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ABSTRACT
We evaluate the applicability of quantum computing on two funda-
mental query optimization problems, join order optimization and
multi query optimization (MQO). We analyze the problem dimen-
sions that can be solved on current gate-based quantum systems
and quantum annealers, the two currently commercially available
architectures.

First, we evaluate the use of gate-based systems on MQO, pre-
viously solved with quantum annealing. We show that, contrary
to classical computing, a different architecture requires involved
adaptations. We moreover propose a multi-step reformulation for
join ordering problems to make them solvable on current quantum
systems. Finally, we systematically evaluate our contributions for
gate-based quantum systems and quantum annealers. Doing so,
we identify the scope of current limitations, as well as the future
potential of quantum computing technologies for database systems.

CCS CONCEPTS
• Computer systems organization → Quantum computing;
• Theory of computation → Database query processing and
optimization (theory).
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1 INTRODUCTION
A fundamental problem in query optimization research is determin-
ing the optimal join order [12]. Multi query optimization (MQO)
seeks to determine a globally optimal set of execution plans for
a set of queries such that execution costs are minimized through
sharing and reusing the results of common subexpressions [8, 18].
Approaches for both problems have been investigated for decades,
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including genetic algorithms [1, 19] and mixed integer linear pro-
gramming (MILP) [22]. An approach based on quantum computing
has been proposed for MQO [5, 21]. For some small instances, it can
find optimal solutions faster on a quantum annealer than classical
solvers.

Quantum processing units (QPU) work with quantum bits, or
qubits [13]. Qubits, making use of the quantum superposition phe-
nomenon, are not limited to be in either one of the states 0 or 1
at a given moment in time. This allows to encode significantly
more information than with classical bits, providing QPUs with a
computational advantage over classical CPUs. However, quantum
computing, in particular its application to database problems, is
still a largely unexplored topic. To the best of our knowledge, MQO
is the only database problem investigated so far. At the same time,
quantum computers, having matured from the state of prototypes
in laboratories, are now available to non-expert users, and can even
be booked as cloud services (see for instance, IBM’s QPUs [7]). Due
to the increased accessibility, we envision their integration into the
DBMS architecture, as depicted in Figure 1.

Unfortunately, existing classical algorithms can typically not
directly be deployed on QPUs: While the actual implementation
effort is limited [17], efficient problem reformulations that account
for QPU properties need to be found, which is challenging. Qubits
are still a very scarce resource: At the time of writing, the latest
D-Wave quantum annealer features over 5,000 qubits [11] whereas
IBM-Q offers gate-based QPUs with up to 65 qubits [7]. In addition,
QPUs only provide limited connectivity between qubits. To increase
qubit connectivity, quantum annealers use chains of physical qubits
to represent logical qubits [2]. Problems with high connectivity
requirements generate longer chains, leaving only a fraction of the
available physical qubits usable as logical qubits. This reduces the
qubit advantage of quantum annealers over gate-based QPUs. It
is further an open debate whether quantum annealing can truly
provide speedups unreachable with classical systems [15].

High connectivity requirements also impact gate-based QPUs,
which execute quantum circuits comparable to classical ones [13].
Specifically, they increase the likeliness of decoherence errors caused
by a loss of quantum information to the environment [16]. Since
qubit connectivity is increased by inserting additional gates into the
circuit during embedding [3, 20], the execution time of the extended
circuit may exceed the limited coherence time of the QPU.

The prospects of using quantum computing to achieve speedups
are nevertheless promising. The goal of this work is to investigate
the applicability of quantum computing to database query optimiza-
tion w.r.t. the problem dimensions solvable on current QPUs. Our
original contributions are: (a) we investigate the applicability of
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Figure 1: Envisioning a QPU as a co-processor in database
query optimization (adapting from [12]).

current gate-based QPUs on MQO; (b) we reformulate join order-
ing problems for current QPUs; (c) we compare the approach for
gate-based QPUs and quantum annealers.

2 APPROACH
Quantum annealers solve quadratic unconstrained binary optimiza-
tion (QUBO) problems [11], which can also be solved running hy-
brid quantum-classical algorithms on gate-based QPUs [10]. Hy-
brid algorithms run only partially on QPUs, and are augmented by
CPU computations. We consider two algorithms: the variational
quantum eigensolver (VQE) [14] and the quantum approximate
optimization algorithm (QAOA) [6]. We study their applicability
on a variety of MQO problems, reformulated following Ref. [21],
with up to 24 plans. While QAOA was previously investigated for
MQO in Ref. [5], the scaling behavior for transpiled circuits has so
far not been analyzed. We transpile the quantum circuits for the
qubit topology of the IBM-Q Mumbai QPU with 27 qubits [7] and
analyze the transpiled circuits w.r.t. depth. This, and the number of
required qubits, are crucial parameters to judge technical feasibility
of the approach for years (likely decades) to come.

A lower bound for the number of required qubits is given by the
total number of alternative plans [21]. The number of quadratic
contributions to the QUBO formulation is also crucial, since a large
number of quadratic terms requires a high qubit connectivity. For
MQO, this is mainly influenced by the number of alternative plans
per query [21]. We therefore study different classes of MQO prob-
lems with varying numbers of plans per query.

For join ordering, we propose a novel multi-step reformulation
that enables QPU usage. We reformulate the problems as MILP
problems [4], as done in Ref. [22], which considers left-deep join
trees and supports Cartesian products. We consider the basic MILP
formulation that minimizes the cardinalities of intermediate join
results, but do not account for any of the extensions to the MILP
model proposed in Ref. [22], since these require significantly more
qubits. We then eliminate inequality constraints and we discretize
resulting continuous variables based on arbitrary precision. This
allows us to cast the problems as binary integer linear program-
ming (BILP) formulations, for which an efficient transformation
into QUBO form is known [9]. We analyze our approach for a cur-
rent gate-based QPU and for the qubit topology of the D-Wave
Advantage system.

The MILP formulation allows to specify an arbitrary number of
threshold values for approximating the cardinalities of intermediate
join results. Each value requires a number of corresponding vari-
ables. Since each BILP variable is encoded by one qubit, increasing
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Figure 2: Resource scaling for MQO (left) and join ordering
(right) on state-of-the-art (SoA) QPUs.

the approximation precision therefore increases the number of re-
quired qubits. We derive an upper bound (not derived here) for the
number of required qubits 𝑛: For 𝑇 relations, 𝐽 joins, 𝑃 predicates,
and 𝑅 threshold values,

𝑛 ≤ 2𝑇 𝐽 + (3𝑃 + 𝑅) (𝐽 − 1) +𝑇 + 𝑅

𝐽 −1∑︁
𝑗=1

( ⌊
log2

(𝑐 𝑗
𝜔

)⌋
+ 1

)
qubits are required at most. Hereby, 𝜔 denotes the discretization
precision, and 𝑐 𝑗 gives the maximum logarithmic cardinality possi-
ble for the intermediate result serving as an operand for the 𝑗-th
join.

3 FIRST RESULTS
Overall, due to qubit limitations, only significantly smaller MQO
problems are solvable on gate-based QPUs compared to prior re-
sults for quantum annealing shown in Ref. [21]. Further, Figure 2
compares QAOA quantum circuit depths for an ideal qubit topol-
ogy against a physically realizable IBM-Q QPU. Due to the depth
increase after transpilation, some circuits (e.g., for 24 plans and 8
plans per query) already come close to exceeding the coherence
time, which further limits the scalability of the approach in addition
to the qubit numbers.

Figure 2 also shows quantum annealing results for join ordering
problems: It depicts the physical qubits required for all problems
where an embedding can be reliably found (i.e., in at least 50% of
the cases), the embedding algorithm times out otherwise. We found
embeddings for problems with up to 14 relations. In comparison,
only small-scale join ordering instances can be solved on IBM-Q.

Integrating QPUs into existing architectures requires a great
adaption effort, including the design of efficient problem refor-
mulations. Here, we proposed such a reformulation for the join
ordering problem. Current QPU limitations prevent us from scaling
up problem dimensions. However, with steadily maturing QPUs,
these limitations may soon become less restrictive. As such, it is
now the right time to investigate the potential of quantum com-
puting on database problems to enable the use of future QPUs on
practical problems.
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