
Static Hardware Partitioning on RISC-V:
Shortcomings, Limitations, and Prospects

Ralf Ramsauer,∗ Stefan Huber∗, Konrad Schwarz†, Jan Kiszka† and Wolfgang Mauerer∗†
∗{ralf.ramsauer, stefan.huber, wolfgang.mauerer}@oth-regensburg.de

Technical University of Applied Sciences Regensburg, Germany
†{konrad.schwarz, jan.kiszka}@siemens.com

Siemens AG, Corporate Research, Munich, Germany

Abstract—On embedded processors that are increasingly
equipped with multiple CPU cores, static hardware partitioning
is an established means of consolidating and isolating workloads
onto single chips. This architectural pattern is suitable for
mixed-criticality workloads that need to satisfy both, real-time
and safety requirements, given suitable hardware properties.

In this work, we focus on exploiting contemporary vir-
tualisation mechanisms to achieve freedom from interference
respectively isolation between workloads. Possibilities to achieve
temporal and spatial isolation—while maintaining real-time
capabilities—include statically partitioning resources, avoiding
the sharing of devices, and ascertaining zero interventions of
superordinate control structures.

This eliminates overhead due to hardware partitioning, but
implies certain hardware capabilities that are not yet fully
implemented in contemporary standard systems. To address
such hardware limitations, the customisable and configurable
RISC-V instruction set architecture offers the possibility of
swift, unrestricted modifications.

We present findings on the current RISC-V specification
and its implementations that necessitate interventions of su-
perordinate control structures. We identify numerous issues
adverse to implementing our goal of achieving zero interventions
respectively zero overhead: On the design level, and especially
with regards to handling interrupts. Based on micro-benchmark
measurements, we discuss the implications of our findings, and
argue how they can provide a basis for future extensions and
improvements of the RISC-V architecture.

1. Introduction

To reduce hardware costs and the overall complexity of
the increasing amount of system-on-chips (SoCs) shipped in
many mass-products for industry and consumers, consolida-
tion of such systems onto a single chip [1] is desired. This
also applies to high- and mixed-criticality systems that at least
partially contain safety and real-time critical components. To
ensure safety and security, uncontrolled interference between
components must be avoided.

In general, isolation is required to guarantee non-
interference between components. A proven means for the
latter is (a) static partitioning [2, 3, 4] of resources (i.e.,

no sharing of devices or cores between isolated compo-
nents), and (b) zero interventions/overhead caused by the
superordinate control structure (e.g., hypervisor) during
operation [3]. This prevents a domain from inadvertently
violating restrictions imposed by the control structure, and
thus from interfering with other critical components.

By exploiting virtualisation technologies of modern CPUs
to achieve the required isolation, we can obtain isolation
guarantees directly from the hardware. This allows for
independently running general purpose (GPOS) and real-time
(RTOS) operating systems, as well as bare-metal applications
on a SoC.

The absence of hypervisor activity is almost a necessary
precondition for freedom from interference [5] with regards to
real-time capabilities and decreases the amount of hypervisor
code requiring validation or certification as needed for safety-
critical environments.

During the implementation of our hypervisor Jail-
house [3]—which strives for zero-overhead virtualisation—
on x86 [6] and ARM [7], we have learned that real-world
issues of hardware devices are often underestimated. Yet
they counter our design goal of eliminating virtualisation
overheads. As safety-critical real-time systems are only a
subordinate aspect in the revenue of chip vendors, it is hard to
convince them to implement required architectural changes.
On customisable architectures, such as ARM, substantial
license fees may occur.

Given that the free and open RISC-V architecture sup-
ports hardware-level virtualisation [8], it is in an appropriate
initial design stage [9], and may be a suitable candidate
for Hardware/Software Co-Design [10] activities that aim at
zero-overhead virtualisation, especially since custom designs
do not need to deal with conflicting requirements imposed
by 3rd parties in control of the architectural specification.

To identify limitations of the current RISC-V hardware
specifications detrimental to our design goal, we have ported
the Jailhouse hypervisor to this emerging architecture. This
sheds light on shortcomings and limitations of the architec-
ture, and gives prospects on possibly required improvements
for zero-trap virtualisation.

The rest of this paper is structured as follows: In Sec-
tion 2, we present related work. Afterwards, we briefly
introduce properties of the hypervisor extensions of the



RISC-V architecture, and architecture and rationale of the
Jailhouse hypervisor in Section 3. In Section 4, we describe
a set of fundamental micro-benchmarks. We quantify the
impact of virtualisation overhead on the NOEL-V platform, a
synthesisable VHDL model of a six-core 64-bit processor that
implements the RISC-V architecture, and supports hypervisor
extensions [11]. We discuss our findings in Section 5, and
conclude in Section 6.

2. Related Work

Before the final ratification of the hypervisor extensions
for the RISC-V architecture end of 2021, Pinto et al.
implemented the preliminary draft of the extension (v0.61)
on a FPGA [9]. As their focus is on implementing the
hypervisor extensions and customising hardware components
for virtualisation, they left out time-consuming hardware
optimisations, such as optimisations for address translations.
They ported their hypervisor Bao to RISC-V to identify
limitations and factors of latency overhead, and benchmark
their implementation. As they identified interrupt handling as
a major issue, they optimised hardware design with respect
to eliminating the necessity of hypervisor activity for guest
interrupt delivery. This results in major latency decrease
for IRQ handling. The RISC-V community is still in the
process of researching the implications of trap-free wired
interrupt handling for virtual machines [12]. Performance
was tested on Firesim [13], a cycle-exact simulator running
at 3200MHz simulation clock, using mibench embedded
benchmark suite: automotive subset, which is frequently
used in this area. The benchmarks compare the performance
of bare-metal vs. their enhanced hypervisor implementation.
They further investigated performance deviations when using
cache colouring mechanisms, a technique that can be used
for decreasing inter-virtual-machine interference.

In contrast to Pinto et al., we conduct our benchmarks
and measurements on real hardware, a synthesised RISC-V
processor on a Xilinx Virtex UltraScale+ VCU118 FPGA. We
therefore use the final ratified specification of the hypervisor
extensions.

In [14], Caforio et al. present VOSySmonitoRV, a mixed-
criticality solution that aims for implementing static hardware
partitioning on RISC-V, by intentionally abstaining from
hypervisor extension. They justify their design decision with
lack of hardware that supports virtualisation extensions. In
contrast, they exploit the machine mode privilege level of
the platform to implement means for partitioning, such as
memory area isolation or interrupt delivery. As hypervisor
extensions are ratified now, future hardware implementations
will likely optimise for ratified extensions rather than for
custom exploitation of the machine mode privilege level.

3. Architecture

3.1. Jailhouse: Concepts and Rationale

Safely running real-time workloads of mixed criticality
on multi-core systems [15] next to Linux is a common

industrial requirement in many domains. Contemporary multi-
core platforms typically feature more CPU cores—Hardware
Threads (HARTs) in RISC-V language—than workloads,
and critical tasks can be exclusively assigned to dedicated,
isolated CPU cores. Linux, together with its feature-rich
ecosystem, can then execute uncritical tasks on the remaining
CPU cores.

Embedded virtualisation is a promising approach for
implementing safe isolation of different workloads. Execution
domains, including Linux, run as guests of a hypervisor.
This approach is, for example, implemented by XtratuM[16],
NOVA [17], and PikeOS [18].

Static hardware partitioning is a special case of embed-
ded virtualisation; it exclusively assigns hardware resources
to compute domains. Exclusive assignment of hardware
resources includes exclusive assignment of physical CPU
cores to logical domains. Hence, static hardware partitioning
assumes that available computational resources exceed re-
quired computational power. Consequently, no scheduler is
required by the hypervisor, which avoids scheduling overhead.
Virtualisation extensions ensure safe cross-domain isolation.

Our approach is based on Jailhouse, a thin Linux-
based partitioning hypervisor that targets real-world systems.
Motivated by the exokernel concept [19], our aim is to reduce
the hypervisor to a minimum level of abstraction. Our goal is
to minimise the hypervisor’s interaction with guests, with the
intention of preserving key quality parameters of any guest
software regardless of if it is executed natively, or under the
presence of a control structure. With this approach, guests
inherit real-time guarantees of the underlying hardware by
design. Besides unavoidable hardware overhead due to the
virtualisation of the system (e.g., second level page table
translation [20]), no further software-induced overhead due
to the existence of a VMM occurs during operation.

A small code base is a precondition for certifiability for
critical environments. The reduction of guest interaction en-
sures the maintenance of the platform’s real-time capabilities
by design—if no interceptions take place, the hypervisor
cannot introduce increased latencies.

Running Linux in uncritical partitions of the system is a
requirement for many real-world use cases. Therefore, we
partition a booted Linux system, instead of booting Linux
on a partitioned system. This offloads complex hardware
initialisation to Linux, and ensures a small code base of
the hypervisor, as only a few platform specific drivers are
required (during the operational phase, Linux is lifted into
the state of a virtual machine).

To create new isolated domains, specific hardware re-
sources (e.g., CPUs, memory, peripheral devices) are offlined
and removed from Linux. The hypervisor is called to create
a new domain has raw access to these resources. Secondary
real-time operating systems, including Linux, or even bare-
metal applications can be loaded into the domains. Jailhouse
does not paravirtualise any resources as it exclusively assigns
resources to computing domains.

The hypervisor shall only be active during its boot
phase (the initialisation of the hypervisor) and during the
partitioning phase (creation, initialisation and boot of new



domains). During the operational phase (system is partitioned,
and all partitions are running), the goal is no further action
by the hypervisor.

3.2. RISC-V Platform Virtualisation

3.2.1. Virtualisation Architecture. While the RISC-V plat-
form is designed to be fully virtualisable even without
dedicated virtualisation extensions (i.e., via trap-and-emulate
mechanisms), the hypervisor extension, which allows for
executing most instructions of virtual guests natively, has
recently been ratified by RISC-V International. RISC-V
implements three basic privilege modes: (1) Machine-Mode
(M-Mode) where usually the Supervisor Binary Interface
(SBI)—a BIOS-like firmware—resides, (2) Supervisor-Mode
(S-Mode), typically used for the privileged operating system
and (3) User-Mode (U-Mode) for unprivileged user-level
applications. When the hypervisor extension is active, the
S-Mode is utilised by the hypervisor and called Hypervisor
extended-Supervisor (HS-Mode). Guests run in Virtualised
Supervisor (VS-Mode), which provides shadows of key
registers to minimise interventions by the hypervisor.

3.2.2. Memory Management. The memory management
unit (MMU) is virtualisation aware: page tables are resolved
transparently for guests using a second translation stage for
guest physical memory to host physical memory conver-
sion. No hypervisor intervention is needed for page table
walks and modifications. The two-stage address translation
process [21] does reduce performance, especially on TLB
misses. However, TLB misses can be reduced by using
huge pages in the second G-Stage translation level. As the
MMU counterpart for IO-devices (IOMMU) is still under
specification process [22], its desired memory protection
features and virtualisation capabilities are lacking for devices
that use direct memory access (DMA) features. This makes
direct assignment of such devices to a guest—via techniques
like interrupt remapping—impossible, and guests cannot use
such devices without heavy hypervisor intervention.

3.2.3. Interrupt Controller. An architectural weakness of
current generation RISC-V is the Platform Level Interrupt
Controller (PLIC), which is the first generation standard
interrupt controller.

The RISC-V hypervisor extension defines an interrupt
pass-through mechanism. The intention is to allow interrupt
requests to raise exceptions in guests without mediation by
the hypervisor. As such, this feature is highly desirable for
a hypervisor focused on the real-time domain.

Unfortunately, having been developed earlier than the
hypervisor extension, neither the Core Local Interrupt Con-
troller (CLINT) nor PLIC allow for direct interrupt remap-
ping to the guest. Any interrupt (timer, software, external)
therefore first arrives at the hypervisor (timer and software
interrupts even make another detour through M-mode), before
having to be injected into the targeted domain. Due to further
design misconceptions of the interrupt controllers, additional
hypervisor intervention is needed for the guest to mark

an interrupt as being handled (claim) respectively handled
(complete). This is because registers associated with claim
and complete are memory mapped for multiple HARTS on
the same memory page, which means we cannot rely on the
MMU for access control. Therefore a superordinate control
structure is needed to prevent a cell from (un-)intentionally
interfering with any other cell’s interrupts. These problems
heavily affect interrupt latency and thus real-time capabilities.

3.2.4. Hyperthreading. As RISC-V does not support hyper-
threading, there are way less possibilities for malicious inter-
cell interference than on platforms like Intel (e.g. spectre,
meltdown). However, last level caches are shared and not yet
partitionable, which opens up the possibility for influencing
other cell latencies via cache pollution [9].

4. Evaluation

4.1. Benchmarking Setup

To test performance implications of the hypervisor over-
head on real hardware, we use the Xilinx Virtex UltraScale+
VCU118 FPGA, using the NOEL-V [23] bitstream, which
is a synthesisable VHDL model of a RISC-V processor that
implements Hypervisor Extensions. H-Extensions and the
interrupt controllers follow the final, ratified specifications.
While there is an open-source bitstream available, we used the
commercial one, which supports performance optimisations
and L1 and last level caches (LLCs). The NOEL-V has
six HARTs, each of which has a dedicated L1 cache,
while sharing a common LLC. HARTs and caches run at
100MHz. For static hardware partitioning, we use Jailhouse
as hypervisor.

We perform micro-benchmarks to quantify additional
overheads resp. latencies due to the existence of the hyper-
visor. All micro-benchmarks are conducted in the following
measurement scenarios:
(A) As bare-metal application without an underlying hyper-

visor,
(B) with Jailhouse in a static partitioned execution domain

(parallel to Linux),
(C) As (B), but with additional load in the Linux partition.

In scenario (A), we measure the baseline of the raw
system, that is, overheads and latencies without the existence
of a hypervisor. (A) represents the raw noise of the platform
that we cannot fall below. Scenario (B) represents the base
overhead that exists due to the existence of the hypervisor.
Finally, scenario (C) simulates conditions in a real asym-
metric multiprocessing (AMP) environment: arbitrary load
on neighbouring execution domain to stress shared system
components, such as caches or system buses.

For our micro-benchmarks, we implemented our own
minimalist operating system, which is publicly available as
Open Source Software.1

1. Refer to https://github.com/lfd/grinch. We call it the Grinch, as it
benchmarks NOEL-V, which—apart from being a RISC-V implementation—
is also French for Christmas.

https://github.com/lfd/grinch


Hart 0 H n-1 H n
. . .

SBI

Jailhouse

Linux Micro-Benchmark
. . .

1

2

3

4

6

7

8

5a

b

c

d

e

f

VS

S

M

#1 Timer IRQ
#2 IPI Roundtrip

#3 PLIC Emulation
#4 Synchronous Traps

Load

Figure 1. Illustration of the cross-systems code path for our benchmarks.
Dots/squares mark traps; squares are unavoidable, while dots arise from
HV interaction. For the IPI round trip measurement (teal), the path is also
traversed in backward direction, as indicated by the loop. The additional
load in the Linux domain to perturb the measurement is optional, and only
generated in scenario (C).

We selected micro-benchmarks to measure relevant code
paths where the hypervisor has to intervene active in typical
real-time scenarios, such as cyclic timer interrupts, IPIs,
external interrupts and frequent firmware calls, such as those
used in RISC-V for remote fences.

4.2. Benchmark #1—IRQ Reinjection

As mentioned before, any IRQ on RISC-V is received
in S-mode and re-injected into VS-mode. Basically, there
are 3 types of IRQs: Timer, IPI, and External interrupts
(peripheral devices). External IRQs are managed by the
interrupt controller (i.e., PLIC).

In our first benchmark, we investigate timers (shown in
Figure 1 in dotted ochre), as they do not need interaction
with the PLIC, but still need to be injected by the hyper-
visor. Further, while reading the current timer value can
be done without hypervisor interaction, programming the
timer requires interaction with the SBI [24], which results
in moderation by the hypervisor. Any SBI call must be
moderated by the hypervisor to ensure that the call has no
cross-domain effects (e.g., CPU offlining, which is conducted
via SBI, must not affect a neighboured domain). Typically,
the overhead that is required for setting the timer only plays
a subordinate role, as the time that is required to set the timer
vs. its expiration time are significantly apart. However, for
the sake of completeness, we quantify all overheads in Fig. 2.

The essential measurement is the timer jitter: The differ-
ence between scheduled and actual arrival time of the timer
IRQ in (V)S-Mode. In a virtualised scenario, the hypervisor
receives the timer (2)—again via detour through the SBI
(3)—and directly injects it by setting the corresponding
pending-bit (2)–(1). When the timer arrives, our benchmark
will set the next timer expiration time to a point in future.
This will automatically clear the pending flag [24].

4.3. Benchmark #2—IPI Round Trip Time

As IPI Round Trip Time (RTT), shown in Figure 1 in
solid teal, we define the time that is required for sending an
IPI to a secondary target HART, and back. The only task
of the target is to send the IPI back to the initial sender.
We chose this measurement, as IPIs are frequently used by
operating systems for signalling and synchronisation purposes
in real-time contexts.

On RISC-V, IPIs are raised on the platform via SBI,
where the target is specified as an argument. The SBI call
must be intercepted by the hypervisor (2) as the domain
membership of the target must be verified. After verification,
the IPI is propagated to the firmware (3), where it is finally
sent. From now on, the sender actively polls for the returning
IPI. On receiver side, the IPI first arrives at the hypervisor
(6)—again via detour through SBI—which injects the IPI
into the guest (7)–(8) by setting the appropriate pending bit.
The guest software actively polls on the pending bit, so once
the guest sees the IPI, it sends an IPI back to the sender.
The same path is traversed backwards again: Moderation of
the IPI, arrival at the sender in the hypervisor, re-injection.

In total, four hypervisor interceptions are required for
the IPI RTT measurement: moderation for sender, arrival at
receiver, moderation for receiver, arrival at sender.

4.4. Benchmark #3—PLIC Emulation

The PLIC interrupt controller offers no virtualisation
possibilities. Furthermore, the memory layout of the PLIC
is unfavourably organised (e.g., cross-hart configuration
interfaces reside on the same memory page). This requires
that accesses to the PLIC must be completely emulated.

The PLIC processes arriving external IRQs as follows:
• Physical arrival: set the external IRQ pending bit: (a)
• Interruption of S-mode: (b)
• Claiming the IRQ (i.e., read from PLIC register): (c)–(d)
• Acknowledgement (complete) of the IRQ (i.e., write to

a PLIC register): (e)–(f).
Under the presence of a hypervisor, the IRQ, shown in

Figure 1 in dash-dotted black, first arrives in HS-Mode. The
hypervisor re-injects the external interrupt to its guest, which
will be interrupted.2 The guest claims the IRQ by reading
the PLIC claim/complete register, which requires hypervisor
moderation, as well as the acknowledgement of the IRQ.
The time required for moderation can be found in Fig. 2.

4.5. Benchmark #4—Synchronous Traps

Synchronous traps, shown in Figure 1 in dashed grey,
arise when certain privileged instructions are executed from
less privileged modes like VS-mode. The processor traps into
higher privileged modes, where the instructions are handled
(i.e., for permission checks). We measure the overhead of the
remote fence (rfence) firmware call, which is frequently used

2. This is the first trap, comparable with the arrival of a timer interrupt.

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start


Remote Fence

SBI

Timer

Jitter

Timer

SBI

IPI

RTT

PLIC

Claim

PLIC

Acknowledge

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0

1

2

3

4

0

1

2

3

4

Execution time (CPU cycles in 10x)

O
cc

ur
en

ce
(1
0
x

)

Scenario Bare-Metal Jailhouse Jailhouse + Load

Figure 2. Measurement Results (notice the double logarithmic axes): CPU cycles taken for our benchmarks—comparing performance bare-metal vs. with
hypervisor (with and without load on other cores).

to enforce ordering constraints on memory operations. It has
to detour through the SBI (3). The call from VS-Mode to
SBI is moderated by the hypervisor by trapping into S-Mode
(2). We measure synchronous traps cycle-precise using the
rdcycle instruction before and after the trap.

5. Discussion

In agreement with findings by Pinto et al. [9], our
measurements show that real-time oriented virtualisation
on RISC-V—without hardware optimisations—comes at a
huge cost. The highest cost is the unavoidable virtualisation
of the PLIC interrupt controller. Regarding complete PLIC
moderation, for example, access to the register that only
requires three cycles on bare metal may grow up to 16,000
cycles when the neighbouring Linux domain is under load.

Another source of unnecessary overhead and complexity
is the design of software interrupts usually used for IPIs via
the CLINT. Interrupt injection and handling has to take a
detour via both, S and M-Mode. This causes unnecessary
mode-changes, and thus increases latency. Additionally, IPIs
cannot be distinguished: An IPI is implemented as doorbell
interrupt, and unlike with other platforms (e.g., ARM),
it is not possible to directly obtain an IPI number. This
necessitates storing and reading the required information at a
shared memory location, which causes additional overhead.

Naturally, there are unavoidable sources of virtualisation
overhead. Firstly, cell management (i.e., creating, starting,
stopping and destroying cells) involves hypervisor activity,
yet only during system initialisation and not during the
operational phase. Secondly, additional translation for guest
virtual to guest physical addresses causes temporal overhead,
even if it does not trigger traps. A two-stage translation

process can double TLB pressure, which is another source of
overhead. However, it can be mitigated by using huge pages
for large subsequent memory areas in the second stage.

A shortcoming of the RISC-V architecture is the current
generation interrupt controller PLIC. The RISC-V hypervisor
extension defines an interrupt pass-through mechanism with
the intention to allow interrupt requests to raise exceptions
in guests without intermediation by the hypervisor. As such,
this feature is highly desirable for a hypervisor focused on
the real-time domain. having been developed earlier than the
hypervisor extension, the PLIC does not support this feature.

To handle an external interrupt, three traps in the hypervi-
sor are necessary. This situation is supposed to be improved
by the RISC-V Advanced Interrupt Architecture (AIA) [12],
which is currently under specification. It addresses current
limitations, and includes optimisations for virtualisation.
Both, the PLIC ant the CLINT will be superseded by
advanced versions (APLIC respectively ACLINT), and an ad-
ditional interrupt controller, the Incoming Message-Signalled
Interrupt Controller (IMSIC). One such controller to handle
MSI interrupts will be available per HART. MSIs will be
generated by writing into the IMSIC’s dedicated files for
M/S/VS-contexts.

An IOMMU is currently under specification, and will al-
low for direct device assignment into guests. Device MSIs can
be directly (i.e., without hypervisor intervention) forwarded
to VS-mode with the IOMMU by writing into a dedicated
VS-file of the corresponding IMSIC of the target HART.

The APLIC however, will only support virtualisation
partly, and wired interrupt handling will still require trap-and-
emulate mechanisms (APLIC direct-mode), as the RISC-V
community still discusses about the need and implications
of directly forwarding these kind of interrupts directly into



guests without hypervisor supervision [12]. However, on
systems that implement both, APLIC and IMSIC(s), the
APLIC can be configured to translate wired interrupts into
MSIs, which enables direct forwarding into VS-mode in
conjunction with an IMSIC (APLIC MSI-mode).

The IMSIC can also be used as an alternative to the
the (A)CLINT for sending IPIs between virtual HARTs
respectively cells, yet without hypervisor intervention, again
by writing directly into the VS-file of the targeted HART.
Although the ACLINT will feature a separate device for
S-Mode software interrupts (SSWI) to allow direct sending
of IPIs without detour into M-Mode, this will be still not
possible for VS-mode respectively virtual machines.

APLIC and ACLINT will not be fully optimised for
virtualisation, yet most of the problems can mostly be handled
with trickery in conjunction with the IMSIC.

6. Conclusion

Our work shows that static hardware partitioning on con-
temporary RISC-V hardware comes at a high cost. Targeted
hardware optimisations for reducing hypervisor activity have
high potential for eliminating overheads in static partitioned
scenarios. Changes to the interrupt architecture (e.g., direct
interrupt handling) influence desired performance parameters
more than state-of-the-art improvements of traditionally well
optimised mechanisms (e.g., MMU 2-Stage Translation). This
underlines, once more, the importance of Hardware/Software
Co-Design as an important means for swift design and im-
plementation of useful hardware enhancements. The RISC-V
ecosystem is an optimal environment for such endeavours.

Although the use-cases presented here are tailored—
and crucial—to embedded systems, the implications of
our measurements are valid for throughput-oriented general
purpose systems, with significant possible performance gains.

In future work, we will investigate the advanced interrupt
architecture of the RISC-V ecosystem.

References

[1] Manfred Broy. “Challenges in Automotive Software
Engineering”. In: 28th ICSE. ACM Press, 2006.

[2] José Martins, Adriano Tavares, Marco Solieri, Marko
Bertogna, and Sandro Pinto. “Bao: A lightweight
static partitioning hypervisor for modern multi-core
embedded systems”. In: NG-RES. 2020.

[3] Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and
Wolfgang Mauerer. “Look Mum, no VM Exits! (Al-
most)”. In: Proc. of the 13th OSPERT. 2017.

[4] Hao Li, Xuefei Xu, Jinkui Ren, and Yaozu Dong.
“ACRN: a big little hypervisor for IoT development”.
In: Proc. of the 15th ACM SIGPLAN/SIGOPS Int.
Conf. on VEE. 2019.

[5] ISO 26262: Road vehicles – Functional safety. Inter-
national Organization for Standardization.

[6] Rich Uhlig, Gil Neiger, Dion Rodgers, et al. “Intel
virtualization technology”. In: Computer (2005).

[7] Prashant Varanasi and Gernot Heiser. “Hardware-
supported virtualization on ARM”. In: Proc. of the
2nd APSys. 2011.

[8] Andrew Waterman, Krste Asanović, and Jon Hauser.
The RISC-V Instruction Set Manual Volume 2: Privi-
leged Architecture Version 20211203. Tech. rep. Uni-
versity of California at Berkeley, 2021.

[9] Bruno Sá, José Martins, and Sandro Emanuel Sal-
gado Pinto. “A first look at RISC-V virtualization
from an embedded systems perspective”. In: IEEE
Transactions on Computers (2021).

[10] Wayne H. Wolf. “Hardware-Software Co-Design of
Embedded Systems”. In: Proc. of the IEEE (1994).

[11] J. Andersson. “Development of a NOEL-V RISC-V
SoC Targeting Space Applications”. In: 2020 50th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W).
IEEE Computer Society, 2020.

[12] RISC-V Advanced Interrupt Architecture Specification
Draft. 2022.

[13] Sagar Karandikar, Howard Mao, Donggyu Kim, et
al. “FireSim: FPGA-accelerated cycle-exact scale-out
system simulation in the public cloud”. In: Proc. of
the ACM/IEEE 45th ISCA. IEEE. 2018.

[14] Flavia Caforio, Pierpaolo Iannicelli, Michele Paolino,
and Daniel Raho. “VOSySmonitoRV: a mixed-
criticality solution on Linux-capable RISC-V plat-
forms”. In: Proc. of 10th MECO. IEEE. 2021.

[15] Lukas Bulwahn. “Is Linux Kernel Development Good
Enough to Make Your Life Dependon it? Progress on
Procedures & Methods to Qualify the Linux Kernel
Development Process”. In: ELCE17. 2017.

[16] Alfons Crespo, Ismael Ripoll, and Miguel Masmano.
“Partitioned Embedded Architecture based on Hyper-
visor: The XtratuM approach”. In: Proc. of the 8th
EDCC. IEEE. 2010.

[17] Udo Steinberg and Bernhard Kauer. “NOVA: a
microhypervisor-based secure virtualization architec-
ture”. In: Proc. of the 5th EuroSys. ACM. 2010.

[18] Robert Kaiser and Stephan Wagner. “Evolution of the
PikeOS microkernel”. In: First International Workshop
on Microkernels for Embedded Systems. 2007, p. 50.

[19] Dawson R Engler, M Frans Kaashoek, et al. Exokernel:
An operating system architecture for application-level
resource management. Vol. 29. 5. ACM, 1995.

[20] Ulrich Drepper. “The Cost of Virtualization: Software
Developers Need to Be Aware of the Compromises
They Face When Using Virtualization Technology.”
In: Queue 6.1 (Jan. 2008), pp. 28–35.

[21] Ulrich Drepper. “The Cost of Virtualization”. In:
Queue (2008).

[22] RISC-V IOMMU Task Group. 2022.
[23] Cobham Gaisler. NOEL-V Processor. 2022.
[24] RISC-V SBI Specification. 2022.


	Introduction
	Related Work
	Architecture
	Jailhouse: Concepts and Rationale
	RISC-V Platform Virtualisation
	Virtualisation Architecture
	Memory Management
	Interrupt Controller
	Hyperthreading


	Evaluation
	Benchmarking Setup
	Benchmark #1—IRQ Reinjection
	Benchmark #2—IPI Round Trip Time
	Benchmark #3—PLIC Emulation
	Benchmark #4—Synchronous Traps

	Discussion
	Conclusion

