variables in the 3SAT
formula. Thus, when running successfully, the quantum annealer will output a
satisfying assignment for a given 3SAT formula. We can check if the assignment
really is correct (i.e., each variable has a value assigned and the whole formula
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reduces to True) using few instructions of classical computation. Obviously, if
among several experimental runs the quantum annealer does return just one
correct assignment, the corresponding 3SAT formula is satisfiable. If the quan-
tum annealer only returns incorrect assignments, we will regard the formula as
unsatisfiable (although the prove of that is only probabilistic).

There are some aspects to note about how the QUBO solution vectors are
mapped to variable assignments. Given a QUBO solution vector (xi)0≤i≤3m−1

for a 3SAT formula with literals (li)0≤i≤3m−1, a variable v is assigned the value
True if it occurs in a literal li = v and xi = 1. Likewise, a variable v is assigned
the value False if it occurs in a literal li = ¬v and xi = 1. It is important to note
that xi = 0 has no implication on the value of the variable in li.

Intuitively, we can interpret xi = 1 to mean “use the value of li to prove the
satisfaction of clause c(i mod 3)”. From our QUBO optimization, we expect to
find one (and only one) suitable li for every clause in the 3SAT formula.1

This is important as it opens up a wide range of different QUBO solutions
which may just encode the exact same variable assignment at the 3SAT level.
However, it also means that seemingly suboptimal QUBO solutions may encode
correct 3SAT assignments. For example, consider the (a little redundant) 3SAT
formula (v0 ∨ v1 ∨ v2) ∧ (v0 ∨ v1 ∨ v2): The QUBO solution x = 100001 would
imply the assignment of v0 = True and v2 = True, which indeed is theoretically
sufficient to prove the formula satisfiable. The exact same assignment would be
implied by x = 001100. However, note that none of these imply a full assignment
of every variable in the 3SAT instance since none say anything about the value of
v1. Still, we can trivially set v1 to any arbitrary value and end up with a correct
assignment. Also note that while the QUBO is built in such a way to opt for one
single value 1 per triplet in the bit string, even bitstrings violating this property
can encode correct solution. In our example, the suboptimal QUBO solution
x = 100000 still encodes all necessary information to prove satisfiability.

4.2 Evaluating Postprocessing

As can be seen from the last example, postprocessing is an integral part of
solving problems with quantum annealing. As discussed earlier in this section, we
consider a QUBO solution correct, if it not only matches the expected structure
for minimizing the QUBO energy function, but instead iff it directly implies
a correct assignment in the definition given above. Thus, while the expected
structure for QUBO optimizes x so that the amount bits xi assigned 1 equals
the amount of clauses m, we also consider less full answers correct.

On top of that, there are solutions that cannot be mapped to an assignment
immediately, but still with almost no effort. We want to regard these as well and
implemented a postprocessing step we call logical postprocessing. It is applied
whenever none of the qubits corresponding to a single clause ck are set to 1 by

1 This intuition matches the concept of constructivism in logic and mathematics. We
are not only looking for the correct answer, but are looking for a correct and complete
proof of an answer, giving us a single witness for each part of the formula.
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the quantum annealer and the respective QUBO solution is not already correct.
In that case, we iterate through all literals li in that clause ck and check if we
could set xi = 1 without contradicting any other assignment made within x. If
we find such an li, we set xi = 1 and return the altered bitstring x.

The software platform provided by D-Wave to use the quantum annealer
already offers integrated postprocessing methods as well, which we will also
empirically show to be more powerful than logical postprocessing in the follow-
ing Sect. 5. Again, for greater detail we refer to the D-Wave documentation on
that matter [15]. At a glance, the employed postprocessing method splits the
QUBO matrix into several subproblems, tries to optimize these locally, and then
integrates that local solution into the complete solution if it yields an improve-
ment. We call this method D-Wave postprocessing.

To evaluate the solution quality regarding 3SAT, we employ both methods.
The goal is to assess expected quality on a 3SAT-to-3SAT level, i.e., we measure
how well we can solve the given 3SAT instance and regard the translation to and
from QUBO as a mere technical problem that is not of interest for this paper.

5 Evaluation

To assess the solution quality of 3SAT on a quantum annealing platform, using
the previously discussed method of encoding 3SAT problems, we ran several
experiments on a D-Wave 2000Q system. Using ToughSAT2 we generated 3SAT
instances of various difficulty (i.e., with various values for α). However, as dis-
cussed in Sect. 2, for |α − 4.2| 	 0 problem instances become very easy to solve.
We observed that effect on the quantum annealer as well, since all of these
instances were easily (i.e. 100% of the time) solved on the D-Wave machine.
Thus, for the remainder of this section, we focus on hard instances (approxi-
mated by α = 4.2) to assess solution quality in the interesting problem domain.

Experiments have shown that using the standard embedding tools delivered
with the D-Wave platform, we can only reliably find a working embedding on the
D-Wave 2000Q chip for 3SAT instances with at most 42 clauses [1]. To maintain
α ≈ 4.2, the generated 3SAT instances contain 10 different variables. We only
assess solution quality for 3SAT instances that are satisfiable, but do not provide
this information to the solver.

Figure 2 shows the result distribution of these runs on the D-Wave machine.
On the x-axis, we sorted the returned results according to the bits that have
been assigned the value 1 or True. As discussed in Sect. 4 the optimal solution is
supposed to set one bit for each clause, i.e., is supposed to contain 42 bits set to
True. However, as there are only 10 different variables, there theoretically exist
answers that only set 10 bits but that still map to a complete and valid solution
for the given 3SAT instance. From Fig. 2 we can see that some of these solution
are found for bitcounts starting from 37 through 41. Interestingly, the complete
range of answers gathered seems to follow a distribution centered around 37 or

2 https://toughsat.appspot.com/.

https://toughsat.appspot.com/
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Fig. 2. Distribution of correct (green) and incorrect (red) answers returned by the
quantum annealer without D-WAVE postprocessing. Answers that can trivially be trans-
formed into valid answers using logical postprocessing are marked in yellow. The plot
shows 100,000 answers in total for 100 different hard 3SAT instances (α ≈ 4.2). (Color
figure online)

38 and no answers with more than 42 bits are returned. This means that the
constraint of never setting multiple bits per clause is fully respected in the evalu-
ation of our QUBO matrix. Note that although there are 5,283 correct solutions
in total, these are only distributed across 24 of the 100 randomly generated
problem instances. Thus, most of them have not been solved at all.

Furthermore, we applied the logical postprocessing described in Sect. 4 to
the incorrect answers in Fig. 2. However, it shows little improvement on the
total amount of correct answers collected. We expect the postprocessing method
delivered with the D-Wave software package to be more powerful as it runs local
search along more axes of the solution space than the logical postprocessing does.
So we ran the complete evaluation experiment again, only this time turning on
the integrated postprocessing. The results are shown in Fig. 3.

We observed that the D-Wave postprocessing managed to optimize all correct
but “incomplete” answers, mapping them to a solution with 42 bits assigned
the value True. Out of the 100,000 queries, this yielded 25,142 correct answers.
Moreover, these correct answers span 99 of the 100 randomly generated 3SAT
instances so that we consider the problem solved. Effectively, this shows that
quantum annealing does suffer from a breakdown in expected solution quality
at the point of the phase transition in the 3SAT problem. In comparison to
the immense decrease in performance seen in classical solvers (cf. Sect. 2), a
drop to around 25% precision (if it was to persist on larger chip sizes) appears
rather desirable, though. A quick example: To achieve a 1 − 10−12 confidence of
returning the correct answer our experimental setup requires around 97 queries.
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Fig. 3. Distribution of correct (green) and incorrect (red) answers returned by the
quantum annealer using D-WAVE postprocessing. Answers that can trivially be trans-
formed into valid answers using logical postprocessing are marked in yellow. The plot
shows 100,000 answers in total for 100 different hard 3SAT instances (α ≈ 4.2). (Color
figure online)

At a glance, that scaling factor with respect to problem difficulty is much better
than what is observed for classical algorithms: For example, in the data used for
Fig. 1 we observed performance decrease up to one order of magnitude larger. It is
important to note, however, that these experiments were performed for problem
instances so small that their evaluation does not pose a challenge to classical
processors at all, i.e., below the point of reasonable performance metrics. Thus,
these results only proof relevant to practical applications if they scale with future
versions of quantum annealing hardware that can tackle much larger problem
instances.

So far, we have not discerned between different correct solutions. We were
content as long as the algorithm returned but one. However, for the user it is
interesting to know if he or she will receive the same solution with every answer
or an even distribution across the complete solution space. Our experiments show
that when a lot of correct solutions are found for a certain problem instance,
there are cases where we can see a clear bias towards a specific solution variant.
Figure 4 shows the distributions of specific solutions for formulae that yielded
many solutions even when evaluated without any postprocessing. While some
formulae seem to yield rather narrow distributions over the different possible
answers, others definitely seem to have a bias towards certain solutions. How-
ever, the former also tend to have relatively smaller sample sizes as there are
less solutions in total to consider. Further investigation could still reveal a dis-
tinctive distribution in these cases as well. Thus, we consider this behavior of
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the quantum annealer to be roughly in line with the findings of [31], who show
an exponential bias in ground-state sampling of a quantum annealer.

Fig. 4. Frequency of occurrence of different solutions for 5 formulae with many returned
solutions without any postprocessing. While most solutions are found once or just a
few times, there are specific solutions that are found much more often.

6 Conclusion

We have shown that problem difficulty of 3SAT instances also affects the perfor-
mance of quantum annealing as it does for classical algorithms. However, bound
by the nature of both approaches, the effects are quite different with complete
classical algorithms showing longer runtimes and quantum annealing showing
less precision. A first quantification of that loss of precision suggests that it may
not be too detrimental and comparatively easy to deal with. However, because of
the maximum available chip size for quantum annealing hardware at the moment,
no large-scale test could be performed. No real assumptions on the scaling of this
phenomenon (and thus the eventual real-world benefit) can be made yet.

Our results suggest there are cases where single solutions from a set of equally
optimal solutions are much more likely to be returned than others. This observa-
tion is in line with other literature on the results of quantum annealing. However,
it is interesting to note that it translates into the original problem space of 3SAT.

The observed results will gain more practical relevance with larger chip sizes
for quantum annealers. We thus suggest to perform these and/or similar tests
for future editions of quantum annealing hardware. If the effects persist, they
can indicate a substantial advantage of quantum hardware over other known
approaches for solving NP-complete problems.
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