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ABSTRACT
Many problems of industrial interest are NP-complete, and quickly
exhaust resources of computational devices with increasing input
sizes. Quantum annealers (QA) are physical devices that aim at this
class of problems by exploiting quantum mechanical properties of
nature. However, they compete with efficient heuristics and proba-
bilistic or randomised algorithms on classical machines that allow
for finding approximate solutions to large NP-complete problems.

While first implementations of QA have become commercially
available, their practical benefits are far from fully explored. To
the best of our knowledge, approximation techniques have not yet
received substantial attention.

In this paper, we explore how problems’ approximate versions
of varying degree can be systematically constructed for quantum
annealer programs, and how this influences result quality or the
handling of larger problem instances on given set of qubits. We
illustrate various approximation techniques on both, simulations
and real QA hardware, on different seminal problems, and interpret
the results to contribute towards a better understanding of the real-
world power and limitations of current-state and future quantum
computing.
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1 INTRODUCTION
Many industrial problems belong to complexity class NP, the set
of problems solvable with a non-deterministic Turing machine in
polynomial time. Even if there are efficient algorithms for small
instances using fixed parameter or approximation algorithms [9, 11,
28] there are no known algorithms to solve large enough instances
exactly and efficiently.

Quantum annealing is one candidate that might solve such hard
problems in less time than classical machines. The exact relations
between classical and quantum computational power still pose
many open questions, despite recent popular results that prove
quantum supremacy for certain very specific problems [2]. In par-
ticular, it is not expected that quantum computers will be able to
solve NP-complete problems in polynomial time [1].

Industrial use-cases rarely focus on decision problems, but often
concern approximate optimisation. For instance, a practical use of
the travelling salesperson problem (TSP) is not to ask “is there a
closed route of length n between cities?” (which would be captured by
the NP-complete decision version of problem) , but rather “what are
possible short routes?”, as described by the NPO version. Accepting
slight deviations from optimal solutions can lead to substantial
savings in temporal effort for many problems, which is usually
preferable in pratical applications.

First instances of commercially available QAs have appeared [4,
15, 22]; expected theoretical and practical applications are numer-
ous including quantum chemistry [27], traffic management [26],
network design [13] or quantum assisted learning [30]. However,
the precise benefits of QA caused by the drastic shift in hardware
implementation are mostly still unchartered territory [17].

In this paper, we discuss how programs for QAs can be designed
to find non-optimal solutions to NPO problems, and what gains
and losses in terms of various qualities are implied. In classical
computation, approximation algorithms usually sacrifice precision
for decreased runtime as compared to an exact algorithm. Quantum
annealers feature constant computation time by nature of their
design (see Section 2), and therefore need to trade other factors in
relation to closeness to optimality. There are two major opposing
influences on solution quality, as Figure 1 illustrates. First, quality
depends how well logical qubits can be mapped to the available
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Figure 1: Illustration of solution quality dependent on the
embedding’s size (indicated by growing thickness of arrows)
and degree of structural approximation (indicated by direc-
tion of arrow, whereas up represents good and down bad
quality)

physical qubits: Not all physical qubits are interconnected, and
interactions between unconnected qubits cause increased distance
from solution optimality.1 Second, exact mathematical formulations
lead to perfect solutions on flawless hardware, but complicate the
mapping of logical to physical qubits because exact specification
usually requires large amounts of qubits. Pruning the problem—for
instance by relaxing some of the constraints—is enabled by approx-
imating the problem instance and thus approximating the solution
but can also induce opposite effects on real hardware thanks to the
smaller amount of required qubits. One of the tasks we address in
this work, is to find a balance between an easy mapping of qubits
to the hardware, and approximating problems appropriately such
that the overall probability of finding good solutions is amplified.

2 BASICS
Quantum annealing differs considerably from classical notions of
algorithmic calculation. Therefore, we briefly summarise the core
concepts in this section (readers who wish to remind themselves of
the detail can consult standard references like, e.g. [22], [23]).

Quantum annealers solve minimisation problems specified as
quadratic unconstrained binary optimisation problems (Qubo). A
Qubo is a representation of a minimisation formula using binary
variables xi . For a problem graph GP = (V , E) with nodes V =
{1, . . . ,n} and weights ci for all nodes and weights ci j for all edges
in E, the Qubo is defined as [20] min

(∑n
i cixi +

∑
(i , j)∈E ci jxix j

)
.

A Qubo can equivalently be specified by all nodes, edges and
weights of a problem graph, or by the adjacency matrix of the
problem graph. For an introduction on how to formulate a Qubo
for a given optimisation problem we refer the reader to [16].

We perform experiment evaluations on the D-Wave DW2000 Q21
quantum annealer [22]. Conceptually, the device comprises two
components: A processor for solving mathematical problems by
quantum mechanical processes, and a user front-end that allows
for controlling the processor.

1If logical qubits do not match the structure of physical qubits they can be represented
by chains, that is one logical qubit is mapped to several physical ones. If qubits of a
chain have different binary values at the end of the annealing process the solution
cannot be valid anymore. That is why we aim for short chains when mapping qubits
to the hardware. [29]

The chip provides about 2000 qubits in the structure of a chimera
graph GC [10]. 16 × 16 cells are placed in a quadratic grid, and
each cell contains a graph with eight nodes. Every node represents
a qubit and is connected with four other qubits in the same cell.
Different cells are also interconnected, but not on the level of each
individual qubit.

To find solutions for a device-independent Qubo GP on the
hardware,GP must be mapped toGC , referred to as embedding. The
limited connectivity of GC with at most six edges per node implies
that a node in GP of higher degree cannot directly be embedded,
and must be represented by several nodes of GC . The amount of
qubits requires in GC is therefore larger than GP, which makes
it desirable to formulate problems such that the involved qubits
require only low connectivity. For finding a proper embedding we
used the tool minorminer by D-Wave Systems Inc.2

3 APPROXIMATING QUBOS
A fully specified QUBO delivers an exact, optimal solution of the
encoded problem if the underlying minimisation problem is solved.
A QUBO matrix without non-zero entries does not impose any
constraints on the problem variables, and every possible assign-
ment represents a valid solution—in other words, an empty QUBO
delivers a set of random binary values as result of an optimisation
process.

Interpolating between these scenarios intuitively gives solutions
that contain an increasing amount of random choices (and conse-
quently, deteriorating solution quality), while less qubits (non-zero
entries in the QUBO) are required to represent the problem. Remov-
ing Qubo entries that represent optimisation constraints leads to
solutions that are usually not optimal, but valid. Removing entries
representing hard constraints often results in invalid solutions. In
this context, hard constraints describe all values in a Qubo matrix
that represent actual constraints on a solution. If those constraints
are violated the solution is not valid and therefore not usable. Con-
sequently, we will focus on problems where most of the Qubo
entries are optimisation constraints. Pruning a Qubo induces two
contrary effects (cf. Figure 1): Removing entries implies a less exact
specification, and decreases solution quality, but sparsely populated
Qubo matrices are easier to embed on real QA hardware, which
increases solution quality.

We have devised different strategies that produce increasingly
approximate versions of a given QUBO:

Fraction This methods orders the non-diagonal entries by in-
creasing value. We delete blocks in entries in granularity of
5% of all non-zero values, up to 100%, relative to all entries
representing minimisation constraints. We delete small en-
tries first because they are considered to have little effect on
the optimal solution and will not approximate the problem
instance significantly. Entries representing hard constraints
remain in the Qubo, which also holds for the other methods.

Threshold This method determines the largest non-diagonal
entry. The smallest entry within 5% difference from this
value is taken as a threshold. All values below this threshold
are pruned from the QUBO. Subsequent approximation steps
raise the threshold in increments of 5%.

2https://github.com/dwavesystems/minorminer
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Random This method starts with deleting 5% of randomly
chosen Qubo entries (entries representing hard constraints
are always kept), and increases the amount of deleted entries
to 10%, 15%, etc. for increased degrees of approximation.

Note that eventually, all three methods arrive at identical QUBOs
when 100% of the non-hard constraints are purged.

We focus on removing entries representing optimisation con-
straints. If these occur on non-diagonal entries in the Qubo matrix,
deleting leads to reduced connectivity, shorter qubit chains and
thus a smaller amount of required physical qubits. However, delet-
ing optimisation constraints from the diagonal of the Qubo matrix
while leaving non-diagonal values in the corresponding matrix
row or column does not decrease connectivity, and hence does
not reduce the amount of required physical qubits. Therefore, we
focus on problems where optimisation constraints reside in non-
diagonal entries. As all the problems analysed in this paper are
computational problems from Karp’s 21 NP-complete problems, the
proposed approximation of those problems might not only be of
industrial but also scientific interest.

3.1 Exact Cover
The Exact Cover (EC) Problem considers a set U of numbers and a
set V of subsets Vi . An exact cover for U is a collection V ′ ⊂ V of
sets such that every element u ∈ U appears exactly once inV ′. The
decision variant of Exact cover is in NP [18]. One variation of the
objective function is to minimize the number of errors: An error
occurs if an element of U appears more than once in V ′, or not at
all. Following Ref. [21], the optimisation variant of the exact cover
problem is given by

min
∑
u ∈U

©«
1 −

∑
i :u ∈Vi

xi
ª®¬

2

(1)

The binary variable xi is set 1 if subset Vi is contained in V ′, and
0 otherwise. A straight-forward reduction from EC to Maximum-
Weight Independent Set (MIS) is given by Choi [7].

To discriminate hardware imperfections from consequences of
the approximation proper, we run experiments for each target prob-
lem on both, a classical simulation (the dimod.Simulated Annealing
Sampler by D-WAVE Systems Inc.3) and a quantum annealer. For
the EC, our data set requires about 1000 physical qubits to imple-
ment the exact Qubo and was pruned step-wise to 53 qubits. Only
non-diagonal Qubo entries have been deleted, which represents the
information which elements of U appear in which sets Vi . Every
pruned Qubo was solved 100 times. Results are shown in Figure 2.
v/vref is the relative difference between the number of errors v of
the cover compared to a reference value vref, which is the size of
set U .

Pruned Qubos require less physical qubits, which in turn means
that with increased amounts of pruning, larger problem instances
can be embedded on a given amount of physical qubits. Figure 2
also shows the largest size of a pruned instance that can still be
represented on the 2048-qubit QA hardware, with the size – in terms
of logical qubits – of the unpruned original instance. For the random

3https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/sampler_
composites/samplers.html#module-dimod.reference.samplers.simulated_annealing

solution we assigned the 53 logical bits randomly with values 0 and
1 for 100 times. The resulting mean error is also shown in Figure 2.
As a random solution is not influenced by the approximation of
the problem instance but only the number of logical bits needed, it
stays constant throughout the pruning process.

Deleting entries from the Qubo matrix with method fraction re-
sults in a constant error for the simulation up to a pruning fraction
of about 80%. Removing more than 80% of the Qubo information
leads to significantly worse solutions The QA behaves similarly
with increasing amount of pruning, save for a lower absolute devia-
tion value from the reference vref. The solution quality is mostly
unchanged up to a pruning factor of about 60%, before it decreases
significantly. In both cases, the size of embeddable problems in-
creases essentially linearly in the regime of invariant solution qual-
ity.

Figure 3 compares the effect of different pruning strategies on
the solution (anti-)quality, measured in errors for a cover. The
leftmost graph contains the same information as the left-hand part
of Figure 2, except that the distribution of results for iterative runs
is shown, compared to the mean value on Fig. 2.

For the threshold strategy, solution quality remains constant up
to a pruning factor of 45% (recall that all values smaller than 45%
of the maximal value in the Qubo are deleted in this case). Beyond
this regime, solution quality drops considerably.4

For strategy random, the solution quality decreases almost lin-
early with the fraction of pruned Qubo entries. Consequently,
method fraction provides the best results even for high pruning fac-
tors. Since we observe the same behaviour for the other problems
considered in the paper, we restrict our discussion to this pruning
strategy in the following.

3.2 Maximum Cut
The Maximum Cut (MC) problem is defined on undirected graphs
G = (V , E) and seeks a partition of V into two disjoint sets V1,
V2 such that the cut, that is the number of edges connecting the
two sets, is maximal. The decision variant of MC is contained in
class NP [18]. Formulating of the MC is straightforward using
variable xv that is set 1 if node v is element of V1, and 0 otherwise:
min

∑
uv ∈E 2xuxv − xu − xv

Figure 4 shows the results of evaluating each pruned Qubo
100 times on a simulation and the QA. The simulation shows a
similar behaviour for the size of embeddable instances and solution
quality as for the EC. Up to a pruning fraction of 35%, solution
quality is almost constant, and up to 70% pruning fraction, only a
moderate deterioration in quality can be observed, despite the fact
the problem instances comprising up to 50% more logical qubits
are tractable.

Compared to a random solution the solution of the simulation is
never better. The QA obtains solutions of lower quality even when
no pruning has yet been performed. With higher pruning fractions,
solutions improve and converge to the solution of a random solution.

4For EC, any deleted values are even-valued non-diagonal matrix entries. The maximal
value of the Qubo is 8 for our data. A pruning factor p = 0.0, 0.05, 0.1, 0.15, 0.2
multiplied by 8 results in a threshold less than 2, and no no entry in the Qubo is
deleted. Pruning factors p = 0.25, 0.3, 0.35, 0.4, 0.45 delete all entries with value 2.
For higher pruning factors entries with value 4 are also deleted, which leaves—for our
data set—with less than 10% of Qubo the original entries.
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Figure 3: Results for 100 runs of the Exact cover problem on a simulation with different pruning methods
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Figure 5: Solution Quality for Maximum Cut for different an-
nealing times and a random solution compared to optimum

The effect of adjusting physical parameters of the annealer, in
particular the annealing time ∆t , is shown in Figure 5. Without
any pruning, the standard annealing time of 20µs delivers worse
solutions than the simulation. Increasing the annealing time to 40µs
or even 80µs provides substantially better solutions especially for
less pruned Qubos. With a higher pruning fraction the solutions
step-by-step converge to a randomly guessed solution. An optimal
value was never reached even with adjusting the annealing time.
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3.3 Number Partitioning
The Number Partitioning Problem, one of Karp’s seminal 21 NP-
complete problems [18], asks if a set S = {n1, ...,nN } of num-
bers can be divided into two subsets S1, S2 such that S1 ∪ S2 = S ,
S1 ∩ S2 = ∅ and

∑
ni ∈S1 ni =

∑
ni ∈S2 ni . For defining the Number

Partitioning problem as an optimisation problem we use the ob-
jective function min

∑
ni ∈S1 ni −

∑
ni ∈S2 ni , that is minimising the

difference between sets S1 and S2.
Following [21], a Qubo formulation of the problem is given by

minA ©«
2

N∑
i=1

N∑
j>i

4xinix jnj +
N∑
i=1

4xin2
i − 4k

N∑
i=1

xini + k
2ª®¬

(2)

with k = (∑N
i=1)2.

The results of approximating this Qubo by the fraction strategy
are shown in Figure 6. Since we minimize the difference between
the sum of sets S1, S2, an optimal solution has got size 0. To define
a relative quality measure, we compared the sum v for a given so-
lution to half the sum vref of all numbers in S by dividing v

vref
. For

the simulation, deterioration of solution quality and the growing
size of the embeddable instances follow the same trend, similar to
the simulation of MC. The Quantum Annealer shows a different
behaviour: Solutions for the original, non-pruned Qubo are worse
on the QA than the same solution on a simulation. Higher prun-
ing fractions lead to better solutions on the QA, also exceeding a
randomly guessed solution.

Figure 7 shows the solution quality of runs with different anneal-
ing times compared to the half sum of numbers, that have to be
partitioned. The solution quality of 100 runs with 20 and 40µs are
almost identical, thus showing that the adjustment of the annealing
time does not change the solution quality for number partitioning.
Nevertheless the solutions are mostly worse than the solutions of a
simulation. With increasing pruning fraction of more than 80% the
quality of solutions drops significantly for all annealing times.

3.4 Airport Gate Assignment Problem
The airport gate assignment problem (AGAP) is a specialisation of the
well-known quadratic assignment problem (QAP). It is contained
in Apx [25]. For a given airport withm gates and n airplanes, the
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Figure 7: Ratio of solutions to mean sum of numbers in S

task is to find an assignment between airplanes and gates so that
walk way between gates for passengers changing between flights
is minimal (of course, every airplane is assigned to exactly one gate,
and no two planes are assigned to the same gate). Related to [12]
this problem is mathematically described by:

min
n∑
i=1

n∑
j=1

m∑
k=1

m∑
l=1

(pi , jdk ,l + ai ,k )xi ,kx j ,l+

n∑
i=1

m∑
k=1

p0,id0,kxi ,k +
n∑
i=1

m∑
k=1

pi ,n+1dk ,m+1xi ,k+

A
n∑
i

( m∑
k

xi ,k − 1
)2

+ B
m∑
k

( n∑
i
xi ,k − 1

)2

(3)

Binary variable xi ,k is set 1 if plane i is assigned to gate k , and 0
otherwise. pi , j describes the number of passengers changing from
plane i to plane j (plane 0 represents a dummy-plane for passengers
boarding their initial flight in a multi-leg trip, and dummy-plane
n + 1 collects passengers leaving the airport after their final leg).
dk ,l specifies the distance between gate k and l . Variable ai ,k pro-
vides costs for assigning plane i to gate k . Parameter yi , j describes
whether two planes can be assigned to the same gate because they
will be on the gate at different times. A,B ∈ R are relative weights
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that ensure that violating a constraint cannot lead to optimal, but
incorrect solutions.

Figure 8 shows the result of approximation by pruning, based on
200 runs for each reduced Qubo. In Figure 8 we show the deviation
of solutions for simulation and QA calculation compared to the
optimal value of the problem instance. Both, QA and simulation, find
better solutions than random guessing, and the solution quality is
almost constant independent of the degree of approximation. When
pruning more than 80% of the Qubo matrix, the solution quality
drops to a deviation of 15% from the optimal value. However, using
the strongly pruned Qubo, it is possible to embed about 30% larger
problems on the quantum hardware.

Problem AGAP is well suited for approximation; since the un-
derlying quadratic assignment problem finds application various
industrial relevant contexts, including placement problems, sched-
uling applications or parallel and distributed computing [5].

3.5 Maximum 3SAT
Boolean satisfiability with three literals per clause is the cornerstone
problem of NP completeness [8], and the corresponding approxi-
mation problem is in the hard approximation class APX [24]. Given
a Boolean formula with n variables and m clauses, where each

clause contains a disjunction of exactly three literals, the problem
is to find an assignment of the n variables that satisfies as many
clauses as possible. The decision variant, the 3-SAT Problems, asks
whether a given formula can be assigned with n variables such that
the whole formula, that is all clauses contained in the formula, is
satisfied. Applications of the maximum 3SAT problem are found,
for instance, in database systems, combinatorial optimization, or
expert systems [6].

Following [7], we obtaining a Qubo for 3SAT via the weighted
maximum independent set (WMIS) problem. It is known that for
solving randomly created SAT instances, the ratio αc =m/n is an
important characteristic quantity that influences the hardness of
the problem. For small αc , it is on average easy to find a satisfying
assignment.

The result of approximation by pruning is shown in Figure 9.
Solution quality is mostly invariant for up to 70%. Conflict edges
receive larger weights than other edges in the problem graph, and
consequently, small Qubo entries are removed first, and conflict
edges last. Consequently, the probability of creating a contradiction
(where a variable and its negated form are both assigned the same
truth value) is small in the initial phase of the pruning process,
and the solution quality is stable until entries representing hard
constraints are affected.
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3.6 Travelling Salesperson
The travelling salesperson problem (TSP) is a well-known NP-com-
plete problem [14] whose optimisation variant is contained in
NPO [3]. An input graph G = (V , E) with N = |V | and weight
Wuv for every edge (u,v) ∈ E and a start node s is given. The TSP
seeks a tour through all the nodes, that is, a path p that starts and
ends at node s , and contains every other node exactly once. The
total weight of the path given by

∑
(u ,v)∈pWuv must be minimised.

Following Lucas [21], a QUBO for the problem is given by

min A
n∑

v=1
(1 −

N∑
j=1

xv , j )2 +A
n∑
j=1

(1 −
∑
v=1

xv , j )2+

A
∑

(uv)<E

N∑
j=1

xv , jxv , j+1 +
∑

(uv)∈E
Wuv

∑
j=1

xv , jxv , j+1 (4)

We use binary variable xv , j to indicate if node v is visited on the
j-th position in the path. The first two terms in Eq. (4) ensure that
every node is visited exactly once within the tour and that there
has to be a j-th node in the path. The third term prevents that two
unconnected nodes appear consecutively in the path; we assume for
our analysis that all nodes are connected to each other, and can omit
the term. The last term minimises the overall weight of the selected
path by adding all weights of the edges contained in the path. Values
A,B are positive integers that must satisfy 0 < B max(Wuv ) < A.

The results of the experiment are given in Figure 10. For the TSP,
simulation and QA exhibit completely different behaviour. Up to a
pruning fraction of 80%, the solution quality in the simulation is
almost invariant. For the QA, solution quality drops considerably
after a pruning degree of only 20%. Most importantly, the QA did not
obtain any valid solutions, which explains the strong fluctuations
in solution quality.

3.7 Graph Coloring
The Graph Coloring problem (GC) is another of Karp’s 21 NP-complete
problems [18]. The decision variant of GC decides if the nodes V
of a graph G = (V , E) can be colored in such a way that no edge
e ∈ E connects two nodes of the same color. One common objective
for an optimisation variant is to minimise the number of required
colors. Ref. [19] solves small instances of GC using a new approach

called constrained quantum annealing, which substantially reduces
the dimension of the solution space.

For approximate solutions, the number of errors is given by
the amount of edges connecting two same-colored nodes. Follow-
ing [21], a Qubo formulation of GC is given by

minA
∑
v ∈V

(1 −
n∑
i=1

xv ,i )2 + B
∑
uv ∈E

n∑
i=1

xu ,ixv ,i (5)

Binary variable xvi indicates that node v has color i; n gives the
number of possible colors. The first term ensures that every node
is assigned exactly one color, and the second term minimises the
number of errors (ideally, zero).

Running the pruned Qubo 100 times in a simulation and a Quan-
tum annealer gives results as shown in Figure 11. We only delete
values that represent the second term of the minimisation formula
in 5. The hard constraints that ascertain that assignment of exactly
one color to every node remain.

The simulation shows that approximation leads to only moderate
loss in solution quality up to a pruning fraction of 50%, which is
desirable. The obtained solutions improve over the random choice
baseline. The QA did not find any valid solutions, which means
that one node was either assigned two colors, or no color at all.

3.8 Graph Isomorphism
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph iso-
morphism problem (GI) decides if there exists a permutation P such
that the adjacency matrices A1, A2 for graphs G1, G2 are related
by A2 = PTA1P [21]. We consider the optimisation variant of the
problem, that maximises how many vertices of G1 can be mapped
onto vertices of G2.

Lucas [21] provides the Qubo formulation

min A
∑
v
(1 −

∑
i
xv ,i )2 +A

∑
i
(1 −

∑
v

xv ,i )2+

B
∑

(i j)<E1

∑
(uv)∈E2

xu ,ixv , j + B
∑

(uv)∈E1

∑
(uv)<E2

xu ,ixv , j (6)

Binary variable xv ,i is set 1 if node v from G1 is mapped to node
i from G2. The first two terms ensure that every node from G1
is assigned to exactly one node from G2 and vice versa. The last
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Figure 11: Ratio of errors (v) compared to number of nodes in the graph (vref) and ratio of embeddable instance size (v) com-
pared to the original, non-pruned instance (vref) for the graph coloring problem.
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Figure 12: Ratio of errors (v) compared to number of nodes in the graph (vref) and ratio of embeddable instance size (v) com-
pared to the original, non-pruned instance (vref) for the graph isomorphism problem.

two terms describe how many edges from one graph cannot be
found in the other graph and must be minimised. As the hard
constraints consume a substantial portion of the Qubo, the size of
the embedding does not decrease significantly with pruning.

The results of 100 simulation and QA runs per pruned Qubo are
shown in Figure 12. Similar like for the GC problem, the solutions
of simulation and QA clearly differ. While solution quality stays
invariant to the pruning of 50% in the simulation, QA could not
find any valid solutions at all. Additionally, the growth in size of
embeddable instances with increasing pruning fraction is negligible,
which makes GI not well suited for approximation.

4 CONCLUSION
We have introduced several approximation methods for optimisa-
tion problems in QUBO formulation that allow us to trade decreas-
ing solution quality for a smaller amount of required qubits. We
have compared the behaviour of solution qualities for problems
from different approximation complexity classes using a classical
simulation and a quantum annealer.

We find that the achievable solution quality on QA is robust
against pruning Qubo matrices, often up to pruning ratios as large
as 50% or more. Since QAs are probabilistic machines by design,

they usually deliver sub-optimal, approximate results anyway, the
loss in solution quality is only of subordinate relevance, and is
compensated by the fact that pruned Qubo matrices allow for
handling larger problem instances on hardware of a given capacity.

We also observe that for many of the problems analysed in this
paper, QA without postprocessing delivers solutions that are either
close to, or even below the quality of randomly guessed solutions, ef-
fectively eliminating any quantum-mechanical advantage. However,
as the results obtained by classical simulations show, approximate
solutions can—given suitable future hardware—deliver solutions of
comparable quality to the full problem description, while remark-
ably reducing the amount of required qubits. Since the amount
of qubits will remain one major limiting factor on real hardware,
our results might be useful to enlarge the possible problem sizes
treatable on such machines, hopefully assisting first real-world
industrial applications of quantum computing.
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A REPLICATION PACKAGE
A.1 Structure and Content
To make our experiments replicable, we provide the complete source
code for the calculations performed in the paper, including results
obtained on quantum computers and via classical simulation. The
replication package is available for permanent download at https:
//data.ub.uni-muenchen.de/182/. It contains

(1) a docker virtual machine image (approx.tar.bz2) with a
complete, self-contained execution environment for all re-
sults presented in the paper, together with usage instructions
(NOTES).

(2) the complete source code for our experiments, including all
derived results from classical simulations and quantum me-
chanical computations. For each experiment, a self-contained
ZIP file with all source codes, configuration settings, and
calculation results as used presented in the paper is pro-
vided (Exact Cover.zip, Graph Isomorphism.zip, Max-
imum Cut.zip, Traveling Salesperson.zip, Maximum
3SAT.zip, Graph Coloring.zip, Number Partition-
ing.zip).

(3) the production script (file approx2.dockerfile) for the vir-
tual machine image.

Only the VM image itself is required to ensure the long-term
availability and replicability of our results. Artefacts (2) and (3)
are provided for reference. Note, in particular, that (3) depends on
external resources that are not controlled by us, and may change
or become unavailable over time. The VM image (1) contains an
im mutable copy of the state of these resources at the time of our
experiments, and guarantees that they can be reproduced without
relying on external resources.
To use the docker container, you must have a working installation
of docker – see https://www.docker.com/ on how to install an ap-
propriate environment on Windows, Linux, or MacOS X. Should
docker at some point in the future become unavailable, then you
can use the provided tarball of artefact (1) with other virtual ma-
chine environments of your choice.
To run the calculations on a D-Wave quantum annealer, access to an
appropriate machine is required, which comes with an API key. Each
experiment is accompanied by a configuration file (config.py) that
allows choosing between local simulation and remote execution on
the quantum annealer. By default, local simulation is used. Note that
access to a quantum annealer is not required to ensure long-term
availability of our results, since we provide all derived computa-
tional results as part of the source packages.
Parameter processing accepts the choices cpu (local simulation)
and qpu (dispatch on the D-Wave Quantum Annealer). Some prob-
lems allow for specifying the annealing time per run via parameter
annealing. The default value is 20µs .
When using the D-Wave Quantum Annealer, you need to specify
your API access token in the parameter token.
Generated results are stored in file results-{given, threshold, ran-
dom}1000{cpu,qpu}.csv. The file suffix {cpu,qpu} indicates local
(classical) or remote (quantum annealing) computation. Results
obtained by us on the D-Wave machine, and used in the paper,
are available in results-given1000default.csv for each experi-
ment.

Plots can be re-created using the script plot_graph.py. The config-
uration parameter plot, which accepts values cpu and qpu, allows
for choosing if the simulation or annealing results are used for the
plots. Setting the parameter to default chooses the type of plot
used in the paper for each experiment.

Furthermore you will find the file plot_annealing_times.py
for the Maximum Cut and the Number Partitioning Problem in
the corresponding source folders. It plots the results gained by
changing the annealing time for said problems and uses the data
stored in results-given1000default_{20,40,80}mus.csv.

For the Exact cover problem there is also the possibility to create
the boxplot over the different pruning methods by running plot_-
pruning_ methods.py. Note, that you first have to create the result
files result-{given, theshold, random}1000cpu.csv in order for
the function to work.

A.2 Replicating Calculations in the Virtual
Machine

We assume that a working deployment of Docker is available on
the host OS (Linux, Mac OS, or Windows). Perform the following
steps top replicate calculations in the virtual machine:

(1) Load docker image, and obtain an interactive shell:
docker load < /path/to/approx2.tar.bz2
docker run -it approx2:replicate

(2) Run the computation scripts for a given <experiment>, where
<experiment> can be one of Exact Cover, Graph Isomor-
phism, Maximum Cut, Traveling Salesperson, Graph Col-
oring, Maximum 3SAT, or Number Partitioning.
cd "src/<experiment>"

The name of the <dispatcher> depends on the experiment
chosen. For instance, it is number_partitioning.py for the
Number Partitioning experiment. Initiate execution with
python3 <dispatcher>

A complete example for the Travelling Salesperson experiment:
cd ~/src/Traveling\ Salesperson/
python3 travelling_salesperson.py

A.3 Re-Creating the Docker Container
It is also possible to creating the docker container from scratch. We
provide these instructions for reference only, they are not required
for long-term availability.

(1) Provide a base directory structure. Create a new folder at a
location of your choice, and copy approx2.dockerfile into
the folder.
Then, create a subfolder base, and copy all zip files available
in the OpenData repository into subfolder base.

(2) Create the container. Run
docker build --tag approx2:replicate \

-f approx2.dockerfile .

(3) Obtain access to the container. Run
docker run -it approx2:replicate

Then, proceed to run the experiments as shown in Sec. A.2.
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