
1-2-3 Reproducibility
for Quantum Software Experiments

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Corporate Research

wolfgang.mauerer@othr.de

Stefanie Scherzinger
Chair of Scalable Database Systems

University of Passau
Passau, Germany

stefanie.scherzinger@uni-passau.de

Abstract—Various fields of science face a reproducibility crisis.
For quantum software engineering as an emerging field, it is
therefore imminent to focus on proper reproducibility engineer-
ing from the start. Yet the provision of reproduction packages
is almost universally lacking. Actionable advice on how to build
such packages is rare, particularly unfortunate in a field with
many contributions from researchers with backgrounds outside
computer science. In this article, we argue how to rectify this
deficiency by proposing a 1-2-3 approach to reproducibility
engineering for quantum software experiments: Using a meta-
generation mechanism, we generate DOI-safe, long-term func-
tioning and dependency-free reproduction packages. They are
designed to satisfy the requirements of professional and learned
societies solely on the basis of project-specific research artefacts
(source code, measurement and configuration data), and require
little temporal investment by researchers. Our scheme ascertains
long-term traceability even when the quantum processor itself
is no longer accessible. By drastically lowering the technical
bar, we foster the proliferation of reproduction packages in
quantum software experiments and ease the inclusion of non-CS
researchers entering the field.

Index Terms—Reproducibility engineering, quantum software
engineering

I. INTRODUCTION

The ACM reproducibility guidelines (v1.1) [1] consider
an experiment reproducible when a different team with a
different experimental setup is able to confirm the published
results.1 Despite the universally acknowledged importance of
reproducibility, the vast majority of researchers agree that we
are facing a reproducibility crisis [2], [3] in almost all domains
of science, including quantum computing research [4], [5], [6],
[7].

In the emerging field of quantum software (QSW) engineer-
ing, reproducibility engineering has also been recognised as
a grand challenge [4], [5], [6], [7], with first contributions on
managing the reproducibility of software bugs [6], [4], or on
exploring the parameter search space for quantum optimisation
tasks [8]. Yet so far, little actionable advice has been given on
how to engineer QSW experiments for reproducibility. As we
will argue shortly, despite the general credo that reproducibility

WM acknowledges supported from the German Federal Ministry of
Education and Research (grant 13N15646, “quantum technologies”).

1The ACM has repeatedly changed the definition of their reproducibility
terminology in an incompatible way; we are aware of the arising confusion.

is important, at this moment in time, published articles that
are accompanied by reproduction packages are rare.

Building a working reproduction package goes beyond
providing a DOI to some repository hosting data, code,
and setup instructions. Rather, a gold-standard reproduction
package [9] bundles all research artefacts required to conduct
the experiment (such as source code, libraries, or input data),
and contains a dispatcher script that allows for executing and
evaluating the experiment via a single command.

Quantum-specific challenges: Building reproduction pack-
ages for QSW shares many challenges of classic software
engineering, most importantly managing complex software
stacks that non-trivially interact with hardware.

Reproducibility challenges specific to QSW experiments
are plentiful [10]: Quantum computing hardware is usually
provided as a cloud service, with vendor-controlled access and
configurations. Reproducers may not have ready access to the
very same machine (especially after prolonged periods of time).
Even if they do, they are very likely to find the configuration
changed, given that most quantum hardware is still in its infancy
and subject to change even during the operational phase.

Apart from a unique model/type specification of the em-
ployed machine, it is necessary to provide information on
(a) input generation methods, (b) qbit counts, (c) connectivity
topology, (d) any methods used to transform inputs, (e) ap-
proaches used to map/embed logical qbits onto physical qbits,
(f) postprocessing methods and utilities employed, and (g) pro-
gramming/initialisation and readout times. Quantum software
experiments may involve manual tuning, which necessitates
specifying any employed heuristics/policies. Finally, details on
how runtimes are measured are important, especially in cloud
settings that may involve interference by access schedulers.

Synopsis: We quantitatively review the state of repro-
ducibility in QSW experiments, and recognise a need for action.
We then introduce a customisable meta package template that
generates end-to-end, one-click reproductions with adaptation
examples for common quantum hardware. It can be found at
the accompanying website/DOI), together with a video tutorial.
Only little input is required from the scientists.

Vision: The ease-of-use of our reproduction package
template enables the proliferation of working reproduction
packages for QSW experiments. Moreover, lowering the thresh-

ar
X

iv
:2

20
1.

12
03

1v
1 

 [
cs

.S
E

] 
 2

8 
Ja

n 
20

22

mailto:wolfgang.mauerer@othr.de
mailto:stefanie.scherzinger@uni-passau.de
https://github.com/lfd/qrep123
https://doi.org/10.5281/zenodo.5113867


old for building reproduction packages can foster skills in QSW
engineering, an area difficult to master for newcomers [11].

TABLE I
REPRODUCIBILITY PACKAGES IN RECENT QSW PUBLICATIONS.

Venue Year # Papers # Exp # Src # Repro

QSA@ICSA 2021 4 2 1 0
Q-SET@QW 2020 6 2 0 0
Q-SET 2021 4 2 1 0
QCS@SAC 2021 11 10 8 0
APEQS@FSE 2020 4 1 0 0
QTOP@Netsys 2019 18 12 2 1
Q-SE@ICSE 2020 8 3 2 0
Q-SE@ICSE 2021 8 3 1 1

II. STATE OF THE ART

State of reproducibility. Table I provides an overview about
the state of reproducibility in quantum software. Based on
eight workshops from 2019–2021, where we currently observe
most activities related to QSW, we reviewed 63 papers (column
“# Papers”; detailed results are on the accompanying website).
We classified them according to whether they describe artefacts
(column “# Exp”; algorithmic source code or experiments to be
run on quantum hardware or simulators) that should be provided
in a reproducible form. We also state the number of papers
that at least provide source code on a non-permanent software
forge like GitHub (column “# Src”), and the fraction of papers
that provide a reproduction package (column “# Repro”; we
count anything provided under a DOI-safe permanent location,
even if it does not meet the standards suggested in Ref. [1]).

The conclusion is simple: Although most published research
is concerned with executing code and simulations, only slightly
more than half of the publications provide source code at all,
and only two papers come with artefacts on a DOI-safe location!
Clearly, there is a mismatch between desirable reproducibility
qualities as mandated by professional associations (and, there-
fore, the community itself), and scientific day-to-day reality.

Project-specific
artefacts

Generic
artefacts

Build
recipe

Docker
meta-container

Container
(source)

Credentials
Container
(binary) C QPU

dest. integrates source
dest. produced by source
data flow

Fig. 1. Components and workflow for 1-2-3 reproducibility engineering: The
scientist provides project-specific artefacts (green). A docker meta-container
then generates a reproduction package consisting of a source container and
a pre-built binary docker container. Both containers can trigger the QSW
experiment, record measurement and configuration data, and analyse results.
Credentials for accessing commercial quantum hardware and cloud services
are not encoded into the reproduction package, but specified as parameter.

III. A TEMPLATE PROPOSAL

To make QSW experiments reproducible with little extra
effort for researchers, we suggest a generic, adaptable template

(with full source available on the accompanying website) as ref-
erence for QSW experiments as illustrated in Fig. 1. It includes
examples for dealing with DWave and IBMQ systems. Based
on the supplied artefacts, the generated package comprises
(a) the complete source code for the calculations performed
in the paper, (b) results obtained on quantum computers
(to ensure traceability beyind quantum processor availability)
and via classical simulation, (c) a concise documentation of
each reproduction step, (d) a “one-click” dispatcher to run
the pipeline, (e) ideally, means of generating the underlying
research paper, including graphs and tables.

The replication package in both, source and pre-built binary
form, is intended to be made available at a DOI-safe, long-
term stable location. The former is easier to extend by peer
researchers, but assumes external components on volatile
locations are still available. The latter ensures long-term
reproducibility, since it does not have external dependencies.

To avoid impediments for adoption that might arise from
technologies like docker—many researchers in QSW do not
have computer science backgrounds, and even if, it might not
be systems-centric—, we suggest this generative approach.

IV. CONCLUSION

Reproducibility of experiments is key in scientific research.
Yet the adoption of methods to ensure this quality is currently
sub-par in the quantum software literature. Since the field is
still in relative infancy, we propose sustainable rectification of
the situation from the start, by providing a generic scheme that
generates reproduction packages that are tailored to quantum
software experiments, and that can be used with minimal effort.

REFERENCES

[1] Association for Computing Machinery. (2020, 08) Artifact review
and badging (version 1.1). [Online]. Available: https://www.acm.org/
publications/policies/artifact-review-and-badging-current

[2] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature News,
vol. 533, no. 7604, p. 452, May 2016.

[3] B. R. Jasny, G. Chin, L. Chong, and S. Vignieri, “Again, and Again,
and Again . . . ,” Science, vol. 334, no. 6060, pp. 1225–1225, 2011.

[4] J. Campos and A. Souto, “QBugs: A Collection of Reproducible Bugs in
Quantum Algorithms and a Supporting Infrastructure to Enable Controlled
Quantum Software Testing and Debugging Experiments,” in Proc. Q-
SE@ICSE 2021, 2021, pp. 28–32.

[5] J. Zhao, “Quantum Software Engineering: Landscapes and Horizons,”
CoRR, vol. abs/2007.07047, 2020.

[6] P. Zhao, J. Zhao, Z. Miao, and S. Lan, “Bugs4Q: A Benchmark of Real
Bugs for Quantum Programs,” CoRR, vol. abs/2108.09744, 2021.

[7] M. Fingerhuth, T. Babej, and P. Wittek, “Open source software in quantum
computing,” PLOS ONE, vol. 13, no. 12, p. e0208561, Dec. 2018.

[8] R. Shaydulin, K. Marwaha, J. Wurtz, and P. C. Lotshaw, “QAOAKit:
A Toolkit for Reproducible Study, Application, and Verification of the
QAOA,” CoRR, vol. abs/2110.05555, 2021.

[9] B. J. Heil, M. M. Hoffman, F. Markowetz, S.-I. Lee, C. S. Greene, and
S. C. Hicks, “Reproducibility standards for machine learning in the life
sciences,” Nature Methods, vol. 18, no. 10, pp. 1132–1135, Aug. 2021.

[10] C. C. McGeoch, “Principles and guidelines for quantum performance
analysis,” in QTOP@NetSys, ser. Lecture Notes in Computer Science,
vol. 11413. Springer, 2017, pp. 36–48.

[11] R. Shaydulin, C. Thomas, and P. Rodeghero, “Making Quantum Comput-
ing Open: Lessons from Open Source Projects,” in Proc. International
Conference on Software Engineering Workshops, 2020, p. 451–455.

https://icsa-conferences.org/2021/workshops/qsa/
http://ceur-ws.org/Vol-2705/
https://quset.github.io/qset2021/program.html
https://events.cels.anl.gov/event/27/timetable/?print=1&view=standard
https://apeqs.lfdr.de/2020/#/home
https://netsys2019.org/workshops/qtop19/
https://q-se.github.io/qse2020/
https://q-se.github.io/qse2021/
https://github.com/lfd/qrep123
https://github.com/lfd/qrep123
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

	I Introduction
	II State of the Art
	III A Template Proposal
	IV Conclusion
	References

