
ar
X

iv
:2

00
8.

10
92

5v
3

 [
cs

.D
B

]
 9

 S
ep

 2
02

0

Replicability and Reproducibility of a Schema

Evolution Study in Embedded Databases

Dimitri Braininger1, Wolfgang Mauerer1,2, and Stefanie Scherzinger3

1 Technical University of Applied Sciences Regensburg, Regensburg, Germany
dimitri.braininger@st.oth-regensburg.de

2 Siemens AG, Corporate Research, Munich wolfgang.mauerer@othr.de
3 University of Passau, Germany stefanie.scherzinger@uni-passau.de

Abstract. Ascertaining the feasibility of independent falsification or
repetition of published results is vital to the scientific process, and repli-
cation or reproduction experiments are routinely performed in many
disciplines. Unfortunately, such studies are only scarcely available in
database research, with few papers dedicated to re-evaluating published
results. In this paper, we conduct a case study on replicating and re-
producing a study on schema evolution in embedded databases. We can
exactly repeat the outcome for one out of four database applications
studied, and come close in two further cases. By reporting results, ef-
forts, and obstacles encountered, we hope to increase appreciation for
the substantial efforts required to ensure reproducibility. By discussing
minutiae details required to ascertain reproducible work, we argue that
such important, but often ignored aspects of scientific work should re-
ceive more credit in the evaluation of future research.

Keywords: Schema Evolution · Replicability · Reproducibility.

1 Introduction

Experiments are at the heart of the scientific process. According to the ACM
reproducibility guidelines (see “ACM review and badging”, hyperlink available
in the PDF), experiments are expected to be repeatable: Essentially, the same
team with the same experimental setup can reliably achieve identical results in
subsequent trials. Moreover, experiments should be replicable, so that using the
same experimental setup operated by a different team achieves the same results.
Ideally, experiments are even reproducible, and a different team with a different
experimental setup can confirm the results.

Such properties are acknowledged to be fundamental, but reproducibility
is far from universally permeating most published research. This discrepancy
has become an academic topic of debate, and dedicated research evaluates the
(oftentimes wanting) state of affairs in computer science research in general (see,
e.g., Refs. [1, 5, 9, 12]), but also in data management research4.

4 Such as in the VLDB (“pVLDB Reproducibility”) and SIGMOD communities
(“ACM SIGMOD 2019 Reproducibility”, clickable links available in PDF).

http://arxiv.org/abs/2008.10925v3
https://www.acm.org/publications/policies/artifact-review-badging
https://vldb-repro.com/
http://db-reproducibility.seas.harvard.edu/

2 D. Braininger, W. Mauerer, S. Scherzinger

In this paper, we examine the state of replicability, and efforts required to
achieve reproducibility, for an empirical case study on schema evolution in em-
bedded databases by S. Wu and I. Neamtiu [16] that predates the aforementioned
discussions. There is a long-standing tradition of schema evolution case studies
in real-world database applications, e.g., [7, 13–15]. It used to be difficult to get
access to real-world database applications for study, so earlier studies are gener-
ally conducted on closed-source systems, for instance [14]. Yet the proliferation
of open source software, and the access to code repositories (e.g., GitHub) en-
ables a whole new line of research on open source application code [4]. Most
schema evolution studies focus on applications backed by relational database
management systems, typically tracking the growth of the schema (counting the
number of tables and their columns), and the distribution of schema modification

operations (a term coined by Curino et al. in [6]).

The authors in the original case study are the first to focus on an impor-
tant subfamily of database products, namely that of embedded (and therefore
serverless) databases, such as SQLite. While there are independent schema evo-
lution studies targeting the same open source projects, such as MediaWiki (the
software powering Wikipedia), they consider different time frames (such as 4.5
years in [7] and 10 years in [13]), and implement different methodologies. This
even leads to partly contradictory results. However, a dedicated replicability and
reproducibility study has not yet been conducted so far.

Contributions. This paper makes the following contributions:

– We conduct a replicability and reproducibility study on a well-received, pub-
lished paper on schema evolution [16]. While there is a long history of schema
evolution case studies, to the best of our knowledge, ours is the first effort
to ascertain published results on this class of publications.

– Our study is mainly based on the information provided in the original paper.
However, we were also provided (incomplete) code artefacts by the authors of
the original study. This blurs the line between conducting a replicability and
reproducibility study. For simplification, we restrict ourselves to the term
reproducibility in the remainder of this paper.

– We carefully re-engineer the authors’ experiments and present our results.
Overall, we achieve a high degree of accordance, albeit at the expense of
substantial manual effort. For one out of four applications studied in [16], we
even obtain identical results. We document and discuss where our numbers
agree, and where they deviate.

– We lay out which instructions were helpful, and which left too much leeway.
– We discuss the threats to the validity of our results (e.g., where we may have

erred), and contrast this with the original threats stated in [16]. Doing so,
we re-calibrate the level of risk involved with each originally reported threat.

Our experience underlines that achieving full reproducibility remains a challenge
even with well-designed, well-documented studies, and requires considerable ex-
tra effort. We feel that such efforts are not yet universally appreciated, albeit it
is in our joint interest that research become reproducible.

https://github.com/
https://www.sqlite.org/index.html
https://www.mediawiki.org/wiki/MediaWiki

Examining Replicability and Reproducibility 3

res = logged_sqlite3_exec(sql, "CREATE TABLE file_deltas\n"
"\t(\n"

"\tid not null, -- strong hash of file contents\n"
"\tbase not null, -- joins with files.id or file_deltas.id\n"

"\tdelta not null, -- compressed [...]\n"
"\tunique(id, base)\n"
"\t)", NULL, NULL, errmsg);

(a) Excerpt from the C++ code in Monotone.

CREATE TABLE file_deltas
(

id integer not null,
base integer not null,

delta integer not null,
unique(id, base)
);

(b) Extracted stmt.

Fig. 1. (a) A CREATE TABLE statement, embedded as string constants within Mono-

tone C++ code (source can be inspected online, “[...]” denotes a shortened comment).
The statement must be automatically parsed and translated to the MySQL dialect (b).

Structure. The remainder of this paper is organized as follows. We next sum-
marize the original study. Section 3 states our methodology. Section 4 describes
the main part of the reproduction work, as well as the detailed results. Section 5
discusses the overall results, followed by Section 6 with a description of threats
to validity. Finally, Section 7 focuses on related work. Section 8 concludes.

2 Original Study

We briefly summarize the original study. Neamtiu et al. analyze four database
applications, all of which are based on SQLite, and provide public development
histories by virtue of being available as open source software (OSS): BiblioteQ ,
Monotone, Mozilla Firefox , and Vienna:
– BiblioteQ (C++), analyzed in the time frame 03/15/2008–02/19/2010, is a

library management system.
– Monotone (C++), analyzed in the time frame 04/06/2003–06/13/2010, is a

distributed version control system.
– Mozilla Firefox (C, C++), analyzed in the time frame 10/02/2004–11/21/2008,

is a popular web browser.
– Vienna (Objective-C), analyzed in the time frame 06/29/2005–09/03/2010,

is an RSS newsreader for MacOS.
The original study uses a custom data processing pipeline for retrieving the

source code history, extracting schema declarations embedded in application
code, and computing differences between schema revisions. Extracting schema
declarations requires careful engineering: Figure 1(a) shows a CREATE TABLE
statement embedded in the program code as a multi-line string constant.

We compare different schema versions with mysqldiff (version 0.30), a util-
ity to derive schema modification operations (SMOs) that transform a predeces-
sor schema into the successor schema. mysqldiff only handles MySQL schema
declarations, but SQLite uses a custom SQL dialect5. For instance, let us again
consider the code example from Figure 1(a). The extracted CREATE TABLE

5 The SQL dialects reference at https://en.wikibooks.org/wiki/SQL Dialects Reference
illustrates the richness of proprietary language constructs.

https://github.com/brdd3v/repro/blob/master/monotone/input/cc/schema_migration_026.cc
https://textbrowser.github.io/biblioteq/
https://www.monotone.ca/
https://www.mozilla.org/de/firefox/
https://www.vienna-rss.com/
https://github.com/aspiers/mysqldiff
https://en.wikibooks.org/wiki/SQL_Dialects_Reference

4 D. Braininger, W. Mauerer, S. Scherzinger

Table 1. Evolution time frames and schema change details (as absolute numbers and
percentages) given in the original study [16].

App
Table changes Attribute changes

CREATE

TABLE

DROP

TABLE

ADD

COLUMN

DROP

COLUMN

Type

change

Init

change

Key

change

Firefox 5 (4.2%) 26(21.7%) 57(47.5%) 28(23.3%) 0 (0.0%) 3 (2.5%) 1 (0.7%)
Monotone 11(20.4%) 17(31.5%) 14(25.9%) 10(18.5%) 0 (0.0%) 0 (0.0%) 2 (3.7%)
BiblioteQ 4 (2.6%) 8 (5.2%) 27(17.5%) 28(18.2%) 83(53.9%) 0 (0.0%) 4 (2.6%)
Vienna 1 (7.1%) 0 (0.0%) 13(92.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total 21 (6.1%) 51(14.9%) 111(32.5%) 66(19.3%) 83(24.3%) 3 (0.9%) 7 (2.0%)

statement is shown in Figure 1(b). Note that the original statement does not
declare attribute types, which is permissible when using SQLite. Since MySQL
requires all attributes to be typed, we add a default attribute type in preparation
for processing the schemas with mysqldiff.

mysqldiff generates SMOs for creating or dropping a table, adding or re-
moving a table column, and changing the type or initial value of a column. It
also recognizes changes to the table primary key. With this sequence of SMOs,
the predecessor schema can be transformed into its successor schema. Further
SMOs, such as renaming a table or an attribute, cannot be reliably derived based
on automated analysis alone, and would require sophisticated schema matching
and mapping solutions [3].

The statistics in the study by Neamtiu et al. derive from mysqldiff results;
Table 1 provides the number of SMOs for each project. Studies on schema evolu-
tion in server-based (non-embedded) DBMS, especially [13], show that attribute
type changes are frequent in many projects. In the study by Neamtiu et al., this
holds only for BiblioteQ, so no type changes were recorded for the other projects.
This is a finding that we will revisit at a later point. The original study finds that
the shares of CREATE TABLE and ADD COLUMN SMOs are comparable to
the observations of related studies on schema evolution in non-embedded DBMS.
The observation that changes to initial values and primary keys are uncommon
has also been observed in the later study of Qiu et al. [13].

3 Methodology of this Study

We conducted our reproducibility study as follows. Our code, as well as ma-
terial made available to us by the original authors, is available on Zenodo
(doi.org/10.5281/zenodo.4012776) to ascertain long-term availability. In partic-
ular, we publish all interim results computed by our analysis scripts (such as the
extracted schemas and the results of schema comparison), for transparency.

We started with identifying the source code repositories for the four database
applications, based on the information given in the original paper. Like in the
original work, we wrote a script to extract the database schema declarations
embedded in the source code. For Vienna, the authors provided us with a par-
tial script that could not be directly made to work (caused by minor syntactic

http://doi.org/10.5281/zenodo.4012776

Examining Replicability and Reproducibility 5

issues, and some missing components), and was therefore re-implemented by us
in Python. For all other projects, we had no such templates.

The original study used mysqldiff version 0.30 to compare successive schema
declarations. However, we used the newer version 0.60, since the output is more
succinct and also more convenient to parse. A further reason for abandoning the
legacy version is that it sometimes recognizes redundant schema modification
operations (as we also discuss in Section 6).

Further, the pairwise comparison of schema versions using mysqldiff is not
very robust: A table declaration that is missing in one version (e.g., due to a
parsing problem), and then re-appears later, is recognized as first dropping and
later re-creating this table. This problem was pointed out in the original study,
and will also be revisited in Section 6.

As a summarizing metric, we compute the difference in percentage across all
SMOs observed as ∑

SMO s |p(s)− r(s)|

P
,

where p(s) is the number of changes for SMO s reported in the original publica-
tion and r(s) is the number of changes for SMO s identified in our reproducibility
study. Further, P is the total number of changes in the project reported in [16].

4 Results

Vienna. For Vienna, the authors made their raw input data available to us, so
we could apply our script on the exact same data, with the exact same results.

We further attempted to locate the raw input data ourselves, based only on
information provided in the original study. Unfortunately, the original Source-
forge repository no longer exists, the project is now hosted on GitHub. From
there, we obtained fewer files than expected. Thus, searching for the raw input
data based on the information in the paper alone would have led to a different
baseline, yet the analysis still yields the same results as listed in Table 1.

Monotone. ForMonotone, the original paper states that the study was conducted
on 48 archives available from the project website. However, we have reason to
believe that only 41 versions were chosen (specifically, versions 0.1, 0.2, and also
from 0.10 up to and including 0.48), based on the list of available archives, as
well as comments within the material that we obtained from the authors.

Moreover, it is not exactly clear from which files to extract schema declara-
tions: In the initial versions of Monotone, database schemas are only declared
in files with suffix .sql. Later, database schemas are also embedded within C++
files (starting with version 10). We therefore explored two approaches, where we
(1) consider only schemas declared in .sql-suffixed files, and (2) also consider
schemas embedded within the program code.

Figure 2 visualizes the results for both approaches. For each type of SMO
analyzed, we compare the number of changes reported in the original study with
the number of changes determined by us. Overall, our results come close. As

https://github.com/ViennaRSS/vienna-rss

6 D. Braininger, W. Mauerer, S. Scherzinger

11
17 14

10
2

14
9

14
10

2

11
17 14

10
2

16 13 14
10

2 4
8

27 28

83

44 6

26
20

80

4

Monotone (.sql files) Monotone (.sql and C++ files) BiblioteQ

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

ch
g.

In
it
ch
g.

Ke
y
ch
g.

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

ch
g.

In
it
ch
g.

Ke
y
ch
g.

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

ch
g.

In
it
ch
g.

Ke
y
ch
g.

0

25

50

75

#
C
h
a
n
g
es

Original Study Reproduction Study

Fig. 2. Comparing the number of schema changes for Monotone and BiblioteQ.

pointed out in Section 3, problems in parsing SQL statements embedded in pro-
gram code lead to falsely recognizing tables as dropped and later re-introduced.
We suspect that this effect causes the discrepancies observed for CREATE and
DROP TABLE statements.

BiblioteQ. At the time when the original study was performed on BiblioteQ,
all schema declarations were contained in files with suffix .sql (this has mean-
while changed). Schema declarations do thus not have to be laboriously parsed
from strings embedded in the application source code. MySQL, SQLite, and
PostgreSQL were supported as alternative backends. In particular, SQLite was
initially not supported, but was introduced with revision 35, while the original
study spans the time frame from the very beginning of the project (see Section 2).
Unfortunately, the original study does not discuss this issue.

We suspect that up to revision 35, the schema declarations of MySQL were
analyzed, and only from then on for SQLite.6 The high number of type changes
reported for BiblioteQ may thus be overemphasized—the switch causes half the
reported type changes. However, this still leaves a significant number of type
changes for BiblioteQ, compared to the other projects (see Table 1).

The results of our reproducibility study on BiblioteQ are visualized in Fig-
ure 2. While we are confident that we have identified the raw input data, due to
liberties in the data preparation instructions, our results nevertheless deviate.

In Table 2, we list the changes per revision, comparing the results of the orig-
inal study against our own. Revision 35, where SQLite was introduced, clearly
stands out. In processing the extracted schemas (in particular, revisions 4, 5 and
11), we encountered small syntax errors in SQL statements, that we manually

6 Revision 16 only changes the MySQL schema declaration, and the original study
reports a schema change in this revision. A peak in schema changes is reported for
revision 35 (see Table 2), as switching from MySQL to SQLite schema declarations
causes mysqldiff to recognize type changes. Since revision 35 only adds support
for SQLite, with no schema changes for MySQL or PostgreSQL, we conclude that
starting with revision 35, the authors analyzed the SQLite schema.

Examining Replicability and Reproducibility 7

Table 2. Pairwise comparison of schema versions, and the number of changes w.r.t. the
previous version. Stating the number of changes reported in the original paper (#C,
original), the number of changes identified in our reproducibility study (#C, repro), as
well as the absolute difference (diff), for BiblioteQ.

Revision 4 5 11 16 24 35 44 52 80 81 101 102 115 116 154 233 236 285 Total

#C,original 1 1 1 1 20 50 5 25 1 8 12 12 1 5 1 3 1 6 154
#C,repro 1 1 1 0 20 42 5 22 1 6 12 12 1 5 1 3 1 6 140

diff 0 0 0 1 0 8 0 3 0 2 0 0 0 0 0 0 0 0 14

Table 3. Comparing of the total number of schema changes across projects.

Vienna
Monotone

(Alt. 1: .sql)
Monotone

(Alt. 2: .sql/C++) BiblioteQ
Mozilla
Firefox

Original study 14 54 54 154 120
Repro. study 14 49 55 140 –

Abs. diff 0 11 9 14 –
Rel. diff [%] 0.00 20.37 16.67 9.09 –

fixed to make the analysis work. Since we can reproduce the exact results of the
original study, we may safely assume that Neamtiu et al. have fixed these same
errors, even though they do not report this.

Mozilla Firefox. The original paper analyzed 308 revisions ofMozilla Firefox in a
specific time interval. From the material provided to us by the authors, we further
know the table names in database schemas. Unfortunately, this information was
not specific enough to identify the exact revisions analyzed. As the original
version control system (CVS) has meanwhile been replaced by Mercurial, we
inspected the CVS archive, the current GitHub repositories, and the Firefox
release website. We searched for the CVS tags mentioned by the authors, and
tried to align them with these sources. Despite independent efforts by all three
authors, we were not able to reliably identify the analyzed project versions.
Consequently, we are not able to report any reproducibility results.

Summary. We summarize our results in Table 3, which reads as follows. For
each project, we state the number of schema changes observed in the original
study and in our reproducibility study. We state the absolute difference in the
results, as well as the relative difference in percent, as introduced in Section 3.

While we were able to exactly reproduce the results for Vienna, we were not
able to conduct the analysis for Mozilla Firefox. For Monotone and BiblioteQ,
our results deviate to varying degrees. We next discuss these effects.

https://ftp.mozilla.org/pub/vcs-archive/
https://github.com/mozilla/gecko-dev
https://ftp.mozilla.org/pub/firefox/releases/

8 D. Braininger, W. Mauerer, S. Scherzinger

5 Discussion

Access to the raw input data, sample code and instructions make project Vi-

enna an almost ideal reproduction case. For the other projects, we found the
data preparation instructions unspecific. For Monotone and Mozilla Firefox, we
struggled (and in case of Mozilla Firefox even failed) to locate the raw input
data. Nearly a decade after the original paper has been published in 2011, code
repositories have switched hosting platforms. Therefore, a link is not enough to
unambiguously identify the raw input data, to quote from the title of a recent
reproducibility study [12]. Further, the exact revision ranges must be clearly
specified, beyond (ambiguous) dates.

The ACM reproducibility badge “Artefacts Available” requires artefacts like
the raw input data to be available on an archival repository, identified by a digital
object identifier. Considering our own experience, it is vital to ensure long-term
access to the raw input data. Various efforts (e.g. [2]) try to ensure long-term
availability of OSS repositories. However, without very specific instructions on
data preparation, the reproducibility of the results remains at risk.

To quantify how much our results differ, we calculate the difference in per-
centage across all SMOs. For a more fine grained assessment of the degree of
reproducibility, we would require information on the exact SMOs identified in
the original study. This motivates us to also provide the output of applying
mysqldiff in our reproducibility study in our Zenodo repository (see Section 3).

6 Threats to Validity

We now turn evaluate threats to the validity of the original study, and comment
on additional threats discovered during reproduction.

Threats of the Original Study. Three possible threats to validity are pointed out.
Firstly, missing tables in the database schema could arise from using inadequate
text matching patterns. We agree that their correctness affects result quality,
especially if the pattern is used to extract schemas from code that in some
versions or revisions have changed significantly. Inadequate patterns can cause
missing tables, missing columns, and other issues.

Secondly, renamings are another possible source of errors. Following usual
schema history evolution techniques, the authors consider renaming of tables and
columns as a deletion followed by an addition, as implemented by mysqldiff.
Consequently, renamings cannot be correctly recognized.

Thirdly, the choice of reference systems is considered an external threat to
validity. The evolution of database schemas for applications with different char-
acteristics might differ.

Threats of the Reproduction Study. The dominant threat to validity of the re-
production concerns behavior of mysqldiff:
– Different versions of mysqldiff produce different output, also caused by

bugs. Erroneous statements may be mistaken for actual schema changes.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.perlmonks.org/?node_id=507294

Examining Replicability and Reproducibility 9

– Syntax errors in table declarations cause mysqldiff to ignore any subse-
quent declarations. This error propagates, since in comparing predecessor
and successor schemas, mysqldiff will erroneously report additional SMOs,
such as DROP TABLE and CREATE TABLE statements.

– Foreign key constraints require table declarations in topological order. CRE-
ATE TABLE statements extracted from several input files require careful
handling because runtime errors may cause following inputs to be ignored.
mysqldiff relies on a MySQL installation, and the handling of table and

column identifiers in MySQL can be case-sensitive. The subject projects use
lowercase table and column names, so this threat does not materialize.

Finally, incorrectly selected files containing SQL statements are a threat to
validity. For instance, one individual file might be used for a specific DBMS when
multiple DBMS are supported. If the schemas in different files are not properly
synchronized, this leads to deviations. Carefully recording exactly which files
were analyzed is necessary.

7 Related Work

The authors of the original study [8,11] analyze on-the-fly relational schema evo-
lution, as well as collateral evolution of applications and databases. Contrariwise
to the object of our study [16], the former was carried out manually, and risks
differ between manual and programmatic analysis.

From the substantial body of work on empirical schema evolution studies,
Curino et al. [7] study schema evolution on MediaWiki, and consider schema
size growth, lifetime of tables and columns, and per-month revision count. They
analyze schema changes at macro and micro levels. Moon et al. [10] and Curino
et al. [6] test the PRISM and PRIMA systems using the data set addressed in
Ref. [7], as well as SMOs to describe schema evolution. Qiu et al. [13] empirically
analyze the co-evolution of relational database schemas and code in ten popular
database applications. They also discuss disadvantages of using mysqldiff.

Pawlik et al. [12] make a case for reproducibility in the data preparation pro-
cess, and demonstrate the influence of (undocumented) decisions during data
preprocessing on derived results. However, we are not aware of any reproducibil-
ity studies on schema evolution.

8 Conclusion and Future Work

In this paper, we perform a reproducibility study on an analysis of the evolution
of embedded database schemas. For one out of four real-world database appli-
cations, we obtain the exact same results; for two, we come within approx. 20%
of the reported changes, and fail to identify the raw input data in one case.

Our study, conducted nearly a decade after the original study, illustrates
just how brittle online resources are. Specifically, we realize the importance of
archiving the input data analyzed, since repositories can move. This not only

https://dev.mysql.com/doc/refman/8.0/en/identifier-case-sensitivity.html

10 D. Braininger, W. Mauerer, S. Scherzinger

changes the URL, but creates further undesirable and previously unforeseeable
effects, for instance that timestamps and tags no longer serve as identifiers.

We hope that sharing our insights, we can contribute to a more robust,
collective science methodology in the data management research community.

Acknowledgements. We thank the authors of [16] for sharing parts of their analysis

code, and their feedback on an earlier version of this report. Stefanie Scherzinger’s

contribution, within the scope of project “NoSQL Schema Evolution und Big Data

Migration at Scale”, is funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) — grant number 385808805.

References

1. Abadi, D., Ailamaki, A., Andersen, D., Bailis, P., et al.: The Seattle Report on
Database Research. SIGMOD Rec. 48(4) (Feb 2020)

2. Abramatic, J.F., Di Cosmo, R., Zacchiroli, S.: Building the Universal Archive of
Source Code. Commun. ACM 61(10), 2931 (Sep 2018)

3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer
Publishing Company, Incorporated, 1st edn. (2011)

4. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software
Data. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2015)

5. Collberg, C., Proebsting, T.A.: Repeatability in Computer Systems Research.
Commun. ACM 59(3), 6269 (Feb 2016)

6. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful Database Schema Evolution: The
PRISM Workbench. vol. 1, pp. 761–772. VLDB Endowment (Aug 2008)

7. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in Wikipedia:
Toward a Web Information System Benchmark. In: Proc. ICEIS’08 (2008)

8. Lin, D.Y., Neamtiu, I.: Collateral Evolution of Applications and Databases. In:
Proc. IWPSE-Evol’09 (2009)

9. Manolescu, I., Afanasiev, L., Arion, A., Dittrich, J., et al.: The repeatability ex-
periment of SIGMOD 2008. SIGMOD Rec. 37(1), 39–45 (2008)

10. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and
Querying Transaction-time Databases Under Schema Evolution. vol. 1, pp. 882–
895. VLDB Endowment (Aug 2008)

11. Neamtiu, I., Lin, D.Y., Uddin, R.: Safe on-the-fly relational schema evolution. Tech.
rep. (2009)

12. Pawlik, M., Hütter, T., Kocher, D., Mann, W., Augsten, N.: A Link is not Enough
– Reproducibility of Data. Datenbank-Spektrum 19(2), 107–115 (Jul 2019)

13. Qiu, D., Li, B., Su, Z.: An Empirical Analysis of the Co-evolution of Schema and
Code in Database Applications. In: Proc. ESEC/FSE’13 (2013)

14. Sjøberg, D.: Quantifying schema evolution. Information & Software Technology
35(1), 35–44 (1993)

15. Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is Life for a Table in an Evolving
Relational Schema? Birth, Death and Everything in Between. In: Proc. ER 2015.
pp. 453–466 (2015)

16. Wu, S., Neamtiu, I.: Schema Evolution Analysis for Embedded Databases. In: Proc.
ICDE Workshops’11 (2011)

	Replicability and Reproducibility of a Schema Evolution Study in Embedded Databases

