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ABSTRACT
Finite state machines (FSMs) are an appealing mechanism for sim-
ple practical computations: They lend themselves to very e�cient
and deterministic implementation, are easy to understand, and al-
low for formally provingmany properties of interest. Unfortunately,
their computational power is deemed insu�cient for many tasks,
and their usefulness has been further hampered by the state space
explosion problem and other issues when naïvely trying to scale
them to sizes large enough for many real–life applications.

This paper expounds on theory and implementation ofmultiple
coupled �nite state machines (McFSMs), a novel mechanism that
combines bene�ts of FSMs with near Turing-complete, practical
computing power, and that was designed from the ground up to
support static analysis and reasoning. We develop an elaborate cat-
egory–theoretical foundation based on non–deterministic Mealy
machines, which gives a suitable algebraic description for novel
ways of blending di�erent computing models. Our experience is
based on a domain speci�c language and an integrated develop-
ment environment that can compile McFSM models to multiple
target languages, applying it to use-cases based on industrial sce-
narios. We discuss properties and advantages of McFSMs, explain
how the mechanism can interact with real–world systems and ex-
isting code without sacri�cing provability, determinism or perfor-
mance.

We discuss howMcFSMs can be used to replace and improve on
commonly employed programming patterns, and show how their
e�cient handling of large state spaces enables them to be used as
core building blocks for distributed, safety critical, and real–time
systems of industrial complexity, which contributes to the long-
desired goal of providing executable speci�cations.

KEYWORDS
Finite statemachines,Mealymachines, automata, coupledmachines,
executable speci�cation, category theory, generative approaches,
formal models, static analysis
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� INTRODUCTION
State information is omnipresent in systems: Physical and logical
properties like speed, temperature, time, duration, or error status
are required to describe almost any kind of machine. Such proper-
ties are intuitively considered to be part of the state of a system,
and are typically used in speci�cations to describe its workings or
failures, or to make runtime decisions, by referring to them. Di�er-
ent properties often belong to di�erent components of a system,
and multiple components may in�uence one another. Correctly
handling such interdependencies is crucial in system design and
implementation.

Many advances in computer science have focused on the objec-
tive of localizing e�ects, as is evident from functional or object-
oriented programming [��]. A major purpose of this is limiting
side-e�ects to manageable portions of the code, as do common
techniques like information hiding or separation of concerns [��].
While the total state is composed of all the di�erent component
states, the e�ects of any event on this total state may not be local,
but spread across multiple components and set o� an avalanche of
internal changes. Orchestrating such cascades of internal events
and internal reactions into a reliable, working system is one of the
main challenges of software engineering [�]. Developers often try
to cope with this by using design patterns like the ubiquitous ob-
server pattern [��]. As Maier and Odersky show [��], the pattern
may provide a false sense of security, while actually making the
system more complex and harder to debug. What is really needed
are compiletime means of describing and debugging these interde-
pendencies, while ensuring as much locality as possible.

This paper introduces a novel mechanism – multiple coupled
�nite state machines (McFSMs) – together with a domain speci�c
language (DSL) for model-based development and abstract speci�-
cation. Relating changes to states and properties of di�erent parts
of a system is possible by choosing a super-ordinate system de-
scription with a �nite state machine (FSM), which is a very well-
known and intensively studied mechanism [��]. It allows us to
communicate and reason about practically any deterministic sys-
tem. In contrast to describing a system with a single, very large
�nite state machine that can quickly become unwieldy for realis-
tic system sizes, our mechanism employs multiple FSMs coupled
by noti�cations to make the structure of a cooperating system ex-
plicit. It aims at retaining the simplicity and advantages of local
FSMs by enveloping themwith a global superordinate structure that
takes care of the intricacies brought about by their interdependen-
cies. As a low-level mechanism, it lends itself to an e�cient imple-
mentation that can, thanks to properties discussed in detail below,
serve as basis for real-time and safety-critical industrial systems. It
avoids the pitfalls of scattered observers acting largely agnostic of
their interdependencies. Owing to a theoretical foundation based

�
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on category theory, it lends itself to rigorous scrutiny and formal
veri�cation.

The composition logic required to orchestrate components does
often not require Turing–complete code (for instance, simple dis-
patchers may su�ce), but is usually implemented in the same Tur-
ing–complete mechanism used for the core code. McFSMs aim pri-
marily at explicitly describing and handling interdependencies be-
tween components, and therefore the global structure of a compos-
ite system, at compiletime and with non-Turing–complete means.
Although our description is synchronous and deterministic at the
core, it also allows for handling asynchronous external processes
and events. They can be used to reduce implicit or undesired de-
pendencies between components, and foster a consistent and well-
structured global description of interdependencies.

Figure � illustrates the well-known relation between expressive-
ness of various classes of languages as de�ned by the Chomsky hi-
erarchy [��], and the increasing complexity of proving properties
of programs. are at opposite borders of this spectrum. We have
deliberately designed our approach to fall in between FSMs and
Turing–machines: It want to bene�t from provability properties
of simpler approaches, but still be su�ciently expressive to conve-
niently handle and describe non–trivial industrial problems.

Established model checking approaches [��, ��, ��], for instance
LTL or CTL [��], describe a given implemented system with an ad-
ditionalmodel that captures its essential properties, and then prove
derived properties. Our approach combines modelling and imple-
mentation:We extract andmodel the core decision structures of pro-
grams into a superordinate description based on non-Turing–com-
plete means. To ascertain practicality (for instance, to interact with
OS-level features), the approach allows for including components
given in Turing–complete languages that specify behavioural prop-
erties that can be assumed in proofs. Provability, then, is of course
at the discretion of the guarantees speci�ed and satis�ed by the
extension.

© Siemens AG 2017  Page 3 2017-05 Florian.Murr@siemens.com 
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…çlanguages / machines è… 
Turing 

Advantages and Limits of FSMs 

FSMs have no “run-time secrets” (can “proof” everything at compile-time – no need to resort to incomplete testing) 

 

McFSMs create and handle “huge” FSMs 
thereby greatly extending their range of applicability, 
while retaining their advantages.   

provability 

Figure �: Expressiveness in languages complicates proofs of
correctness or other relevant properties. Our approach is
designed to perform the balancing act of bridging between
su�cient expressivity for real-world problems (as given by
Turing-complete mechanisms) and simplicity (as provided
by FSMs) that enables provability.

Our considerations base on Mealy machines [��, ��] that con-
sume input–events and issue output–events. McFSMs provide a
deterministic mechanism to connect them into larger compounds.
A third entity, Pseudo–FSMs, provides a connection with Turing–
complete portions of a system. It is known that when systems com-
prising multiple components are modelled using a straightforward

product automaton approach, an exponential increase in both the
number of states and edges can occur. Our approach allows us to
describe industrially relevant coupled systemswhile avoiding such
an exponential “state space explosion”. We achieve this by provid-
ing an algebraic description of FSMs using appropriate category-
theoretical [��, ��] constructions, in contrast to the usual approach
of co-algebraically [�] describing FSMs and related mechanisms for
formal veri�cation. A co-algebraic description implies that by ob-
serving the behaviour of a system, it is possible to construct an
equivalent system that may or may not be structurally identical.
This often leads to the construction and design of systems relying
internally on di�erent variables and functions than the ones used
during their speci�cation.�

We claim the following contributions:

(�) A novel mechanism to described coupled systems designed
to facilitate direct static analysis, to separate the global su-
perordinate coordination structure of systems from imple-
mentation details of components.

(�) A complete formal treatment based on category theory.
(�) Generative mechanisms to produce practically deployable

code in common low-level and scripting languages usable
in many classes of industrial systems.

(�) An human-readable, domain speci�c language (DSL) simi-
lar to a programming language, and an associated industrial
strength integrated development environment available as
open source software available on the companion website
(hyperlink available in PDF).

Overall, our approach provides a step towards an executable
speci�cation, which allows for verifying that a given generated sys-
tem behaves as intended from one single, uni�ed system descrip-
tion. While our work also includes techniques to reason about pro-
grams and perform static analysis, we cannot, for the lack of space,
address these aspect in the current paper, and focus on formalisms
and software engineering issues. Details on reasoning will be pro-
vided in subsequent work; practical aspects of the integrated devel-
opment environment are described in an online supplement (see
the companion website).

� ILLUSTRATIVE EXAMPLE
We start explaining the syntactic features of our DSL by consider-
ing the illustrating example in Fig. �, which uses the McFSM for-
malism to implement an elementary light bulb (FSM class Bulb),
that may toggle between the states on and off (lowercase) and an-
other bulb (McFSM class McBulb) that uses one such bulb B (Bulb
inst B) and lets it additionally blink in periodic intervals.

Consider class Bulb: Line � declares a list of strings named OO
containing the two string values On and Off. This list is used mul-
tiple times as an xvar variable OO in a xvar pattern %OO. These pat-
terns indicate implicit for–loops, and have the format %�ar , where

�The di�erence is similar to the di�erence between FSMs and deterministic �nite au-
tomata (DFAs): The latter mechanism is an acceptor with the purpose of deciding
a language; internal states and transitions are only a means of determining which
words are a part of the language, contrary to FSMs, where such transitions are the
main reason for the existence of the computational mechanism. Two structurally dif-
ferent DFAs serve the same purpose as long as they accept the same language, whereas
this not the case for FSMs.

�

https://github.com/ase-double-blind/mcfsm
https://github.com/ase-double-blind/mcfsm
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� set OO {On Off}
� FSM class Bulb {
� hop -loops %OO_%OO i%OO -> oIs%OO
� hop *_%OO i%OO -> o%OO
� hop *_%OO iBlink -> oBlink
� }
� McFSM class McBulb {
� Bulb inst B {
� initialState off
�� iconnect i%OO <- /i%OO
�� iconnect iBlink <- /tBlink /iBlink
�� when oBlink call emitT(/tBlink,0.7sec,/i%OO)
�� }
�� oconnect /o%OO <- B/o%OO
�� oconnect /oBlink <- B/oBlink
�� }

Figure �: Modelling a switchable light bulb, and an extension
that can blink with the McFSM DSL.

�ar is the name of a list-variable. They implement a string replace-
ment called xvar resolution.

Line �multiply contains the same xvar pattern %OO. It starts with
the command hop, which works as a constructor for states, state
transitions, input- and output–events. It triggers string replace-
ment by handing its list of parameter strings (here %OO_%OO, i%OO
and oIs%OO) to xvar resolution. This function �rst determines the
amount of di�erent xvar patterns in a strings (here only one: %OO),
and then creates as many nested implicit for–loops as required to
replace each xvar pattern with the value of the corresponding loop
variable. As a result, all combinations of the string elements of the
respective xvar variables are created, and the result is returned to
the triggering command. In the example, this delivers on_on iOn
-> oIsOn�, �off_off iOff -> oIsOff. hop knows where to ex-
pect state transitions (written with an underscore as state�_state�),
input–events, and outputevents. It creates all elements referenced
in the above string, which in the example equates to two states
on, off, two input–symbols iOn, iOff, two state transitions on_-
on, off_off, and two output–symbols oIsOn, oIsOff. The option
-loops instructes hop to accept cyclic state transitions.

Line � shows a glob pattern, identi�ed by an asterisk *, that
performs pattern matching against the elements so far de�ned in
the current class. The glob patterns in the example, *_on and *_-
off, are matched against the list of already de�ned states on and
off. Since the �ag -loops is not given, line � is equivalent to hop
off_on iOn -> oOn and hop on_off iOff -> oOff. Likewise, line
� is equivalent to hop off_on iBlink -> oBlink. and hop on_-
off iBlink -> oBlink. Class Bulb has three input–symbols iOn,
iOff, iBlink and �ve output–symbols oOn, oOff, oIsOn, oIsOff
and oBlink. The idea is to have Bulb return oOn if it was not on,
and has switched to on and oIsOn if it was already on in the �rst
place—analogously for off.

A major di�erence between xvar patterns and glob patterns is
that the former perform string transformations agnostic of the cur-
rent context (class and command), while the latter match elements
depending on the current context. Xvars use the same string lists
across di�erent classes, and thus work globally, while glob uses
knowledge about the local context to �ll in information.

Line � de�nes a McFSM named McBulb, which in line � creates
its �rst (and only) member B (Bulb inst B). This is an instance of

class Bulb. Line � sets the initial state of B to off. Lines �� and
�� start with command iconnect (mnemonic for “input connect”)
and it creates the input–events of the surrounding McFSM indi-
cated by the slash / as pre�x. The event names without slash are
the ones provide by class Bulb.

Lines �� and �� analogously connect the output–symbols ofmem-
bers (only B) with the ones of the surrounding McFSM (McBulb).

Now McBulb has the input–symbols iOn, iOff, iBlink and the
timer input tBlink and the output–symbols oOn, oOff, oBlink.

Allowing the bulb to periodically blink is implemented with the
help of timer event tBlink, issued by the when command in line ��.
It triggers the scheduler, which is part of the McFSM runtime envi-
ronment, to issue an event tBlink with a temporal delay, here �.�
seconds (this default value can be recon�gured at runtime), should
it not be already scheduled. The last parameter in the emitT()
symbol expands to /iOn, /iOff and indicates timeout events, that
means the event tBlink gets canceled or ignored, should event
iOn or iOff happen for the McFSM before the timer event tBlink
has arrived.

It is important to note that the DSL focuses on the pure event
structure, and does not, in contrast to orthodox programming lan-
guages, describe any actions or side e�ects. Based on the descrip-
tion in the DSL, our system generates code in an object-oriented
target language (TL)—this can be C++, Python, Tcl, . . .—, and pro-
vides a class structure that corresponds to the classes de�ned in
the DSL. The interaction with the physical system is left to rou-
tines dispatched by these classes.

This separation between event structure and generic code is sup-
posed tomake both easier to understand andmaintain. Each TL has
to provide a slim runtime library, whose detailed design is not of
interest here. However, we remark that our reference implementa-
tion implements transitions in a single thread, but allows input–
events to come from other threads. Given that the runtime library
appropriately handles such multi-threaded interactions, McFSM
objects can typically act as some kind of “mega-mutex” handling
concurrency issues and letting the developers work as if all other
pieces were single-threaded.

� MCFSM: FORMALISM
A McFSMm is a Mealy machine equipped with an internal struc-
ture given by a list of smallermember-Mealy machinesm1, . . . ,mn .
Themembersmi can be combined and interconnected by using the
output of some as input to others. In contrast to other models, most
importantly the widely used UML state machines [��, ��], McFSMs
use a deterministic and synchronous coupling, which results in a
strictly sequential internal event distribution protocol. This ascer-
tains that an McFSM and the connection protocol between mem-
bers is deterministic, given that all members are deterministic.

Apart from Mealy machines, a McFSM may contain other ele-
ments: External events (input and timers) feed input to a McFSM,
and provide a notion of temporal progress compatible with the
model; both can also be handled deterministically. pseudo–FSMs
and plugins allow for interfacing with external components writ-
ten in regular programming languages without re-introducing the
many issues of Turing–complete code. Plugins and pseudo–FSMs
can introduce non–determinism, and require a careful and detailed

�
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treatment that we will provide in Sec. �. For now, let us make do
with just mentioning their existence and purpose, and su�ce it to
say that our formalism can state general requirements that ensure
they behave like a Mealy machine.

To simplify some considerations, we add a virtual memberm0
that uses the input–events of a McFSM as its output–events, and
a virtual membermn+1 that has the output–events of the McFSM
as its input–events. The processing of an input–event corresponds
then to a sequence of output-to-input event connections starting at
m0 and ending atmn+1. We refer to this as the internal connection
network.

TomakeMcFSMswork, an internal algorithm and data-structure
is needed that takes responsibility of creating and operating the
right such sequence. How events are distributed and processed is
derived from elementary requirements:

Keep order. Eventsmust keep their order, that is no later event
may overtake a previous one.

Run to completion. Every event is processed until done. In-
ternal event processing shall not be interrupted by other
events.

Distribution order. The members get each event in a deter-
ministic, prede�ned, possibly event-speci�c, order.

A formal description of the distribution mechanism turns out
to be astonishingly complicated, so we omit it here (details are
provided in the companion website). Essentially, it resembles a
sequence of function calls. Assume that machine mi accepts in-
puts Ei = {ei,1, . . . , ei,#Ei } and returns as outputs one of Oi =
{oi,1, . . . ,oi,#Oi } for i 2 {0, . . . ,n + 1}. We can take as a simple
example some input–event ei, j to mi and exemplify the internal
distribution mechanism of its output oi,k to two coupled machines
ma ,mb , with oi,k connected to ea,u and eb,� . This can be viewed
as a sequence of function-calls in pseudo-code:
Oi mi::ei, j() {�a=ma.ea,u(); �b=mb.eb,�(); . . . return
oi,x;}
The return value oi,x usually gets chosen depending on the return-
values�a ,�b , which would unnecessarily complicate our presenta-
tion.

The order of calls for oi,k corresponds to a sequence of the
membersmi . If not speci�ed otherwise, we use their order in the
McFSM. The absence of cycles makes sure that the sequences for
individual events combine into an ordered tree of calls.

To distribute events across the system, a stack is required to
store any intermediate values; as usual, each function may call
other functions in turn. In the absence of recursive cycles in these
calls, the call sequence terminates in a �nite number of steps. The
exact amount can (contrary to regular programming languages) be
computed at compiletime.

Checking and guaranteeing properties at compiletime is an es-
sential feature of FSMs and McFSMs. For instance, one straight-
forward condition that ascertains the absence of unde�ned behaviour
or unhandled cases in a system at runtime is the Mealy condition:
It requires that both, � : Q ⇥ � ! Q and � : Q ⇥ � ! �, are to-
tal functions. While it is syntactically easy to violate the condition
in a McFSM speci�cation, the violation can always be identi�ed at
compiletime, which is one of the main goals of static analysis.

� CATEGORIES FOR STATE-MACHINES
This section develops a suitable mathematical model, starting with
FSMs and extending it to �nite and in�nite, deterministic and non–
deterministic general state machines (SMs) and Mealy machines.�
Mathematical category theory (CT) is pertinent because it allows
us to concisely expound the essence of our concepts. We do not as-
sume close familiarity with CT beyond basic concepts— recall that
CT is essentially about objects connected by morphisms (arrows)
that satisfy associativity for their composition.

The objects we de�ne represent models of computation, and our
morphisms represent the interrelations between these models. We
also automatically bene�t from established de�nitions and propo-
sitions in CT, for example the de�nition of when two objects are
considered isomorphic.

Let us de�ne a category FSM of �nite-state-machines (bold font
is used for categories) that respects their internal structure, at least
as far as reachable states are concerned. We do not equate the al-
gebraic model of FSMs with the co–algebraic model of FAs. These
two alternatives consider di�erent perspectives: In FSMs, the states
bear semantics, while FAs focus on the accepted language, and states
are just means to perform the separation between elements inside
and outside this language.

A McFSM is based on a state space Q ⇡ Q1 ⇥ · · · ⇥Qn , which is
roughly the product space of n member FSMsmi (0 < i < n;n, i 2
N). Each individual state space Qi bears individual semantics. We
want to emphasize that isomorphic FSMs are equivalent as DFAs,
but not vice versa: We aim at an algebraic de�nition of FSMs that
allows us to see an equivalence of FSMs based on their inner state
structure as opposed to the usual co-algebraic de�nition of DFAs,
which is based on their input-/output- relations and equivalence
based on observed behaviour, that is, their accepted language.

We use the following notation: Let X ,Y be sets, f : X ! Y

a function, ; the empty set; P (X ) the power set of X and P ( f ) :
P (X ) ! P (Y ), A 7! f (A) the corresponding function; Xn the set
of n-tuples (we treat tuples, strings and sequences as synonyms).
(n 2 N); X ⇤ = Sn2N Xn the set of all �nite strings� of X in-
cluding the empty string � ; X+ := X

⇤\{� } the set of non-empty
�nite sequences; string concatenation · : X ⇤ ⇥ X

⇤ ! X
⇤, that is

u,� 2 X ⇤ ) u� := u · � := ·(u,� ) 2 X ⇤. f may be extended to X ⇤
as f ⇤ : X ⇤ ! Y

⇤ with f
⇤ (� ) := � ; f

⇤ (u · a) := f
⇤ (u) · f (a);

As additional notations: P+ (X ) := P (X )\{;} the set of non--
empty subsets of X, P+ ( f ) the restriction of P ( f ) to P+ (X ) and
�X : X ⇢ P (X ), x 7! {x } the injective embedding of X into
P (X ). Finally, we use von Neumann’s convention to equate 0with
the empty set, and de�ne n + 1 B n [ {n} as successor function
(especially 2 B {0, 1} is of interest for us).

A deterministic state machine is a quadruple dsm := hQ, �,� ,q0i,
where Q is a (�nite) set of states, � : Q ⇥ � ! Q the transition-
function,q0 2 Q an initial state [��]. The (�nite) sets �,� are called
alphabets and their elements symbols or events. The domain of �

�The pre�xes ‘D’, ‘N’, ‘F’ are used to indicate the particular kind, like: NFSM := non–
deterministic �nite state machine, DFMealy := deterministic �nite Mealy machine, . . .
The terms FSM and Mealy are more lax. Usually they are short for the deterministic
and �nite variants, but may sometimes encompass other kinds as well. Likewise we
use this convention for automata: FAs, DFAs, NFAs.
� We typically use as variable names: a, b, c 2 X ; u, �, w 2 X ⇤ , if not stated
otherwise.

�

https://github.com/ase-double-blind/mcfsm
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can easily be extended to strings: �̃ : Q ⇥ �⇤ ! Q ; �̃ (q, � ) := q;
�̃ (q,u · a) := � (�̃ (q,u),a); and further extended to sets of states:
�̂ : P (Q ) ⇥ �⇤ ! P (Q ); �̂ (;,w ) := ;; �̂ ({q},w ) := {�̃ (q,w )};
�̂ (R,w ) :=

S
q2R �̂ ({q},w ); We may write � for any of the three

functions � , �̃ and �̂ , because the context usually makes clear what
is meant and � ({q0}, �⇤) for the set of reachable states.

Since q0 is �xed, dsm does correspond to a functionm : �⇤ ! Q ;
with m(� ) = q0; m(a) = � (q0,a); m(� · a) = � (m(� ),a); This
allows us to de�ne categories DSM and DFSM where the objects
are such functions m : �⇤ ! Q . Morphisms f : m ! m

0 are
pairs of functions f = hf1, f2i, that make the following diagram
commute

�⇤ Q

�0⇤ Q
0

m

f ⇤2 f1
m0

f1 : Q ! Q
0; f2 : �! �0;

f
⇤
2 : �⇤ ! �0⇤;
that is f1 �m =m0 � f ⇤2 .

Short notation:m
hf1,f2i�����! m

0, or hf1, f2i : m ! m
0. Identities are

the pairs of identity functions idm = hid�, idQ i and composition
� � f : m ! m

00 is de�ned using component–wise function–com-
position � � f := h�1 � f1,�2 � f2i, which is associative as required.

These categories yield an algebraic de�nition of deterministic
(�nite) state machines and thus provide us with de�nitions of (epi-,
mono-, iso-) morphisms between them, respecting their reachable
states.

Deterministic Mealy machines issue an output when treating
an input, therefore we de�ne mealy := hQ, �,�,� ,�,q0i, where
DSMmealy := hQ, �,� ,q0i is its internal SM, � a (�nite) output-
alphabet and � : Q ⇥ � ! � its output-function. Both functions �
and � can be extended as before to use string domains and sets of
states, yielding �̂ : P (Q )⇥�⇤ ! P (Q ) and �̂ : P (Q )⇥�⇤ ! P (�)
with � (x ) = ; , x 2 {(q, � ) : q 2 P (Q )} [ {(;,w ) : w 2 �⇤},
which allows us to talk about reachable output symbols.

The arrows hf1, f2, f3i : m ! m
0 between Mealy machines

are triples, extending the arrows hf1, f2i between the underlying
DSMs, which are pairs, with a mapping f3, so that these three func-
tions work together, meaning that the following diagram has to
commute

Q ⇥ � �

Q
0 ⇥ �0 �0

�

f1⇥f2 f3

�0

f1 : Q ! Q
0; f2 : �! �0; f3 : � ! �0;

f1 ⇥ f2 : hq,ai 7! hf1 (q), f2 (a)i;
f3 � � = �

0 � ( f1 ⇥ f2).
Thus, we get a category DMealy of deterministic Mealy ma-

chines by de�ning the composition of Mealy-arrows component–
wise. From this it follows, that Mealy machines are isomorphic, i�
there is an arrow j = hj1, j2, j3i :m !m

0 between them, that is an
isomorphism between their underlying DSMs hj1, j2i :m !m

0 so
that j3 is invertible and j

�1 = hj�11 , j�12 , j�13 i : m0 ! m is another
Mealy-arrow.

Although we mentioned �niteness of Q , �, � and the construc-
tion of m using � in the de�nitions above, it is not needed for
de�ning a category. Dropping any of these �niteness conditions
will not change that all previous diagrams still commute and form
categories, albeit of course di�erent ones. The very same formal ab-
stractionm : �⇤ ! Q can be used for any kind of computation, in-
cluding FSMs and Turing–complete code, bringing them together

inside the same categories� and we can use this to compare their
behaviour using Mealy-arrows and diagrams. � — We will come
back to all this, when we discuss Pseudo–FSMs and the in�uence
of data.

To construct a category NSM of non–deterministic SMs, we es-
sentially repeat the constructions above, but with the proviso that
� and � get a di�erent codomain.

An NSM nsm := hQ, �,� ,q0i is a quadruple, whereQ is a (�nite)
set of states, � a (�nite) input alphabet, � : Q ⇥ � ! P+ (Q ) the
transition-function, q0 2 Q an initial state.
�̃ : Q⇥�⇤ ! P (Q ), �̃ (q, � ) := {q}, �̃ (q,u·a) := Sq0 2�̃ (q,u ) � (q

0,a);

�̂ : P (Q ) ⇥ �⇤ ! P (Q ), �̂ (;,w ) := ;, �̂ (R,w ) :=
S
q2R �̃ (q,w ).

Again we may write � for any of the three functions � , �̃ and �̂ ,
because the context usually makes clear what is meant.

Since q0 is �xed for nsm = hQ, �,� ,q0i, nsm does correspond to
a functionm : �⇤ ! P+ (Q ); m(� ) = {q0}; m(� · a) = �̂ (m(� ),a);
The objects of NSM are suchm and themorphisms f :m !m

0 are
pairs of functions f = hf1, f2i, that make it form a pointwise subset
relation as shown in Fig. �. Here we have relaxed the requirement

�⇤ P+ (Q )

�0⇤ P+ (Q 0)

m

f ⇤2 P+ (f1 )
m0

f1 : Q ! Q
0; f2 : �! �0;

8w 2 �⇤ : (P ( f1) �m) (w ) ⇢ (m0 � f ⇤2 ) (w ).

Figure �: NSM morphisms hf1, f2i

of a commuting diagram (i.e., function equality) to the subset re-
lation ⇢, which results in more arrows, while still encompassing
equality. These additional arrows do also represent relations be-
tween machines, but now we can also compare �ner models to
coarser ones. We saym complies withm0 (via morphism f ).

Let us emphasise that the diagram in Fig. �, which ill be key to
understanding the semantics of our more advanced ways of to ex-
pand the de�nitions of McFSMs by the plugin interface introduced
in Sec. �.

The lower arrow, that ism0, represents the �nite, non–determin-
istic compiletime model of someMcFSMmember and the upper ar-
row, that ism, represents the same member at runtime including
the in�uence of data, which is deterministic, but potentially in�-
nite. The vertical arrows show how our interfaces constrain this
relation. We do not allow arbitrarym, but only those that comply
with the compiletime descriptionm0, which means that for any se-
quence of events w the resulting state m(w ) has to �t to one of
those purported at compiletimem0(w ). — This diagram is the rea-
son, why in�nities in our models do not cause any trouble and our
reasoning can be con�ned to �nite compiletime models! — It does
also show how we use other (novel) means to separate wheat from

� Turing–complete code may employ in�nite Q, FSMs only �nite Q. That both can be
viewed as objects in the same category does not imply that they are similar in com-
puting power. FSMs can be seen to form subcategories inside these bigger categories,
but we do not elaborate this in detail.
�We can even view FAs as objects in these categories, namely as a : �⇤ ! 2. The
simplest non–trivial Q is 2 = {0, 1} � {reject, accept }. The accepted language is
L(a) := a�1 ( {accept }). Usually a = � �m with some � : Q ! 2.

�
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cha� than FAs do: It is not the “language recognised” and the in-
ternal make–up ofm that decide, but the compliance with a given
(compiletime) modelm0.

Analogous to theMealy constructions above we getNMealyma-
chines nmealy := hQ, �,�,� ,�,q0i, where we have an underlying
NSMnmealy := hQ, �,� ,q0i and a �nite output-alphabet �.

To de�ne its output-function�, let � represent the set of (hyper)-
edges in the corresponding graph of � , to ensure that� can be used
exactly where � is de�ned. We �rst set �1 B {(q, e,q0) : q 2 Q ; e 2
�; q0 2 � (q, e )}; �2 B {(q, �,q) : q 2 Q }; � B �1 [ �2 and then
any � : � ! P (�) with � (x ) = ; , x 2 �2. This ensures that �
and � are in sync. The diagram in Fig. � has to commute.

� P (�)

�0 P (�0)

�

f3 P (f1 )
�0

f1 : Q ! Q
0; f2 : �! �0; f3 : �! �0,

f3 (q, e,q0) = ( f1 (q), f2 (e ), f1 (q0)) on �1,

f3 (q, �,q) = ( f1 (q), �, f1 (q)) on �2.

Figure �: �-part of NMealy-morphisms

Similar to � we can extend� to strings with �̃ : Q⇥�⇤ ! P (�)
using �̃ (q, � ) B � (q, �,q) = ; and

�̃ (q,u · a) B
[

q0 2�̃ (q,u ), q00 2� (q0,a)
{� (q0,a,q00)}.

An extension to sets of states is given by �̂ : P (Q ) ⇥ �⇤ ! P (�)
with �̂ (;,w ) B ; and �̂ (R,w ) B

S
q2R �̃ (q,w ).

Again q0 is �xed for nmealy, and we may combine � and �̂ so
that nmealy corresponds to a functionm : �⇤ ! P+ (Q ) ⇥ P (�);
m(w ) = (� (q0,w ), �̂ (q0,w )). These m, with the aforementioned
constraints, constitute the objects of our NMealy category. The
functions and constraints of Fig. � and Fig. � together de�ne its
morphisms f = hf1, f2, f3i. The identities are idm = hidQ , id�, id�i
and arrow composition is done component–wise � � f := h�1 �
f1,�2 � f2,�3 � f3i.

We know deterministic models of computation are a special case
of non–deterministic ones and unsurprisingly we can �nd a full
subcategory� isomorphic to DSM inside NSM. Given an objectm :
�⇤ ! Q in DSM we can identify it with the object (�Q � m) :
�⇤ ! P+ (Q ) in NSM. And the arrows can be mapped likewise.
For the opposite direction, we can translate any object m with
8q,a : |� (q,a) | = 1 back into an object in DSM and any arrow
between such objects as well. All in all, this means we also have a
full subcategory isomorphic to DMealy inside NMealy. — There-
fore for our purposes NMealy is usually all we need.

Now let’s get back frommathematics to software constructions.

� LANGUAGE SPECIFICATION & FORMALISM
Utilising our formalism in practical applications should be possi-
ble with minimal changes to accustomed work�ows, including the
creation and manipulation of programs in text-based representa-
tion. Consequently, we present a domain speci�c language (DSL)
to describe FSMs—Mealy-machines, McFSMs and Pseudo–FSMs—
in a uni�ed framework. The basic syntactic elements of our DSL
�subcategory: Every object/morphism in DSM is an object/morphism in NSM. full:
There are no further arrows between DSM objects in NSM.

are: strings, patterns, lists, names, events, states, transitions, FSM
classes, McFSM classes, FSM instances, McFSM instances, Plugins,
Pseudo–FSM instances, guarantees, pragmas and functions that de-
scribe and connect these elements. A complete language speci�ca-
tion is available on the companion website (hyperlink available in
PDF); we omit some details in the following discussion.

FSMs and McFSMs need only specify their interface in the DSL
to get a working implementation, but plugins and Pseudo–FSMs
have to use the plugin–interface to provide technical information
on how to integrate these external components into the system and
the DSL and su�cient information for reasoning and static analy-
sis. In a tight question and answer game between both, the plug-
in–interface on the other hand does provide information about the
context in the DSL the plugin is getting used and some information
of its fellow members and the current McFSM.

We provide a reference implementation in Tcl [��]. Consequently,
the DSL is inspired by some of Tcl’s features and peculiarities.�. We
do not assume familiarity with Tcl to understand the DSL, albeit
the implicit availability of helper functions from the Tcl standard
library might be of service for McFSM development.

Recall the example given in Fig. �, which we used to detail syn-
tactic elements of the DSL. All member- and element-names are
relative to the current FSM. From the point of view of some mem-
ber Inst, one of its elements elem is referred to, by simply using its
name elem. From the point of view of the current top-McFSM “/”
or some sibling member Sibling, the same element has the name
Inst/elem.� The names of elements of the current top-FSM “/” are
pre�xed with ‘/’. This can be observed in the oconnect lines that
select output–events for the McFSM from its members.

We obey a strict rule of locality: Every member may subscribe to
any output of any member and use this to adapt its own behaviour.
Changing the behaviour of any other FSM is impossible. This is, of
course, closely related to the publish-subscribe pattern [��], where
the publishing FSMs do not need to know anything about its sub-
scribing siblings. As a result, the functionality of each member can
be understood by observing its code, together with its surrounding
McFSM.

To demonstrate how plugins and pseudo–FSMs blend into the
DSL Fig. � and � show an excerpt of a McFSM application in a
real industrial system that used hand gestures to control stepper
motors (switching, change rotation direction and speed), while ob-
serving temperature constraints from heat sensors (the motors can
overheat if direction or speed are adjusted too quickly). The code
in Fig. � contains package require calls. These import code from
�les that employ the plugin interface. Line �� uses j-event syntax,
which de�nes jOk as an abbreviation for all the input–events fol-
lowing after the colon. There is a similar syntax for output–events,
namely the u-events (line #�� in Fig. �). Lines �, ��, �� copy the

�In particular, we inherit the following conventions: (�) variable names are arbitrary
strings and their values are denoted by prepending their name with a ‘$’, (�) lists are
written using curly braces starting on the same line as the list elements, separating
elements with white–space (setting a list-variablemyList is done by set myList {a
b c};). (�) Function calls employ square brackets to delimit arguments.
� We decided against the seemingly more natural notation ../Inst/elem that resem-
bles �le-system syntax, and the use of hierarchies with more than two levels. Thus,
we have exactly � levels in a McFSM: top or some membermem, which result in these
relative calls: (�) local views onto itself, top { top,mem { mem, and (�) views onto
others, top { mem, mem { top, mem1 { mem2 .

�

https://github.com/ase-double-blind/mcfsm
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� package require dsl::fqueue 0.1
� package require dsl::counter 0.1
� package require dsl::smartactor 0.5
� package require dsl::stupidactor 0.3
� set LR {Left Right}
� set LRS {Left Right Stop}
� set lrs $LRS
� FSM class Rotation {
� hop %lrs_%LRS i%LRS -> o%LRS
�� }
�� set ERR {TooHot}
�� set LH {Low High}
�� FSM class HeatSensor {
�� In: i%ERR {jOk: i%LH}
�� hop %ERR_ok jOk -> oOk
�� hop *_%ERR i%ERR -> o%ERR
�� }
�� PRAGMA layout HeatSensor -colors {ok black * red}
�� set OO {On Off}
�� set oo $OO
�� FSM class Switch {
�� hop %oo_%OO i%OO -> o%OO
�� }
�� PRAGMA layout Switch -colors {off black * violet}
�� set SMF {Slow Medium Fast}
�� set smf $SMF
�� FSM class SpeedGear {
�� hop %smf_%SMF i%SMF -> o%SMF
�� }
�� PRAGMA layout SpeedGear -colors {slow black m* orange * violet}

Figure �: Excerpt of an industrial motion controller (part �,
elementary components).

values of some list to another list variable. This is used in lines
�, ��, �� to make the xvar resolution algorithm generate all com-
binations of the respective list values as transitions—the impicit
iteration ranges over two formal variables in these cases.

The PRAGMA lines provide hints on visualisation. Such meta-in-
formation is passed to generated target language classes, but can
also be used at compiletime. For instance, Sec. � discusses how
worst-case execution time estimates are be handled this way.

Class MotionController, shown in Fig. � is the main class. It
containsmembers Rotation, Speed, HS, OnOff, Buf, Count, Stupid,
Smart, the order of which gives the (default) event distribution
order. Rotation, Speed, HS, OnOff are instances of regular FSMs,
Buf, Count are pseudo–FSMs and Smart and Stupid are plugins
that represent certain engines to be controlled. The functions in
lines �� (config), �� (push), �� (pop), �� (someEvent), �� (onOff),
�� (onOff), �� (speed) are provided via the plugin–interface. They
connect the global, superordinate structure handled by the McFSM
with implementation details like issuing instructions to physical
devices which requires interaction with libraries and the operating
system, but does not need to be aware of the larger system architec-
ture, not unlikemicroservices. Buf is a pseudo–FSM that queues up
to a maximum number of events and re–emits them after a short
delay, thus ensuring that these events do not come in too quick
succession (line �). The appliance includes two stepper motors as
actors: A smart device that allows for directly setting a desired ro-
tation speed, and a legacy device for which the mechanism must
send explicit stepper pulses dispatched from timer events.

Each FSM has an initial-state q0. For a McFSM class the initial-
state is therefore the cross-product of initial-states of its members.

� McFSM class MotionController {
� In: i%LR i%SMF i%OO i%ERR i%LH tTime0 tTime1 tTick
� Out: oOk oOff oErr
� Rotation inst Rot {
� initialState stop
� sconnect i%LRS <- Buf/o%LRS
� iconnect iStop <- /tTime*
� when oLeft call emitT(/tTime0,3sec,/i%LRS)
� when oRight call emitT(/tTime1,3sec,/i%LRS)
�� }
�� SpeedGear inst Speed {
�� initialState slow
�� iconnect i%SMF <- /i%SMF
�� }
�� HeatSensor inst HS {
�� initialState ok
�� iconnect i%ERR <- /i%ERR and i%LH <- /i%LH
�� }
�� Switch inst OnOff {
�� initialState on
�� iconnect i%OO <- /i%OO
�� sconnect iOff <- HS/o%ERR
�� }
�� # Slow down event-bursts by buffering and re-emitting
�� PsFQueue inst Buf {
�� config max 4
�� Out: oUnderflow uIncr oOverflow {uDecr: o%LRS}
�� push o%LRS <- i%LRS
�� pop <- iTick
�� iconnect i%LRS <- /i%LRS
�� iconnect iTick <- /tTick
�� when oIncr1 oOverflow uDecr call emitT(/tTick,0.2sec)
�� }
�� PsCount32 inst Count {
�� add 1 <- iI1
�� iconnect iI1 <- /i%OO /i%ERR
�� }
�� PxStupidActor inst Legacy {
�� someEvent <- iTick
�� onOff <- i%OO
�� sconnect i%OO <- OnOff/o%OO
�� iconnect iTick <- /i%LRS /i%SMF
�� }
�� PxSmartActor inst Smart {
�� onOff <- i%OO
�� speed <- i%SMF
�� sconnect i%OO <- OnOff/o%OO
�� sconnect i%SMF <- Speed/o%SMF
�� }
�� oconnect default /oOk
�� oconnect /oErr <- HS/o%ERR
�� oconnect /oOff <- OnOff/oOff
�� }

Figure �: Excerpt of an industrial motion controller (part �,
coupling between machines).

A member inherits the initial-state from its class, but may change
it to some other state that is reachable from there. A simple FSM
instance can set it with function initialState and a McFSM in-
stance can use an initialSequence of events. This sequence is a
purely logical statement that gets resolved at compiletime, omit-
ting thereby any side-e�ects like when statements.

� PSEUDO-FSM AND PLUGIN
�.� Construction
AMcFSM contains a sequence ofmembersm1, . . . ,mn . These may
be instances of Mealy machines that have been de�ned using FSM

�
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class or McFSM class, or be foreign code that assures to behave
like a Mealy machine, that is a Pseudo–FSM, or a Plugin.

Both, Pseudo–FSMs and Plugins, are foreign code, and must
therefore provide information about their runtime behaviour, and
specify guarantees that can be used to consider their behaviour in
static analyses. The respective interfaces are almost identical; the
di�erence is mostly in how their runtime code behaves.

Pseudo–FSMs implement a non–deterministic Mealy machine
(satisfying categoryNMEALY in de�ned in Sec. �). Presented with
an input–event, they proceed to an next internal state, and return
an output–event. Their code is executed in the same thread as the
implementation of the McFSM proper.

Plugins run code that can cause side-e�ects, and may delegate
the actual work into a separate thread from the McFSM dispatcher.
Plugins are not required to internally rely on states; the resulting
NMEALY instance if typically trivial. Regardless of the type of a
McFSM membermi , reasoning requires at least:

Possible Output. The set of possible output–events for a given
input–event, which is a mapping pi : Ei ! P (Oi ), where
each ok 2 pi (ei, j ) is reachable from ei, j 2 Ei .

Cost estimate. An estimate howmuch time is required to per-
form a mapping pi in the worst-case, which is given by an-
other mapping ui : Ei ⇥ pi (Ei ) ! (R ⇥U )+, where U ⇢ �⇤

gives the units of measurement and (R ⇥U )+ is a set of ag-
gregates, that is, a symbolic sum of products value · unit,
with value 2 R and unit 2 �⇤. The mapping assigns to each
pair of input- and possible output–event a cost given by a
symbolic expression.

Plugins can provide the cost of their operations in di�erent units.
Given base units B ⇢ U , then a global mapping� : B ! (R ⇥U )+,
which ensures that there are no cycles in the resulting exchange
rates, converts between units. This is not just to give a more con-
venient way of providing temporal durations: By varying � , we
are able to gauge costs with respect to varying target platforms
(computers, programming languages, libraries, . . . ).

More importantly, the symbolic expressions can be added up
along the event-distribution chains of any McFSM, and then be
evaluated with respect to any given set of mappings � . If we use,
for instance, functions that provide lower and upper bounds, this
results in cost-range expressions [from . . . to] for each input–event
ei, j of each mi , and make sure these stay in an acceptable range.
The utility for real-time and safety critical workloads is evident.

�.� Handling external data
Input and output events of the McFSM formalism are represented
in the DSL by symbols (names) and at runtime by objects of the
generated target language code. So a single symbol in the DSL does
correspond to a class for runtime event objects and eventually to
an arbitrary number of runtime objects of this class. As long as
these objects can be seen as being identical w.r.t. the McFSM we
have a logical one–to–one correspondence between a DSL event
symbol and its class of runtime event objects. But we do allow
these objects to carry arbitrary (“external”) data besides the infor-
mation required for the McFSM base system. Of course, data are
inherently runtime information and not accessible at compiletime.
This is necessary to interact with external components outside the

McFSM formalism, for instance via system or API calls that may
eventually turn into side e�ects like reading data from sensors, dis-
playing messages, etc.

PureMcFSMs do not consider data—from their perspective, events
are members of the �nite set of symbols—, but data can be utilised
by Pseudo–FSM members. This changes the game: When a pseu-
do–FSM gets in�uenced by external data, it may yield di�erent out-
put events, even when confronted with a sequence of input events
corresponding to an identical sequence of input symbols. Events
are atomic without external data, but receive an additional inter-
nal structure in their presence, thus they have to be considered
di�erent if they carry di�erent data.

To not unnecessarily restrict the interaction with external com-
ponents, there is no limit on the amount of data that may accom-
pany an event. This is equivalent to considering an in�nite number
of events thatmay hide behind each event symbol. Consequently, �
at runtime can no longer be regarded as �nite during compiletime.
A similar argument holds for the set of states Q , since a Pseudo–
FSM may keep track of past events including external data, and
base decisions on this history. For example, consider a tempera-
ture measurement initiated by the input event iMeasurement. The
data consists of the temperature value, and the output event – one
of oFalling, oConst, oRising – woulld typically depend on some
past iMeasurement events and their values, probably to perform
averaging, or to include a hysteresis.

Output events may also carry data, and a Pseudo–FSM can pass
data or calculation results along, which means � can no longer
be considered �nite. The semantics of the plugin–interface need
to account for e�ects of in�nite data, without introducing well-
known issues from in�nite-state mechanisms. For instance, a state
machine given by an in�nite branching tree could recognise any
language [�], e�ectively surpassing the capabilities of Turing ma-
chines. Since, however, such a model of computation could also
be �t into our categorical abstraction, we need to ascertain the
absence of such troublesome constructs by additional criteria im-
posed by the plugin–interface.

Recall the structural relationship of twoNMealy objects as given
by commuting diagrams in Figures � and �: If Pseudo–FSMs satisfy
these relationships—most importantly, if they satisfy them even in
the presence of in�nite external data—, they can still be treated like
pure McFSMs. In other words, the diagrams provide criteria that
allow McFSMs to enjoy the bene�ts of extensions that use Turing-
complete external code, and interact with arbitrary amount of ex-
ternal data, without sacri�cing any of the guarantees that static
analysis and reasoning techniques can provide.

�⇤ P+ (Q )

�0⇤ P+ (Q 0)

m

f ⇤2 P+ (f1 )
m0

� P (�)

�0 P (�0)

�

f3 P (f1 )
�0

More formally, consider a Pseudo–FSM P , its two corresponding
NMealy objects p = (m,�) and p

0 = (m0,� 0), and their relation
f = hf1, f2, f3i as introduced in Figs. � and �—for convenience, a
side-by-side presentation is given above.

The top arrows p of the diagrams represent the deterministic
runtime behaviour of P and the bottom arrows p0, represent the
non–deterministic compiletime model of P .

�
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The vertical arrows f constitute a contract that p must satisfy to
comply with p

0. From the perspective of our framework (and any
static analyses based on it), only p0 is visible.

In�nite sets Q, �,� may appear in p, but p must comply to p
0,

which is non–deterministic but based on �nite sets Q 0, �0, and �0.
From the perspective of P , the runtime behaviour p of p0 is deter-
ministic, because it can access the structure of data inside events.

The categorial contract, together with the additional criteria de-
�ned above, imply some points that are relevant for the practi-
cal implementation. Intuitively speaking, they ensure P does not
“stray” from what is expected of an FSM with respect to time and
memory consumption. More concretely, (�) all necessary memory
allocations have to happen at initialisation time (no further run-
time calls to services the provide dynamic memory must occur in
P , thus the amount of memory the McFSM itself holds does not
grow. All other runtime allocations have to happen outside of P
and its McFSM), and (�) each state transition must obey strict tem-
poral constraints. Relinquishing the global �niteness requirements
for Q , � and � (which concern space complexity) creates the re-
quirement of pointwise �niteness of evaluation time (m(w )).

�.� Examples
Let’s have a look at the plugin–interface by using as example the
speci�cation of a Pseudo–FSM PsFStack that implements a �nite
stack withmax as maximum number of elements.

(max=5)

empty

full

pop()

push(elem)

push(elem)

pop()

push(elem)

pop()

push(elem)

pop()

push(elem)

pop()

push(elem)

pop()

empty

haselems

full

e

h

f

uDecr

oOverflow

uIncr

uDecr uIncr

uDecr uIncr

oUnderflow

Figure �: Deterministic Mealy machine that implements a
�nite stack (left hand side), and the corresponding non–de-
terministic plugin-abstraction.

The left side of Figure � visually depicts of the standard under-
standing of a stack, whereas the right side shows a non–determin-
istic automaton that captures the essential behaviour of the stack,
as it is relevant for static analysis. It corresponds to p0 = (m0,� 0)
as discussed in the previous section, and we refer to it as plugin-
abstraction in a concrete instance. It would, for instance, be iden-
tical for a �nite queue instead of a �nite stack, since both exhibit
the same abstract characteristics as far as our reasoning goes.

Output-events with pre�x ‘o’ (oOverflow, oUnderflow) denote
a single event with this name, while the pre�x ‘u’ (uIncr, uDecr) is
used for a name of a set of output–events, but which can neverthe-
less be used in sconnect and oconnect calls. The symbol uIncr
stands for the set {oIncr1, . . . , oIncrmax } and uDecr for one of the
pushed output-symbols.

Also, these pictures show how the class behaves. An instance
does have a concrete set of output-symbols O to store and use in
uDecr. Its number of states amounts to |O |max , corresponding to
the number of di�erent push(elem) call-sequences.

The Pseudo–FSM- and plugin–interface consists of a number
of classes and interfaces that must be implemented and obeyed.
Firstly, we require an object ifsm of class IFSM, which describes the
behaviour of class PsFStack. Fig. � shows an example of a �nite
stack implementation. Function getPluginDict returns the non–
deterministic automaton corresponding to the right side of Fig. �.
getSlotList provides a list of possible slots, that is, methods that
are o�ered to the outside world.

� set ifsm [IFSM new PsFStack]
� oo::objdefine $ifsm method getSlotList {} { list push pop top }
� oo::objdefine $ifsm method getPluginDict {} {
� return {
� full_full {push oOverflow top uSame}
� full_haselems { pop uDecr}
� haselems_full {push uIncr}
� haselems_haselems {push uIncr top uSame pop uDecr}
� haselems_empty { pop uDecr}
�� empty_haselems {push uIncr}
�� empty_empty { top oEmpty pop oUnderflow}
�� }
�� }

Figure �: Essentials of an implementation of a �nite stack
that satis�es the plugin abstraction of Figure �.

Secondly, we need a class for instances of �nite stacks, which
we call InstIFSM(PsFStack). it is derived from class InstIFSM,
so that every PsFStack-instance DSL:iifsm receives a so-called de-
scribing object—each of these objects describes a class given in the
DSL, because the McFSM as a whole translates to a class in the
target language, which can be instantiated by the user.

Objects of this class implement how instances interpret their
DSL-body (i.e., the code for each instance between curly braces).
This includes setting config parameters, re�ning ‘u’-symbols (as
discussed, for the example, in Fig. �), and their plugin-abstraction.
Class InstIFSM(PsFStack) also provides methods for each slot—
slot_push, slot_pop, slot_top in case of the �nite stack.

The compiler extracts the signature of the slot-methods by intro-
spection into the class InstIFSM(PsFStack). This way, each slot
may have a di�erent signature and the compiler can still under-
stand this and call the slot-method to interpret eventual slot-calls
in the body. Each slot may even invent its own special syntax that
is best suited to provide a readable representation for its purpose,
because our compiler only passes them along, without interpreta-
tion. To give a �avour of how methods in InstIFSM(PsFStack)
are implemented, consider Fig. �.

Without discussing implementation details—refer to the docu-
mentation on the companion website—, observe that only little
code is required. Method addSC is a helper methods provided by
superclass InstIFSM registering the slot-call information with the
compiler. pushSyms is an instance variable of class InstIFSM(PsFStack),
which accumulates the list of symbols that are actually used for this
instance. This can be used to re�ne the actions of the class (details
on the companion website).

�

https://github.com/ase-double-blind/mcfsm
https://github.com/ase-double-blind/mcfsm
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� oo::define InstIFSM(PsFStack) method getK3refinement {} {
� set uIncr [list oIncr1 oIncr2 oIncr]
� list uDecr $pushSyms uIncr $uIncr uSame $pushSyms
� }
� oo::define InstIFSM(PsFStack) method slot_pop {nrflag paraLi sfsm ssym} {
� if {[llength $paraLi]} { error �unexpected parameter: $paraLi� }
� my addSC [list pop $paraLi] $nrflag $sfsm $ssym
� }

Figure �: Except of some InstIFSM(PsFStack) methods.

Thirdly and �nally, code needed by a class PsFStack in every
target language that implements the actual �nite stack.

By connecting theMcFSM formalism and Turing-complete code,
Pseudo–FSMs extend the expressiveness, while retaining advan-
tages of �niteness. A standard library includes Pseudo–FSMs for
common algorithmic components.

Conjunctively connecting states of di�erent members of a Mc-
FSM is often needed, but hard to accomplish—it involves creating
an FSM model of the product, which invites state space explosion.
A dedicated pseudo–FSM, PsAnd, uses introspection on siblings to
simplify the task. It provides logical conjunctions across several
sibling members. Each FSM provides a number of read-only meth-
ods (ROMs) that may be called to inspect a FSM without chang-
ing its state. Pseudo–FSMs are allowed to use ROMs of siblings to
make their decisions. The plugin–interface contains the getROMs
and getROMcalls. Each Pseudo–FSM returns, using function get-
ROMs, the names of ROMs that other instances may use. Function
getROMcalls provides the names of siblings and their ROMs. The
compiler can ensure absence of cycles appearing in ROM calls, and
calculate the corresponding costs ui . This ensures FSM behaviour,
even with almost arbitrary function calls among the members.

Each FSM remembers, among other things, the last-output–event
(LOE) it has returned and requesting this information is such a
ROM. The PsAnd has only states true and false and output–
events oTrue and oFalse and only one input–event iEval.

� PsAnd inst And {
� eval Rot/loe=oLeft Rot/loe=oRight OnOff/loe=oOn <- iEval
� iconnect iEval <- /i*
� }

Figure ��: Example illustrating the use of the Pseudo–FSM
“PsAnd” to compute logical conjunctions.

Consider Fig. �� for an exemplary use of a PsAnd instance. It
computes an output by getting the LOE of the siblings Rot and
OnOff. For the same sibling, the given values form a set whose el-
ements are understood as “OR” connected, while the expressions
for di�erent siblings are “AND” connected. The eval-expression in
Fig. �� thus returns oTrue, i� LOERot 2 {oLeft, oRight}^ LOEOnOff
2 {oOn}. This enables any sibling to sconnect with And/oTrue,
and perform its action only when the conditions “Rot is rotating”
(not stopped) and the switch “OnOff is on” (not o�) are met.

� RELATEDWORK
Finite state machines are one of the earliest theoretical concepts
in automated computing, and also form the basis of many modern

software engineering mechanisms like UML state machines [��].
Code for (real-time) systems can be synthesized from FSM based
descriptions (see, e.g., [��, ��]), and a wide selection of current re-
search explores issues related to FSMs that range from testing [�]
Veri�cation techniques, static analysis and software model check-
ing have gained considerable interest in industry [��, ��, ��, ��],
and is used from web development [��] via business process mod-
els [��] to verifying electronic circuit designs [��]. Countless com-
mercial o�erings and academic approaches [��, ��, ��] too numer-
ous to exhaustively mention here (Refs. [�, �] provide comprehen-
sive reviews) are available. However, recent studies show that there
remains ample room for improvement [��], especially for industri-
ally relevant systems where the techniques remain underused [��].

McFSMs share the idea of dividing a system into sub-automata
with UML hierarchical state machines [��] The concept of emit-
ting signals from edge transitions can, outside the Mealy formal-
ism, be found in statecharts [��] and related formalisms, although
these have received criticism for their lack of consistent theoreti-
cal underpinnings (see, e.g., [��]). Using FSMs to control the super-
ordinate behaviour of a composite system has been considered for
speci�c targets like Android [��], classes like safety-critical [��] or
reactive [��] systems, and as general design pattern [��].

While category theory has received steadily increasing atten-
tion in some �elds like database research [�], and is considered a
prime candidate for abstractly expressing scienti�c insights [��],
its use in software engineering research is still rare. Ref. [��] pro-
vides an introduction to category theory with a focus on issues in
software engineering; examples of SWE research often stem from
model-driven engineering [�, ��, ��, ��]. We are, to the best of our
knowledge, not aware of research that bases the implementation
of practical tools on a categorical foundation.

� CONCLUSION
We have presented theory and implementation of multiple coupled
�nite state machines, a mechanism that combines the many con-
venient properties of �nite automata with the power of orthodox
programming. The freedom to incorporate data and computation
history into the decision process of FAs bringsMcFSMs close to the
power of Turing–complete code, while avoiding countless intrica-
cies of the latter. Our industry-grade, open source IDE can generate
code for numerous target languages and platforms, and is suitable
for use in real-time and safety-critical systems.

We have designed our mechanism around an elaborate frame-
work based on mathematical category theory which does ensure
a solid foundation for reasoning about McFSM programs. To the
best of our knowledge, we are not aware of any other descriptive
development mechanism that provides well-de�ned mathematical
semantics based on a consistent categorical treatment. We have
shown the bene�ts of using morphisms to form a safe interface
bridging Turing-complete code and �nite state machines, which
links the arguably most advanced and abstract mathematical the-
ory so far with an important problem in software engineering in
both, theory and application.

��
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