
Quantum Annealing-Based Software Components:
An Experimental Case Study with SAT Solving

Tom Krüger
Ulm University

Germany

tom.krueger@uni-ulm.de

Wolfgang Mauerer
Technical University of Applied Sciences Regensburg

Siemens AG, Corporate Research, Munich

wolfgang.mauerer@othr.de

ABSTRACT

Quantum computers have the potential of solving problems more

efficiently than classical computers. While first commercial proto-

types have become available, the performance of such machines

in practical application is still subject to exploration. Quantum

computers will not entirely replace classical machines, but serve

as accelerators for specific problems. This necessitates integrating

quantum computational primitives into existing applications.

In this paper, we perform a case study on how to augment ex-

isting software with quantum computational primitives for the

Boolean satisfiability problem (SAT) implemented using a quantum

annealer (QA). We discuss relevant quality measures for quantum

components, and show that mathematically equivalent, but struc-

turally different ways of transforming SAT to a QA can lead to

substantial differences regarding these qualities. We argue that en-

gineers need to be aware that (and which) details, although they

may be less relevant in traditional software engineering, require

considerable attention in quantum computing.

KEYWORDS

Quantum Computing, Quantum Annealing, Boolean Satisfiability,

Experimental Performance Analysis

ACM Reference Format:

Tom Krüger and Wolfgang Mauerer. 2020. Quantum Annealing-Based Soft-

ware Components: An Experimental Case Study with SAT Solving . In

IEEE/ACM 42nd International Conference on Software Engineering Workshops

(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3387940.3391472

1 INTRODUCTION

The upcoming end of Moore’s law and the trend towards energy

efficient systems, but the likewise ever-growing need for more

computational power pose substantial challenges to systems engi-

neering and software architecture. New computational approaches

that substantially diverge from technologies established during the

last decades start to graduate from research laboratories into first

working prototypes. Especially quantum computing has gained sub-

stantial attraction during the last years [24]. Programming quantum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Q-SE@ICSE, May 23-29, 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391472

computers (QC) differs drastically from previously established tech-

niques and approaches. Integrating QC into existing appliances

must not only be addressed at the level of algorithmic implementa-

tion, but also concerns many of the broader issues investigated in

software engineering [4]. In this paper, we argue that the problem

at the current stage of development must be considered at a much

lower level of abstraction than is customary in software engineer-

ing, and illustrate this by a case study of how to transition a core

computational primitive—solving binary satisfiability problems—

from classical to quantum in existing software architectures. Our

study illustrates that defining and testing specific quality properties

of QC components is one of the crucial challenges. These properties

do not play a central role in traditional engineering, but must be

considered in software architectures with quantum components.

We illustrate this by analysing different approaches—one of which

has been specifically designed for this paper, and improves consid-

erably on the state-of-the-art—to solving the binary satisfiability

(SAT) problem. We hope this helps readers to form a realistic intu-

ition of near- and mid-term capabilities, potentials and challenges

of augmenting software with quantum components.

2 QUANTUM ANNEALING

By utilising quantum mechanical properties, QCs are expected to

solve some problems more efficiently than their classical coun-

terparts. Simulations of quantum systems [23] and chemical reac-

tions [25], breaking of cryptographic codes [28], but also optimising

portfolios [37] are among the list of candidate problems. Recent

advances—although not undisputed—claim quantum supremacy [3],

even if for extremely artificial problems. Real-world adoption of

quantum computing, as it matters to software engineering, is likely

to happen in an evolutionary way than by disruptive revolution.

We base our considerations on quantum annealers: Many early

potential industrial use-cases [22, 31, 32] rest on this class of ma-

chines, in part because they were among the first offerings available

for commercial use (discussions about the full quantum mechanical

nature of such machines [27] are not relevant for our purposes).

Especially NP-complete problems, which are known to be classi-

cally intractable for inputs of growing size when non-approximate

solutions are desired, are candidates for which (polynomial) quan-

tum speed-ups would be desirable. Many NP-complete problems

of practical interest are known. Especially the Boolean satisfia-

bility problem (SAT) has received substantial attention because

many use cases, from system verification to constrained planning

problems [13], have SAT at their core. Quantum annealers are par-

ticularly well suited to process problems of this type [16]. They

differ considerably from gate-based approaches in their physical

realisation, and in the ways programs are engineered.

445

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

2.1 Using Quantum Annealing Primitives in
Existing Software Architectures

Software engineering is (ignoring many aspects that we cannot

address for the lack of space) concerned with development, inte-

gration, and testing (verification, validation, performance, quality,

. . .) of software [4]. This impacts quantum software development:

2.1.1 Development. A considerable body of previous research de-

voted to developing languages for programming quantum systems

focuses on gate-based approaches (e.g., [11, 30, 34]). A growing

number of quantum programming languages has been devised

for this hardware class (e.g., [10, 17, 33]). Roughly speaking, gate

based quantum computers relate to quantum annealers like im-

perative programming languages do to declarative approaches. A

deep understanding of quantum mechanics is not required to use

current QA hardware, which is beneficial from a software point of

view. Engineers can resort to techniques known from constraint

programming, optimisation, and problem reduction.

2.1.2 Integration. As Knill [14] discussed as early as 1996, quantum

computers will not entirely replace traditional machines, but will be

part of hybrid quantum-classical architectures, not unlike GPUs [1,

12] or other accelerators (TPUs, FPGAs, . . .). Quantum annealers

can be seen as hardware accelerators for approximating quadratic

unconstrained binary optimisation (QUBO) problems.

The ability to easily replace functional components of a soft-

ware architecture is a crucial element of component-based software

engineering [35, 36], and many existing applications are designed

along these ideas. In the following, we consider that a SAT solving

component is supposed to be replaced by a QA device in an existing

software architecture.

Replacing a library function call to a traditional solver by a

network-based job submission to a QA device is an easy program-

ming tasks that we do not consider any further. However, two data

conversions are necessary, as Figure 1 illustrates: The propositional

calculus formula for which a solution is sought must be mapped to

a QUBO. Once the result of the optimisation process is available, is

must be translated back to the original SAT model. Both steps can

be trivially abstracted by an interface.

localremotelocal

�� ��� Reduction ����� �� � QA Parameter
extraction� �	
� ����

Figure 1: Interface wrapping: Classical SAT solvers can be re-

placed with a QA based implementation with limited effort.

2.1.3 Testing. Miranskyy and Zhang [20] discuss testing aspects

related to verification and validation of quantum programs. Fun-

damental properties of NP-complete problems guarantee that so-

lutions can be verified in polynomial time [29], and consequently,

validation and verification of QA programs is not a core challenge.

However, quantum annealers usually only deliver approximate

solutions to problems, and the quality of approximation is closely

related to how “programs” (in the form of mathematical reductions)

are created. We focus on the issues arising from this scenario in the

rest of the paper.

2.2 Workflow

The workflow for solving problems on quantum annealers is more

involved than for classical constraint optimisation. The necessary

process comprises five stages, and choices in some of the stages

can greatly influence performance and accuracy of computations.

Consequently, some knowledge of the inner working of the quan-

tum annealing process are useful. An AQO computation proceeds

along the following stages [12, 18]:

Problem Reduction: Like classical constraint optimization solvers,

QA machines can optimise a specific class of models. An-

nealers can find solutions to quadratic unconstrained binary

optimization (QUBO) problems [15], which are given by

min[�x]
���
∑
i

ciixi +
∑
i , j

ci jxix j
��� (1)

with x ∈ {0, 1} and c ∈ R. A QUBO can be represented by
a weighted graph with nodes xi and associated weights cii .
Weighted edges are given by ci j .
Reducing a given problem p to a QUBO, p ≤ QUBO, requires
no knowledge of quantum mechanics, and is similar to well-

known reductions to Boolean satisfiability problems. As we

will discuss later, structurally different (but logically equiva-

lent) reductions can lead to drastically different performance

on contemporary hardware.

Hardware Embedding: Software solvers can react dynamically

to input, and easily build arbitrary data structures. For QA,

the “data structure” used to represent a given input is fixed in

hardware. This step “translates” an input onto the hardware

structure [1, 7] (see Figure 2). Mathematically equivalent

reductions can lead to pronounced differences in solution

quality, as we show in Section 3.

Hardware Programming: The problem embedding needs to

be transferred to the machine. The physical details of this

operation are irrelevant to programmers, except that some

parameters—most importantly, the duration of the anneal-

ing process—can be influenced. Finding an optimal value is

currently a matter of experimentation.

Execution: The machine finds a solution to the optimisation

problem by “executing” a physical process.

Post Processing: Results obtained in the previous step are usu-

ally only close to the desired optimum. Classical post-processing

can improve solution quality [9]. We will ignore this step in

this paper since we are interested in the capabilities of QA

as such, and not of classical data processing.

2.3 Experimentation Platform

All experiments that we discuss in the following were performed

on a D-Wave 2000Q quantum annealer, model DW_2000Q_2_1.

The machine can be remotely accessed via a Python-based API.

Performing computations requires to specify a problem QUBO, and

(essentially) anneal time and desired sample size n. Once the QA
has evaluated the problem, a result set with n samples is returned.
Each sample contains an assignment for all qubits.

While it is possible to arbitrarily weigh the interaction between

qubits as specified by term ci j from Eq. (1), there are substantial

446

a

1

b
1

c

1

1-2

a

c
1

b

1
a

Figure 2: Example for embedding a logical graph that de-

scribes couplings between qubits (left) into a physical qubit

structure (right) with limited connectivity. Node “a” is

mapped to a chain of two nodes representing “a”, which il-

lustrates that the amount of physical qubits required to rep-

resent a problem is larger than the amount needed for a

structural description.

restrictions on which qubit i can physically and directly interact
withwhich qubits j (see Ref. [5] for details on the available hardware
graph structure). This limited connectivity poses a major practical

challenge when mapping logical to physical problems, since a pair

of nodes that requires a logical connection (a non-zero entry ci j in
Eq. (1)) must be represented by a chain of multiple nodes on the

hardware graph. This considerably limits the number of effectively

usable qubits as compared to the number of physically available

qubits—Figure 6 exemplifies the problem visually. In general, longer

chains lead to more undesirable physical perturbance, and decrease

result quality [26]. As a rule of thumb, the number of usable logical

qubits is only about 5-10% the number of physical qubits.

3 QUALITY ASSESSMENT OF QUANTUM
3-SAT

Let us now turn our attention to discussing how implementation de-

tails of quantum computational primitives can influence qualities of

software. We focus on the problem of finding and comparing reduc-

tions of the problem to a machine specific structure. Such low-level

issues are usually not of much relevance in software engineering,

and are justifiably perceived as implementation details—however,

we show that this level of abstraction is far from reached on quan-

tum machines yet.

The k-SAT problem, the cornerstone of NP-completeness [13],
serves as an example. We first discuss different reductions of k-SAT
≤P QUBO, and show how differences arise from seemingly small

details. We then offer guidance on comparing reductions.

3.1 Problem Definition

The problem of Boolean satisfiability is well known: Let X :=

{x1, x2, . . . , xn } be a set of Boolean variables, and let literals be de-
fined as L := {l |l ∈ {x, x}, x ∈ X }. The set of all clauses is given by
C := {Ci |i ∈ [1;n],Ci ⊂ L, |Ci | = k}. For each xi ∈ X , there exists
at least oneCj such that xi ∈ Cj . A function f (�x) =

∧
Ci ∈C

∨
l ∈Ci l

that satisfies these conditions is called a k-CNF function. Given a
k-CNF function f (�x), the k-SAT problem is to find an assignment

l12 = x2

l14 = x4l13 = x3

l22 = x2

l21 = x1l24 = x4

l31 = x1

l33 = x3l34 = x4

Figure 3: Graphical illustration of a QUBO formula that rep-

resents f (�x) = (x2∨x3∨x4)∧ (x1∨x2∨x4)∧ (x1∨x3∨x4) using
Choi’s reduction. Grey nodes represent a satisfying assign-

ment [x1 �→ 1, x2 �→ 0, x3 �→ 1].

�xt such that f (�xt) = true. It is textbook knowledge [29] that every
CNF formula can be cast in 3-CNF form.

The k-SAT problem is the cornerstone of NP-completeness, but
not all specific instances are difficult to solve. The hardness of an in-

stance depends on the ratio of clauses per variable α = |C |
|X |
[6]. For

instances with few clauses per variable (small α), it is easy to find
satisfying assignments. For instances with many clauses per vari-

able, it is easy to find contradictions. Instances with large or small

values of α tend to be easy to solve. In an α region surrounding
αc ≈ 4.25, the probability that a random k-SAT formula can be satis-
fied drops abruptly from 1 to 0 [6, 21], and the hardest instances are

contained in this parameter regime. Improvements in SAT solving

are therefore most desirable around this phase transition.

3.2 Choi’s Standard Reduction

Choi [8] gives a standard reduction from k-SAT to a QUBO. Let li j
be the literal of variable x j in clause i . Two literals li j and li′j are

in conflict if li j = l̄i′j . Satisfying a Boolean function in CNF implies
at least one satisfied, but conflict-free literal per clause.

The reduction assigns a negative weight−ω to li j :−
∑
li j ωli j . All

literals of a clause are fully connected with positive weighted edges:∑
li j ,li j′ ∈Ci δli j li j′ . All conflicting literals of the same variable are

pairwise connected with positive edge weights:
∑
li j=l̄i′ j

δli j li′j . The

last two sums are pure penalty terms and evaluate to 0 for correct

assignments. This leads to a definition illustrated in Figure 3:

Definition 3.1 (k-SAT ≤P QUBO (MIS)). Let f (�x) be a boolean
k-CNF function. The literal of a variable x j ∈ �x in a clause Ci ∈ C
is given by li j ∈ {0, 1}. Under the constraint ∀δ ,ω : δ > ω > 0,

min[�x]
����
−

∑
li j

ωli j +
∑

li j ,li j′ ∈Ci

δli j li j′ +
∑

li j=li′ j

δli j li′j
����

(2)

finds a satisfying assignment for f (�x) if one exists.[8].

3.3 Backbone Reduction

To demonstrate the effect of different reductions on various aspects

of QA performance, consider a different reduction that we have

devised for this paper, and that improves (as we will analyse later)

on the reduction given in Eq. (2):

447

Definition 3.2 (k-SAT ≤P QUBO (Backbone)). Let f (�x) be a Boolean
function in k-CNF, and let li j be a literal of x j ∈ �x in Ci ∈ C , with
li j , x j ∈ {0, 1}. Then

q(�x) = ω
���

∑
li j ,li j′

li j li j′ +
∑

li j=x j

−li jx j +
∑

li j�x j

−li j + li jx j
��� (3)

with ω > 0 describes a QUBO q(�x) for which min[�x] represents a
satisfying assignment of f (�x) if one exists.

Mathematical details of the derivation are given in Appendix A.

3.4 Quality Criteria for Reductions

Quality criteria for software are plentiful, and many of them also

apply to the relative merits of reductions. Since the development

of quantum computers is mainly driven by the desire for more

computational power, we focus on two indicators: Performance

and scalability. There is (despite recent standardisation efforts) no

universally applicable (and accepted) definition of how to measure

performance of quantum computers; this is particularly hard for QA,

were the run-time is not determined by the input, but chosen as a

parameter—the annealing time. Consequently, we consider solution

quality—how likely is it to obtain a correct answer that does not

violate constraints, and how accurate is the answer (i.e., how close

is it to the optimal achievable value)—as proxy for performance.

Scalability considers the question of how large problems can be

solved on a hardware of given size (i.e., number of physical qubits).

The achievable accuracy of a reduction depends on its structure

(how well do logical connections between qubits match the avail-

able physical structure?) and on hardware parameters. While the

adiabatic theorem ensures that longer annealing times (runtimes)

results in better accuracy, flaws and approximate implementations

of the scheme in real hardware lead to less direct relations. Like

with traditional approximation algorithms, increasing the amount

of computes samples also leads to more accurate solutions.

3.5 Generating Instance Datasets

Owing to the lack of a published, physically accurate model of

the quantum annealer that includes imperfections and noise,1 de-

termining scalability and accuracy is currently only possible with

experimental means [19].

When SAT is used to model constrained optimisation problems

in practical applications, the resulting SAT instances often exhibit

specific structural properties, which can guide the generation of use-

ful test instances for determining quality properties of reductions.

This is, of course, not unlike the well-studied problem of generating

tailored input data for general software testing problems [2].

We are interested in a general comparison of reductions, and

therefore base our input data generation on general properties of 3-

SAT. We have discussed that the problem exhibits different regimes

in Section 3.1, and systematically generate random 3-SAT instances

that cover these by sweeping across different values of α . For the
number of needed qubits, k |C | is the dominant term for both reduc-
tion approaches. Keeping |C | fixed and varying |V | produces stable

1It is unlikely that such a physically accurate model will be available in the near- or
mid-term future.

Figure 4: Influence of the embedding method on the prob-

ability of finding correct satisfying assignments for ran-

domly generated 3-SAT instances with varying ratios α of
clauses to variables. The horizontal dashed lines marks the

critical valueαc (accompanied by a peak increase in required
computing time when using traditional numeric solvers).

The dashed curve represents the probability distribution of

finding a satisfying assignment with optimal solvers. To

ease comparing quantum and classical result, a logistic re-

gression curve is given for each parameter variation.

Both (mathematically equivalent) methods arrive at correct

conclusions less often than classical solvers, which is caused

by imperfections and limitations of the available hardware.

QUBO sizes across the α-spectrum, which guarantees a consistent
hardware graph utilization.

3.6 Experimental Results

We generate a data-set containing 250 random 3-SAT instances

with 42 clauses each. In total, six runs with varying annealing times

(5 to 2000μs) and samples sizes (5 and 100) were performed on the
quantum annealer described in Section 2.3. Figure 4 shows results

for the two different reduction methods.

3.6.1 Accuracy. For Choi’s MIS-based reduction, the annealing

time does not substantially effect the accuracy. Using probability

amplification by performing a larger number of runs 100×20μs , does
improve the accuracy slightly. Results obtained with the backbone

method, in contrast, improve with increasing annealing time, and

increasing the number of runs is also accompanied by a larger

improvement as compared to the MIS method. It is also important

448

Figure 5: Accuracy difference (in percentage points) between

MIS and backbone method.

Figure 6: Number of required physical qubits to after embed-

ding a QUBO for a given ratio of variables and clauses (top)

and median chain lengths necessary to connect qubits with-

out direct interconnections (bottom).

to note that using an excessively long annealing time of 2000μs
results in a decrease of result quality2.

Recall from the above discussion that solving SAT instances in

the critical parameter region around αc is most involved for clas-
sical solvers, and improvements by quantum computers are most

desirable in this region. Unfortunately, the MIS method delivers

satisfying solutions in this range with almost zero probability.

Figure 4 directly compares accuracy results. The difference in

accuracy reaches up to 60%, and the backbone method is consis-

tently more accurate for all scenarios. The decreasing difference in

accuracy at α > αc is a consequence of the low number of satisfi-
able instances in this region. Around the critical region, we observe

marked differences of around 35%.

2This observation does contradict the adiabatic theorem; the effect is likely caused
by a large amount of noise leading incorrect initial configurations or random energy
level jumps during the annealing process. Both effects occur with growing probability
for increasing annealing times.

3.6.2 Scalability. Figure 6 compares scalability of the two reduc-

tions by analysing the amount of required physical qubits, and the

mean length of chains necessary to connect qubits without direct

physical connections (we use the minorminer tool provided as part

of the D-Wave API to embed QUBOs into the hardware graph).

For the MIS-based method, the amount of physical qubits and

mean chain length grow essentially linear with an increasing α ,
which follows from the pairwise links between conflicting literals.

The backbone method improves upon both aspects because the

QUBO is less densely populated, which makes it easier to find

embeddings. Especially around the critical value αc , the amount of
required physical qubits is only half of what is required for the MIS

method, which in turn implies that substantially larger problem

sets can be solved on a hardware of given size.

4 CONCLUSION

Development and evaluation of quantum software components

must address well-established engineering concerns of traditional

SWE. Based on the scenario of replacing SAT solving, a key ele-

ment of many applications, with a quantum component, we have

shown that careful attention is required in defining and evaluating

relevant qualities. We have argued that scalability and accuracy

are of particular relevance for early existing quantum annealers.

While replacing classical with quantum components is not particu-

larly involved from a programming perspective, our experiments

indicate that engineers must be aware of crucial details that might

be perceived as irrelevant in traditional SWE to make informed

decisions on potentials and pitfalls of quantum computing.

REFERENCES
[1] Alastair A. Abbott, Cristian S. Calude, Michael J. Dinneen, and Richard

Hua. 2019. A hybrid quantum-classical paradigm to mitigate embedding
costs in quantum annealing. International Journal of Quantum Informa-
tion 17, 05 (2019), 1950042. https://doi.org/10.1142/S0219749919500424
arXiv:https://doi.org/10.1142/S0219749919500424

[2] Saswat Anand, Edmund Burke, Tsong Chen, John Clark, Myra Cohen, Wolfgang
Grieskamp, Mark Harman, Mary Harrold, and Phil Mcminn. 2013. An orches-
trated survey on automated software test case generation. Journal of Systems
and Software 86 (08 2013), 1978–2001. https://doi.org/10.1016/j.jss.2013.02.061

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
2019. Quantum supremacy using a programmable superconducting processor.
Nature 574, 7779 (2019), 505–510.

[4] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Practice
(3rd ed.). Addison-Wesley Professional.

[5] Jun Cai, William G Macready, and Aidan Roy. 2014. A practical heuristic for
finding graph minors. arXiv preprint arXiv:1406.2741 (2014).

[6] Peter C Cheeseman, Bob Kanefsky, and William M Taylor. 1991. Where the really
hard problems are.. In IJCAI, Vol. 91. 331–337.

[7] Vicky Choi. 2008. Minor-embedding in adiabatic quantum computation: I. The
parameter setting problem. Quantum Information Processing 7, 5 (2008), 193–209.
https://doi.org/10.1007/s11128-008-0082-9

[8] Vicky Choi. 2010. Adiabatic Quantum Algorithms for the NP-Complete
Maximum-Weight Independent Set, Exact Cover and 3SAT Problems. ArXiv
abs/1004.2226 (2010).

[9] Thomas Gabor, Sebastian Zielinski, Sebastian Feld, Christoph Roch, Christian
Seidel, Florian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-
Popien. 2019. Assessing Solution Quality of 3SAT on a Quantum Annealing
Platform. In Quantum Technology and Optimization Problems, Sebastian Feld and
Claudia Linnhoff-Popien (Eds.). Springer International Publishing, Cham, 23–35.

[10] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: a scalable quantum programming language. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language design
and implementation. 333–342.

[11] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. 2018. A
software methodology for compiling quantum programs. Quantum Science and

449

Technology 3, 2 (2018), 020501.
[12] T S Humble, A J McCaskey, R S Bennink, J J Billings, E F D’Azevedo, B D Sullivan,

C F Klymko, and H Seddiqi. 2014. An integrated programming and development
environment for adiabatic quantum optimization. Computational Science &
Discovery 7, 1 (jul 2014), 015006. https://doi.org/10.1088/1749-4680/7/1/015006

[13] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. Springer, 85–103.

[14] Emmanuel Knill. 1996. Conventions for quantum pseudocode. Technical Report.
Los Alamos National Lab., NM (United States).

[15] Mark W. Lewis and Fred Glover. 2017. Quadratic Unconstrained Binary Op-
timization Problem Preprocessing: Theory and Empirical Analysis. ArXiv
abs/1705.09844 (2017).

[16] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5.

[17] WolfgangMauerer. 2005. Semantics and simulation of communication in quantum
programming. arXiv preprint quant-ph/0511145 (2005).

[18] Catherine C. McGeoch. 2014. Adiabatic Quantum Computation and Quantum An-
nealing: Theory and Practice. In Adiabatic Quantum Computation and Quantum
Annealing: Theory and Practice.

[19] Catherine C McGeoch. 2019. Principles and guidelines for quantum performance
analysis. In International Workshop on Quantum Technology and Optimization
Problems. Springer, 36–48.

[20] Andriy V. Miranskyy and Lei Zhang. 2018. On Testing Quantum Programs. 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER) (2018), 57–60.

[21] David Mitchell, Bart Selman, and Hector Levesque. 1992. Hard and easy distribu-
tions of SAT problems. In AAAI, Vol. 92. 459–465.

[22] Florian Neukart, Gabriele Compostella, Christian Seidel, David Von Dollen, Sheir
Yarkoni, and Bob Parney. 2017. Traffic flow optimization using a quantum
annealer. Frontiers in ICT 4 (2017), 29.

[23] Gerardo Ortiz, James E Gubernatis, Emanuel Knill, and Raymond Laflamme. 2001.
Quantum algorithms for fermionic simulations. Physical Review A 64, 2 (2001),
022319.

[24] Ferdinand Peper. 2017. The End of Moore’s Law: Opportunities for Natural
Computing? New Generation Computing 35 (2017), 253–269.

[25] Markus Reiher, NathanWiebe, KrystaM Svore, DaveWecker, andMatthias Troyer.
2017. Elucidating reaction mechanisms on quantum computers. Proceedings of
the National Academy of Sciences 114, 29 (2017), 7555–7560.

[26] Irmi Sax, Sebastian Feld, Sebastian Zielinski, Thomas Gabor, Claudia Linnhoff-
Popien, and Wolfgang Mauerer. 2020. Towards Understanding Approximation
Complexity on a Quantum Annealer. Digitale Welt 4, 1 (01 Jan 2020), 104–104.
https://doi.org/10.1007/s42354-019-0244-1

[27] SeungWoo Shin, Graeme Smith, John A Smolin, and Umesh Vazirani. 2014. How"
quantum" is the D-Wave machine? arXiv preprint arXiv:1401.7087 (2014).

[28] Peter W. Shor. 1994. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26 (1994), 1484–
1509.

[29] Michael Sipser. 2006. Introduction to the Theory of Computation (second ed.).
Course Technology.

[30] Damian S Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: an open
source software framework for quantum computing. Quantum 2 (2018), 49.

[31] Tobias Stollenwerk, Elisabeth Lobe, andMartin Jung. 2019. Flight gate assignment
with a quantum annealer. In International Workshop on Quantum Technology and
Optimization Problems. Springer, 99–110.

[32] Tobias Stollenwerk, Bryan O’Gorman, Davide Venturelli, Salvatore Mandrà, Olga
Rodionova, Hokkwan Ng, Banavar Sridhar, Eleanor Gilbert Rieffel, and Rupak
Biswas. 2019. Quantum annealing applied to de-conflicting optimal trajectories
for air traffic management. IEEE transactions on intelligent transportation systems
21, 1 (2019), 285–297.

[33] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q# Enabling Scalable Quantum Computing and Development
with a High-level DSL. In Proceedings of the Real World Domain Specific Languages
Workshop 2018. 1–10.

[34] Krysta M Svore, Alfred V Aho, Andrew W Cross, Isaac Chuang, and Igor L
Markov. 2006. A layered software architecture for quantum computing design
tools. Computer 39, 1 (2006), 74–83.

[35] Muhammad Tahir, Fazlullah Khan, Muhammad Babar, Fahim Arif, and F Khan.
2016. Framework for better reusability in component based software engineering.
the Journal of Applied Environmental and Biological Sciences (JAEBS) 6, 4S (2016),
77–81.

[36] Tassio Vale, Ivica Crnkovic, Eduardo Santana De Almeida, Paulo Anselmo
Da Mota Silveira Neto, Yguaratã Cerqueira Cavalcanti, and Silvio Romero de
Lemos Meira. 2016. Twenty-eight years of component-based software engineer-
ing. Journal of Systems and Software 111 (2016), 128–148.

[37] Davide Venturelli and Alexei Kondratyev. 2019. Reverse quantum annealing
approach to portfolio optimization problems. Quantum Machine Intelligence 1,
1-2 (2019), 17–30.

A ALTERNATIVE REDUCTIONS

Loosened Clause Penalties Choi’s reduction (definition 3.1), is,

in essence, a reduction from k-SAT to the problem of finding the
maximal independent set (MIS) of a given graph. Assume a k-SAT
instance is reduced to QUBO as described in definition 3.1, and let

Gf be the graph representation. Consider a MIS of Gf , which is

given by the largest set of vertices such that there are no connected

vertices. In definition 3.1 this property is enforced by the constraint

δ > ω. Solving a QUBO defined by definition 3.1 also solves the MIS
problem forGf . The problem of finding the MISGf corresponds to

the problem of finding the maximal number of satisfiable clauses

(MAX-k-SAT) in f . The relation between MAX-k-SAT and k-SAT
is trivial.

Theorem A.1. Setting δ = ω in definition 3.1 does not change the

correctness of the assignment derived from the QUBO solution.

Proof. Let q(x) be a sub-QUBO representing one clause like
described in definition 3.1. Under δ = ω the following holds:
min(E(n)) = −ω if E(n) is the energy of a clause sub-QUBO with n
satisfied literals. It is straight forward to see that E(n) = −nω+

(n
2

)
ω.

Therefor, E(0) = 0 and E(1) = E(2) = −ω. The inequality E(n) <
E(n + 1) evaluates to −n < −1 which is true for all n > 1. This leads
to the conclusion that min(E(n)) = −ω.
Consider a clause Ci and its corresponding sub-QUBO qi (x).

Now, min(qi (x)) = −ω for one or two satisfied literals in qi (x).
Therefore, the minimization of qi (x) leads to a satisfied clause Ci .
For two conflict-free clauses Ci and Cj the combined minimum

energy is given by min(qi (x) + qj (x)) = −2ω. Now we introduce
a conflict between Ci and Cj . That activates an additional penalty

term pi j = ω which leads to min(qi (x) + qj (x) + pi j) = −ω > −2ω.
This shows that conflicts between clauses always lead to a higher

energy level and thus should be avoided when minimizing the

complete QUBO q(x). For all satisfiable k-SAT instances f (x) with
n clauses the minimal energy of their corresponding QUBOs q(x)
will bemin(q(x)) = −nω. Every function f (x) with minimal QUBO
value min(q(x)) > −nω cannot be satisfied. �

Backbone Choi’s reduction represents variables solely by their

literals. To avoid conflicts, we need to ensure that li j � li′j for
all pairs (li j , li′j) ⇔ (x j , x̄ j). An edge in the QUBO connects the
literals as penalty term, which leads to highly connected graphs for

instances with large values of α . The degree of connectivity can
be improved by introducing a backbone for variables, which allows

us to transitively express equivalence between literals by linking

them to their corresponding variable. The reduction is given in

Definition 3.2 on page 3.

Correctness of definition 3.2. Let E(n) be the energy of a
clause sub-QUBO with n satisfied literals. The difference between
sub-QUBOs in definition 3.1 and definition 3.2 is that in the latter

node weights of literals li j � x j are moved to the edges (li j , x j).
For every literal, there exists exactly one edge to its corresponding

variable. Therefore, edge weights can be viewed as node weights,

and it follows that E(n) = −nω +
(n
2

)
ω. Consequently, min(E(n)) =

−ω also holds for definition 3.2. If two literals li j and li′j conflict,
one of ωli jx j or ωli′jx j evaluates to ω, while the other evaluates to
0. The rest of the argument follows Theorem A.1. �

450

