OSTBAYERISCHE

‘ ’ | |—| TECHNISCHE HOCHSCHULE

REGENSBURG

LFD 8RR rune

Design Space Exploration and Implementation

of Efficient Memory Snapshots

A Thesis
Submitted in Partial Fulfilment of the Requirements
for the Degree of
Master of Science (M.Sc.)

At
Regensburg University of Applied Sciences

Student Name: Mario Mintel
Student Number: 3238103

Primary Supervisor: Prof. Dr. rer. nat. Wolfgang Mauerer

Secondary Supervisor: Prof. Dr. rer. nat. Jan Diinnweber

Submission Date: 8th August 2022

Abstract

Modern operating systems leverage the copy-on-write technique to efficiently manage their
memory resources. Copy-on-write can significantly reduce the demand on the memory
management system, avoiding copies of entire data blocks whenever memory should be
duplicated. Instead, the process is delayed until a modification is made. The Linux kernel
applies copy-on-write in its fork() system call. There are also many other appearances of
copy-on-write, for example, for persistence in database systems, for snapshots of file systems
or even for reducing memory usage in interpreted languages.

However, even though there are many use cases of copy-on-write, the Linux kernel does
not provide a dedicated interface to create such mappings. Either, the application developer
has to implement a copy-on-write concept, or as many applications do, the application ex-
ploits fork() for its copy-on-write. As a last resort many applications even modify their
system's kernel. This work proposes a solution to the lack of such a dedicated mechanism
by extending the mremap() system call with a new flag.

This new flag lets users of mremap() create a new copy-on-write protected memory map-
ping from an existing one. Thus, allowing users of mremap() to only snapshot selected data
instead of all data. Additionally, this work also explores and evaluates existing mechanisms
in the field of memory snapshots based on quantitative methods. The results show that an
inclusion in the Linux kernel can also discourage applications from modifying the kernel,
perhaps introducing severe security risks. Therefore, the extension of the Linux kernel with
a new mremap() flag enhances the operating system by providing a dedicated interface for

users to create efficient page-granular memory snapshots.

Kurzfassung

Moderne Betriebssysteme nutzen verzogerte Initialisierung (Copy-on-Write), um ihre Spei-
cherressourcen effizient zu verwalten. Verzogerte Initialisierung kann die Belastung eines
Speicherverwaltungssystem erheblich reduzieren, indem Kopien ganzer Datenbldcke ver-
mieden werden, sobald Speicher dupliziert werden soll. Stattdessen wird der Vorgang ver-
zbgert, bis eine Anderung vorgenommen wird. Der Linux-Kernel wendet das Konzept der
verzogerten Initialisierung in seinem fork() Systemaufruf an. Dariiber hinaus gibt es auch
viele andere Anwendungen die verzogerte Initialisierung nutzen, z. B. fiir die Persistenz
in Datenbanksystemen, fiir eine Speichermomentaufnahmen von Dateisystemen oder sogar
tiir die Reduzierung des Speicherverbrauchs in interpretierten Sprachen.

Obwohl es viele Anwendungsfille fiir verzogerte Initialisierung gibt, bietet der Linux-
Kernel keine spezielle Schnittstelle zur Erstellung solcher Speicherregionen. Entweder muss
der Anwendungsentwickler ein eigenes Konzept der verzogerten Initialisierung implemen-
tieren, oder, wie es viele Anwendungen tun, die Anwendung nutzt den Systemaufruf fork()
tiir seine verzogerte Initialisierung aus. Andere Anwendungen modifizieren sogar den Ker-
nel ihres Betriebssystems. Diese Arbeit prasentiert eine Losung fiir den Mangel eines solchen
speziellen Mechanismus vor, indem sie den Systemaufruf mremap() um ein neues Markie-
rungsbit erweitert.

Mit diesem neuen Markierungsbit konnen Benutzer von mremap() eine neue, mit ver-
zogerter Initialisierung ausgestattete Speicherregion, aus einer bestehenden erstellen. Auf
diese Weise kdnnen Benutzer von mremap() nur ausgewéhlte Daten anstatt aller Daten in ei-
ner Speichermomentaufnahme sichern. Dartiber hinaus werden in dieser Arbeit bestehende
Mechanismen im Bereich der Speichermomentaufnahmen mit Hilfe von quantitativen Me-
thoden untersucht und evaluiert. Die Ergebnisse zeigen, dass eine Erweiterung des Linux-
Kernels auch Anwendungen davon abhalten kann, den Kernel zu modifizieren, was mog-
licherweise ernsthafte Sicherheitsrisiken mit sich bringt. Daher verbessert die Erweiterung
um ein neues Markierungsbit im Systemaufruf mremap() das Linux Betriebssystem, indem
es den Benutzern ermoglicht, effiziente seitengranulare Speichermomentaufnahmen zu er-
stellen.

Contents

Contents
1 Introduction
2 Motivation & Related Work

3 Virtual Memory Management
3.1 Paging
3.1.1
3.1.2 Optimisations
3.2 Linux Kernel Internals
321

4 Copy-on-Write Mechanisms
4.1 Kernel Space
41.1

5 Evaluation
5.1 Unit Test
5.2 Measurements

5.2.1
5.2.2 Access Time
5.2.3 Duplication Time

6 Discussion
7 Conclusion and Outlook
List of Figures, Tables & Algorithms

List of Acronyms

Appendix

References

Page Tables

Memory Management
3.2.2 System Calls
3.2.3 Four-Level Page Tables

Mmapcopy
412 Mremap
413 AnKer

4.2 User Space
421
422 Userfaultfd

Snapshot Creation Time

O O 3 Ul

47

.. 47
..................................... 48
........................... 49
.................................. 50
............................... 52

54

58

59

60

61

70

Page IV

Chapter1 Introduction

1 Introduction

Operating systems strive to abstract the complexity of a system's hardware by acting as an
intermediary moderator between applications and computer hardware. Historically, com-
puters were built to perform a series of single tasks, like a calculator. This constraint is
lifted by dividing available processor time between multiple processes. The task of an op-
erating system is, among other things, to provide interfaces for hardware functions such as
input and output, and memory allocation, while also supporting multi-tasking. Operating
systems did not exist in their modern and more complex forms until the early 1960s [1].
However, their impact on our modern world is undeniable. Today, operating systems are
found on many electrical processing devices—from mobile phones and video game consoles
to web servers and supercomputers.

The Linux kernel is one of the most famous operating systems. Although estimates sug-
gest that Linux is used on only 2.43% of all desktop (or laptop) PCs [2], it has been widely
adopted by servers and embedded systems like mobile phones [3]. Linux is developed as
an open source project. This means, the source code is available for study and modification,
which is one of the reasons for the public interest on the operating system. Another aspect
of open source projects is that everyone can propose changes.

This work proposes an extension of the existing system call mremap (). Traditionally, the
system call is used to either resize an existing memory mapping or move it to another loca-
tion in its process's virtual memory. However, this work proposes the extension of the sys-
tem call with a new flag called MREMAP_COW. The MREMAP_COVW flag instructs the Linux kernel
to create a new memory mapping backed by an existing one. Moreover, this new memory
mapping is created using the copy-on-write (COW) resource management technique.

The COW resource management technique is used to efficiently implement a copy oper-
ation on a modifiable resource. If a resource is requested to be copied, but is not modified,
it is sufficient to simply share the resource between the copy and the original. Whenever
the copy or the original modifies the shared resource, a real copy must be created. The
copy operation is therefore deferred until the first write access to one of the two memory
regions. With COW, the resource consumption of unmodified resources is significantly re-
duced, while adding a small overhead to the write operations.

The Linux kernel already implements the COW technique in the fork () system call. The
system call is used to create new processes. Typically, new processes are spawned to execute
new programs. As processes reside in-memory, a process created through the use of fork ()
replaces their entire address space when loading a new program. Thus, it would be wasteful

to copy all of a process's memory during a fork (). Instead, the COW technique is applied.

Pagel

Chapter1 Introduction

However, even though the Linux kernel implements COW in its fork() system call, it
does not offer a dedicated interface to create such a mapping. Nevertheless, many applica-
tions [4-10] reasonably want to take advantage of this technique. Some of these applications
even implement their own kernel modification to achieve the goal of creating a COW map-
ping. Others exploit the fork () system call for its implemented COW technique. This in-
troduces an overhead, since fork () snapshots the whole address room. A dedicated mech-
anism like the proposed extension of mremap () can instead address the memory mapping
directly. This allows for a page-granular snapshot mechanism. The results of this work show
that the extension of mremap () does not only provide a dedicated alternative, but can also
improve performance and prevent faulty implementations.

In summary, this work aims to address the following two research questions in the field

of open source operating systems:

Q How do applications that require COW semantics overcome the lack of a dedicated

COW mechanism in the Linux kernel, and what mechanisms do they use?

Q How does the proposed MREMAP_COW flag enhance the Linux kernel compared to the

investigated mechanisms, based on a quantitative analysis?

Structure

The remainder of this work is structured as follows: Chapter 2 describes how this work
relates to prior research and the motivation of the thesis. Chapter 3 gives an overview of
virtual memory and further describes the internals of the Linux kernel, ranging from data
structures to system calls. Chapter 4 provides an overview of different possibilities to imple-
ment COW mechanisms in the Linux operating system. Chapter 5 shows the results of the
measurements made with these COW mechanisms. Chapter 6 then discusses these results

and their consequences. Finally, Chapter 7 concludes this work.

Page 2

Chapter 2 Motivation & Related Work

2 Motivation & Related Work

COW is a resource management technique that has been a topic of extensive prior research
across multiple fields, such as operating systems [11-13], interpreted programming lan-
guages [14, 15], file systems [6, 7], key-value stores [4, 9] and database systems [5, 8, 10].
It is applied in various layers ranging from kernel space implementations to user space im-
plementations.

In [11] Smith et al. describe how the implementation of COW reduces the real time re-
quired to perform a Unix fork(). The implementation uses advanced paging strategies to
perform address space inheritance. The authors show that for large processes, the time re-
quired to perform a Unix fork () is proportional to the fraction of write references, so that a
child process which updates half (0.5) of its address space will spend half the time that an-
other process updating all (1.0) of its address space will. Thus, by applying COW to fork () a
reduction of 50 percent or more of the system time devoted to copying data can be achieved,
depending on the fraction of write references. The Linux kernel, for example, implements
COW in its fork () system call.

Another application of COW is proposed by Kemper et al. In [8] they report that by using
fork() and its inherited COW they implement persistent snapshotting of their in-memory
database system. They also use COW to implement simultaneous Online Transaction Pro-
cessing and Online Analytical Processing.

There are also commercial products that implement COW to guarantee efficient usage of
resources. Microsoft SQL Server uses COW to create database snapshots [5]. Redis [4] also
uses fork () to implement its persistence [16].

However, the intended semantic of a fork () is to create new processes, not to share data.
In [15] Korb et al. propose a new system call named mmapcopy () that offers an alternative
to directly create a COW mapping. The authors use this system call in the interpreted pro-
gramming language R to gain significant improvements in CPU time compared to Kernel
Samepage Merging. Korb et al. report that their method increases memory savings by up to
11.7pp compared to the generic approach of Kernel Samepage Merging, but outperforms it
on runtime.

Another alternative to fork () is provided by Sharma et al. In [10] they describe vmcopy (),
a new system call that directly creates a COW mapping. They implement a multi-version
concurrency control database system through the extensive use of COW. Multiple snapshots

of different points in time are created by using vmcopy ().

This work contributes to existing research in the field of the Linux operating system by pro-
posing the extension of the mremap () system call with the MREMAP_COW flag in several ways.
First, it offers an alternative to applications exploiting fork() for its inherited COW cap-

Page 3

Chapter 2 Motivation & Related Work

abilities. The intent when calling fork() in the presented examples is not to create a new
process, it is to create a COW mapping. Since these cases can easily be emulated by a thread
and a mechanism to explicitly create a COW mapping, the use of fork() in these applica-
tions can be described as exploitative. This also contradicts one of the Unix philosophies,
which emphasises to "make each program do one thing well" [17] (e.g., create processes).

Another contribution of this work is solving the problem that dedicated COW mechan-
isms require a custom kernel modification. As lined out before, multiple implementations
exist to solve the problem of explicitly creating a COW mapping. Such kernel modifications
can induce severe security issues. By extending the Linux kernel with a dedicated mechan-
ism to create COW mappings, these security issues are limited to a single implementation.
Introducing the changes to the upstream Linux kernel can prevent faulted custom imple-
mentations, while also removing the need of a custom kernel.

Finally, this work also contributes to the existing research in the field of the Linux oper-
ating system by evaluating the proposed mechanism and other related mechanisms. Unit
tests are run for each implemented mechanism to verify their correctness. Different meas-
urements are made to compare runtime and effectiveness of each mechanism. These units

are then used to evaluate the usability of each individual implementation.

Page 4

Chapter 3 Virtual Memory Management

3 Virtual Memory Management

Today, almost all computer systems—desktops, tablets, wearables and often even embed-
ded systems—rely on a multi-layer storage concept. The first layer consists of the main
memory, while the second layer consists of auxiliary storage media such as hard disks. One
or more processors have direct access to the main memory, but not to the auxiliary memory;
therefore information may only be processed in the main memory, and information that is
not being processed can reside in the auxiliary storage media. This approach offers several
advantages: (1) the ability to store data non-volatilely in auxiliary storage; (2) the ability to
access data in main memory with low latency; (3) the ability to use more space than actually
available in main memory.

Although it has some very important advantages, the problem of how to relocate the
data properly between main memory and auxiliary storage arises. The operating system
solves this problem by applying a memory management concept that allows for an ideal-
ised abstraction of the storage resources, called Virtual Memory (VM) [18]. This chapter will
introduce the key concepts of VM. Additionally, Chapter 3.2 provides an overview of the
data structures and concepts applied by the Linux kernel.

The concept of VM lets the user access memory as if it was one piece of large main
memory. To do this, it is obligatory to use a set of addresses different from that provided
by the physical memory and to provide a mechanism that translates between them. Such
an address is called a virtual address and the set of these addresses is called the virtual ad-
dress space. Similarly, the physical memory uses a physical address, thus, the set of physical
addresses is called the physical address space. Note that, by using this abstraction, we can
map an individual virtual address space to every process. For future reference, we de-
note the virtual address space by N = {0,1,...,n — 1} and the physical address space by
M =1{0,1,...,m — 1}, assuming n > m unless stated otherwise.

Since the virtual address space contains a collection of potentially usable virtual addresses,
there is no requirement that every virtual address actually represents a location in the phys-
ical address space. This induces an increase in complexity in the addressing mechanism,
as there is no a priori affinity between virtual addresses and physical addresses. Such an
addressing mechanism can be described by a function f: N — M U {@} such that for each

moment in time

a’ if ais mapped in M at location @/,

flay=9_ .

@ if a is missing from M.
This function f is known as the address map [19]. Thus, an addressing mechanism can resolve
an address a to a’ if there is a mapping in the address map f, and it can not if there is no

mapping in the address map f.

Page 5

Chapter 3 Virtual Memory Management

Figure 1 depicts an example mapping of f, where an arrow (a,4’) for a in N and 4’ in M
indicates that information a is stored in location a’, while the absence of an arrow indicates

that information a is not present in M.

L4
S

N
0
1
2
3

a

n—1 -/ m—1

Virtual Address Physical Address
Space Space

h
2

Figure 1: Mapping from virtual address space to physical address space.

Because of the mapping f, the user may think that consecutive data in N is stored con-
secutively in M, despite the fact the data may actually be stored arbitrarily. This creates a
contiguous memory when only considering the virtual address space.

The address map is implemented in a hardware component called the memory management
unit (MMU). The MMU is typically located within the computer's CPU but can also operate
in a separate integrated chip [20]. When VM is used, all memory references are passed
through the MMU, which maps virtual addresses to physical addresses, as illustrated in
Figure 2.

The CPU sends virtual

addresses to the MMU
CPU J ‘
— Memory Disk
Controller
MMU
\\ J J Bus

The MMU translates the addresses

Figure 2: The position and function of the MMU [20].

Page 6

Chapter 3 Virtual Memory Management

3.1 Paging

To solve the problem of relocating data properly between main memory and auxiliary stor-
age, most VM operating systems use a technique called paging [21]. With paging, the virtual
address space consists of fixed-length units called pages. The corresponding units in the
physical address space are called page frames [20].

Pages on contemporary systems are usually of at least 4 KiB in size; recent x86-64 pro-
cessors, such as the AMD64 or the Intel 64 processors also support page sizes of 2 MiB and
1 GiB [22, 23], that are called huge pages. Pages are stored in a data structure known as the
page table and can either be paged in or paged out depending on the available physical memory:.
When the physical memory is full and a new page is required, a particular page is chosen
and replaced by the new page. The new page is paged in, while the old page is paged out,

as depicted in Figure 3.
page 0
P page 1
N~ page 2

- - - page in page3
! - - page out

e
~—__ " Operating Page

Auxilliary Table

System
Storage page n

Virtual Memory
Address Space

Physical

Figure 3: The operating system uses the concept of paging to swap
datain and out of an auxiliary storage and the physical memory.

The page table maintains an overview of which pages currently reside in physical memory
and which do not, by marking pages with a present bit. This present bit is set, if a page a has
amapping in f so that f(a) = a’. Therefore, if the present bit is not set—that means that the
page is not present in physical memory—the MMU will detect this, since f(a) = @, and will
cause the CPU to trap to the operating system. This trap is called a page fault [20]. To handle
this page fault, the operating system follows a series of steps as illustrated in Figure 4.

First, the operating system checks whether or not the virtual address of the just occurred

page fault refers to the virtual address space of the process. If it does not, it is an invalid

Page 7

Chapter 3 Virtual Memory Management

fault and the operating system will terminate the process. However, if the faulting virtual
address is valid, that is it is part of the process's virtual address space, the operating system
has to check if the page corresponds to a page frame, that is it is present in the physical
memory. If it is not present, the operating system has to page in the appropriate page from
the auxiliary storage. As access to the auxiliary storage takes a long time, the process has
to wait until the page has been fetched. While doing so, the operating system can schedule
other processes, until the page is fetched. When the page is fetched, it is written into an
unused physical page frame and a corresponding entry to the process's page table is created.
The trap is released and the process is restarted at the machine instruction where the page
fault originally occurred. Although this time the MMU can translate without faulting and

thus the process can continue to execute.

@ page is on
auxiliary storage

Vi
A)
Operating
A
System @ S,
reference trap
load M -~ > a
T @
restart
instruction Page Table
Vi
® X
update page fetch Auxilliary
tabl missing page
; e EPs Storage
Instruction
Buffer Physical
Memory

Figure 4: The operating system handles a missing page fault by fetch-
ing the page from the auxiliary storage. It then writes the fetched page
into the physical memory and updates the page table. Finally, the in-
struction is restarted. [24].

However, if there are no free physical page frames left, the operating system has to swap
pages in and out of the physical memory. To page out, the operating system has to pick a
titting page frame based on the implemented page replacement algorithm in order to persist
the contents of the pages in the auxiliary storage. It then handles the page fault as described.

Page 8

Chapter 3 Virtual Memory Management

3.1.1 Page Tables

The page table is an array of page table entries (PTEs) that hold the mapping of a virtual
page to its corresponding physical page frame number (PFN). Such a PTE is highly machine
dependent, but the information present is roughly the same from machine to machine. Note
that, as each process has its own virtual address space, it also needs its own page table.
Table 1 is an excerpt of the available bits and provides an overview of the present meta
information in a PTE used by a x86-64 Linux system. These bits are defined in the header

file <asm/pgtable_types.h>.

Table 1: Functional overview of Linux page table entry protection and status bits.

Bit Function

_PAGE_PRESENT Page is resident in memory and not swapped out.
_PAGE_RW Set if the page may be written to.

_PAGE_USER Set if the page is accessible from user space.
_PAGE_ACCESSED Set if the page is accessed.

_PAGE_DIRTY Set if the page is written to.

_PAGE_PROTNONE Page is resident, but not accessible.

All these bits are self-explanatory except for the _PAGE_PROTNONE. This bit is set by protect-
ing a region with mprotect () using the PROT_NONE flag. Protecting a page this way, clears
the PAGE_PRESENT bit and sets the PAGE_PROTNONE bit. Linux can now enforce the inac-
cessibility, as the _PAGE_PRESENT bit is clear, and consequently an access of the page will
raise a page fault. This makes the page inaccessible to user space, while still maintaining the
knowledge that the page is resident if it needs to be swapped out or the process exits [21].

3.1.2 Optimisations

After acquiring a basic understanding of VM and paging, we can now have a detailed look
at the optimisations of these concepts. Any paging system has to address the following two

major difficulties:
Q The translation from virtual address to physical address has to be fast.
A The virtual address space is proportional to the implemented management structures.

The first point is a consequence of the fact that every memory access has to be translated by
the MMU. As every instruction has to be fetched from memory and most instructions refer-

ence data from memory, multiple page table translations have to be executed per instruction.

Page 9

Chapter 3 Virtual Memory Management

Let us assume that an instruction takes 1 ns, then the page table lookup must occur within
0.1 ns to prevent the mapping from becoming a bottleneck.

The second point is by virtue of the fact that modern computer systems typically use at
least 32 bit architectures. Assuming a page size of 4 KiB, a 32 bit virtual address space has
over one million (22 — 1) pages. When using a 64 bit address space, a page table greater
than 10%° is required. Also remember that each process has its own page table, thus making
it unfeasible to simply use unoptimised page tables in a multi-process operating system.

The requirements of such a fast translation for large page tables is a significant constraint
on the design of VM. The simplest approach is to have a single page table in main memory,
with one entry for each virtual page, indexed by the virtual page number. The operating
system now has two possibilities: (1) load every PTE of the page table into a hardware
register; (2) only have a reference to the start of the page table in a hardware register.

The evident advantage of the first approach is that during process execution, no more
memory references are needed for the page table. However, if the page table is large, this
is unbearably expensive. Furthermore, at every context switch the operating system has to
load the entire page table, which completely negates performance.

The second approach circumvents the need to load the entire page table at every context
switch, as only a single register has to be reloaded. Nevertheless, the disadvantage of this
approach is that during execution one or more memory references are required to read the
page table, thus, introducing additional operations.

Let us now have a look at more sophisticated solutions to speed up paging and handle
large virtual address spaces, starting with the former.

Translation Lookaside Buffer

As the page table typically resides in main memory, the design of paging has a huge im-
pact on performance. Consider, for example, a 1 byte instruction that copies data from
one register to another. Without paging, this instruction only has to fetch the instruction
from memory, consequently only a single memory reference is needed. While with paging,
we also have to reference the page table, thus, at least one additional memory reference is
needed. Since the performance of modern computer systems is bound by the Von-Neumann
bottleneck [25]—that is the limited throughput between the CPU and memory compared to
the amount of memory—having to do twice as many references per memory reference, cuts
performance in half. Under these conditions, using paging may never be considered. The
key to improving access performance is to rely on locality of reference to the page table.
When a translation for a virtual page number is used, it will probably be needed again in
the near future, because the references to the words on that page have both temporal and
spatial locality.

Page 10

Chapter 3 Virtual Memory Management

Accordingly, modern processors include a special cache for mapping virtual addresses
to physical addresses without using the page table [26]. This cache, called (for historical
reasons [27]) Translation Lookaside Buffer (TLB) is illustrated in Table 2 [28]. Typically, the TLB
is part of the MMU and consists of a small number of entries, often between 16 and 512 [29],
but eight in our example. Each entry in the TLB holds the mapping of a virtual page to its
physical frame. Additionally, the TLB includes other status bits, such as the modified and

protection bits, because the TLB is accessed instead of the page table on every reference.

Table 2: An excerpt of a TLB to speed up paging [20].

Valid Virtual Page Modified Protection Page frame

1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RWX 14
1 861 1 RWX 75

Let us now see how the TLB functions. When a virtual address is presented to the MMU,
the hardware first checks the TLB if its virtual page number is present. If a valid match
is found, that is a so-called TLB hit, and the access does not violate the protection bits, the
physical page frame is used to form the address, without using the page table. However, if
the virtual address is not present in the TLB, a so-called TLB miss occurs. The MMU now
determines if it is merely a TLB miss or also a page fault by doing an ordinary page table
lookup. If the page is not present in memory, then the TLB miss indicates an actual page
fault, which will be handled by the operating system as explained earlier. The MMU then
evicts one of the entries from the TLB and replaces it with the PTE just looked up. Because
the TLB has much less entries than the number of pages in main memory, TLB misses will
be much more frequent than actual page faults [29].

As our more and more sophisticated paging concept increases in complexity, Figure 5 de-
picts an interim flowchart, which includes the previous optimisation strategies. The MMU
tirst checks if the TLB holds the required PTE. If it does, then the MMU can generate the
physical address. However, if it does not, then the page table has to be examined whether
or not the page is present in physical memory. If the page is not in physical memory, a page
fault is generated and handled by the operating system. With the page present in physical
memory, the MMU updates the TLB accordingly and generates the correct physical address.

Page 11

Chapter 3 Virtual Memory Management

CPU wants to fetch data
from main memory

Return to l

faulted instruction

MMU checks the TLB

Page fault
handling routine
Yes

OS instructs CPU

to read the page

|

|

|

\

|

T

from disk ‘
l | No

|

|

\

|

\

|

|

|

Transfer page

Access page table

from auxiliary storage

to main memory

No Page in

main memory?

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
[
\
\
+ Update page tables
\

Memory full? }
\
‘ Update TLB
No ‘
Perform page replacement } l
‘ |
\ MMU generates
J physical address

Figure 5: A flowchart depicting how paging uses a TLB.

Overall, the TLB increases the performance of paging by bypassing the page table lookup
whenever possible and therefore, reducing the time needed to translate between virtual
addresses and physical addresses. But that is not the only problem we have to address.
Another problem is how to deal with very large virtual address spaces. Below we will

discuss one way of dealing with them.

Multi-Level Page Tables

To tackle the issue of handling large virtual address spaces while also applying paging, the
use of a multi-level page table can be considered [20]. Multi-level page tables avoid keeping
all page tables in memory. Especially those that are not needed should not be kept around.
This reduces the size of the required management structure.

Let us consider a 32 bit virtual address space. We want to be able to address every single
byte, that means that there are 232 3ddressable bytes or 4 GiB. Suppose, for example, that a
process needs 12 MiB: the bottom 4 MiB of memory for code, the next 4 MiB of memory for
data, and the top 4 MiB of memory for the stack. Between the bottom of the stack and the
top of the data there is a huge hole that is unused.

Page 12

Chapter 3 Virtual Memory Management

Instead of using a single page table that holds every PTE, we can partition our 32 bit
address as illustrated in Figure 6. This partition divides a 32 bit address into a 10 bit PT1

tield, a 10 bit PT2, and a 12 bit Offset field. Since we use an offset of 12 bits, the page size has

220

to be 4 KiB, as every byte has to be addressable. This leaves us with 2<* available pages.

32 Bits

PT1 P12 Offset

10 Bits 10 Bits 12 Bits ———
Figure 6: A 32 bit address partitioned with two page table fields.

In Figure 7 we can see how the two-level page table works using the just discussed par-
titioning. On the left side we see the top-level page table with 1024 entries. Each entry in
the top-level page table basically represents a block of 4 MiB. This page table is indexed by
the PT1 field. The entries in the top-level page table reference the second-level page tables
shown on the right side. The second-level page tables, that are represented by the PT2 field,
reference to the physical page frames. The other (shaded) entries are not used.

So when presented with a virtual address, the MMU first extracts the PT1 field and uses
this value to index into the top-level page table. The entry located by indexing into the top-
level page table then yields the address of a second-level page table. The value of the PT2
tield is then used to index into the selected second-level page table to find the PEN for the
page itself. Finally the Offset field is used to address each individual byte in the selected

page.

Page 13

Chapter 3

Virtual Memory Management

1023

3
2
1
0

To
page

11l

To

page

—

111l

Top-level

page table

To
page

111l

Second-level

page tables

Page
table for
the top
4 MiB of
memory
(Stack)

Page
table for
the lower
4 MiB of
memory
(Data)

Page

table for
the bottom
4 MiB of
memory
(Code)

Figure 7: A two-level page table can be used to decrease the total
size of the required page tables. Instead of using one page table for
all pages, the top-level page table does only index the second-level
page tables. The second-level page table then addresses the individual
pages. In this example 12 MiB are allocated for the program, using a
total of 4 page tables.

As an example, let us consider the 32 bit address 0x00403316 (4,207,382 in decimal). This
virtual address corresponds to PT1 = 1, PT2 = 3, and Offset = 790. The MMU first uses the
PT1 field to index into the top-level page table and obtains entry 1, which corresponds to
4 MiB to 8 MiB - 1 (i.e., absolute addresses 4,194,304 to 8,338,607). It then uses the PT2 field
to index the second-level page table and obtains entry 3, which corresponds to addresses
12288 to 16383 within its 4 MiB block (i.e., absolute addresses 4,206,592 to 4,210,687). This
entry contains the PFN of the page containing virtual address 0x00403316. If this page is in

memory, the PFN is combined with the offset to obtain the physical address. If not, a page

fault is generated.

Page 14

Chapter 3 Virtual Memory Management

Note that, even though the virtual address space spans over a million pages, with multi-
level page tables we only need four page tables with 1024 entries: the top-level page table
and the second-level page tables for 0 to 4 MiB (for the code), 4 MiB to 8 MiB (for the data)
and the top 4 MiB (for the stack). Using this approach, any given number of virtual address
space bits can be achieved by simply adding more and more levels. Linux, for example, uses
a four-level page table [30], more details in Chapter 3.2.3.

By using multi-level page tables we reduce the number of page tables that have to be
present in main memory, even if the virtual address space is large. There are also different
approaches to handling large virtual address spaces, many of which can be found in Talluri
et al. [31]

Demand Paging

Another VM optimisation strategy uses a design pattern called lazy loading. With lazy load-
ing, data initialisation is deferred until the point at which it is needed. When this design
pattern is applied, the memory is not allocated instantly. Instead, the definition of the alloc-
ation is simply stored until the memory is accessed. The access generates a page fault and it
is during its handling, that the real mapping is made [32]. In practice, most real processes do
not need all their pages, or at least not all at once, for several reasons [33]: (a) error handling
code is not needed unless that specific error occurs, some of which are quite rare; (b) arrays
are often oversized for worst-case scenarios; (c) certain data of certain programs is not al-
ways needed, as in querying only a portion of a database. This approach of only loading
pages as they are demanded is called demand paging [34].

Demand paging offers several advantages opposed to loading all pages immediately.
First, there is more space in main memory as pages are only loaded when demanded. This
means that more processes can be loaded, reducing context switching time which utilises
large amounts of resources [35]. Second, less loading latency occurs at startup as less in-
formation has to be paged in from auxiliary storage. The overhead of paging is moved from
program startup to the first program execution, decreasing the startup time of programs.

But demand paging also has its drawbacks. To begin, programs face an extra latency
whenever they access a page for the first time, because the overhead is moved from startup
to execution time. Another disadvantage is that it also induces possible security risks. Per-
cival describes a timing attack that can be used to create a covert communication channel us-
ing demand paging [36]. Demand paging also slightly increases the complexity of memory
management with page replacement algorithms. Such page replacement algorithms can, for

example, account for the fact that demand paging changes the occurrence of page faults.

Page 15

Chapter 3 Virtual Memory Management

Page Replacement Algorithms

The implemented page replacement algorithm also has a great impact on paging perform-
ance. When a page fault occurs, the operating system has to chose which page will be evicted
from main memory so that the incoming page can be written to main memory. Furthermore,
if the page to be replaced in main memory has been modified, it must be updated on the aux-
iliary storage whenever it is paged out in order to not lose the modification. However, if the
page has not been modified (e.g., the executable of a process), no rewrite is needed.
Although it is possible to pick random pages to replace at each page fault, doing so will
decrease system performance heavily. Consider a page that is heavily used, if this page gets
replaced it will probably be paged in again quickly, resulting in extra overhead. The subject
of page replacement algorithms has been addressed in multiple works, both theoretical and
experimental [20, 24, 37]. Below, a short overview of the page replacement algorithm used

by the Linux kernel is provided.

Least Recently Used Page Replacement Algorithm

Linux literature makes heavy mention of the least recently used (LRU) page replacement al-
gorithm in the context of memory management [21, 24, 29]. However, Mel from the Linux-
mm mailing list—when confronted with the question what page replacement algorithm is
used—responded with: "The current reclaim algorithm is a mash of a number of different
algorithms with a number of modifications for catching corner cases and various optimisa-
tions [38]".

The LRU in Linux uses two lists called active_list and inactive_list. The goal of this
separation is simple: the active_list contains the working set [19] of all processes and the
inactive_list contains the replacement candidates.

The lists are similar to a simplified LRU 2Q [39] where two lists called Am and A1l are
managed. The algorithm describes how the size of the two lists have to be tuned but Linux
takes a simpler approach by using refill_inactive () to move pages from the bottom of
active_list to inactive_list to keep the active_list about two thirds the size of the
total page cache.

In summary, the algorithm does exhibit LRU-like behaviour and it has been shown by
benchmarks to perform well in practice [21]. As discussing all corner cases and optimisa-
tions is out of scope for this work, we assume that Linux uses the LRU page replacement

algorithm in order to further improve its paging performance.

Page 16

Chapter 3 Virtual Memory Management

Copy-on-Write

While copy-on-write (COW) is not an optimisation strategy to speed up paging and neither
to handle large page tables, it is a general optimisation strategy when copies of a modifiable
resource have to be created. It is also the key concept of this work, hence it is covered in this
chapter.

When using VM, multiple virtual addresses can be mapped to the same physical address.
Note that, our previously defined function f allows this, as we defined n > m and there is
no restraint on mapping the same m twice. This introduces several advantages, one of them
being COW.

COW is a technique to efficiently implement a copy operation on a modifiable resource.
If a resource is copied but not modified, it is not necessary to create a new resource; instead
the resource can be shared between the origin and the copy. The copy operation is deferred
until a modification is made. By sharing resources this way, the resource consumption of
unmodified copies is significantly reduced.

The Linux kernel makes use of COW semantics to safe memory in its fork system call.
Instead of copying the entire address space, the kernel just copies the page tables. The
address space of the parent and the child process now both point to the same physical pages.
Of Course, both processes may not modify each other's pages, which is why all PTEs in
both page tables are marked as read-only, even though they could be written to in normal
circumstances. As soon as one of the processes attempts to modify a copied page, a page
fault occurs. The kernel then checks additional memory management structures (introduced
later in Chapter 3.2) to check if the page can be accessed with read and write operations or
only read operations. If only read operations are permitted, a segmentation fault is raised.
However, if read and write operations are permitted although the PTE only indicates a read-
only page, the kernel now recognises that it must be a COW page [40]. It therefore creates a
new writable page assigned exclusively to the process. The other page stays read-only until
only a single owner remains. Then the write-protection on the page is removed [41].

COW may also be used in other areas such as file systems or database servers. For ex-
ample Btrfs and ZFS use a COW mechanism for creating snapshots of the file system [6, 7],
while Microsoft SQL Server uses COW to create snapshots of their databases [5].

Kernel Samepage Merging

Kernel Samepage Merging (KSM) is a mechanism implemented in the Linux kernel, which is
primarily used to share pages with identical contents [42]. However, unlike with fork()
where the kernel knows that the contents of the pages in child and parent process must
be identical, with KSM the kernel does not have such knowledge. KSM can be enabled by

Page 17

Chapter 3 Virtual Memory Management

CONFIG_KSM=y and is controlled by either madvise () or by directly accessing the sysfs in-
terface via /sys/kernel/mm/ksm/. KSM uses two separate red-black trees (see Chapter 3.2),
the unstable tree and the stable tree. Pages tracked by KSM are initially stored in the unstable
tree; this means that KSM considers their contents to be volatile. Placement in the tree is
determined by a simple memcmp () of the page's contents. Essentially, the content of the page
is treated as a huge number. The unstable tree is suitable for finding pages with duplicate
contents; a relatively quick traversal of the tree will turn up the only candidates.

However, KSM does not place every page it scans in the unstable tree. If the contents
of a page change over the course of one memory scanning cycle, the page will not really
be a good candidate for sharing anyway. So pages that change are not represented in the
unstable tree. Each scan cycle the unstable tree is dumped and rebuilt from the beginning.
That deals with the problem of pages which, as a result of modifications, find themselves in
the wrong location in the tree.

The other pages which are not found in the unstable tree, are those which have actually
been merged with duplicates. Those pages are put into a separate stable tree and are marked
read-only. The stable tree is also a red-black tree, but it is not rebuilt regularly since pages
cannot become misplaced there. Once a page goes into the stable tree, it stays there until all
users have either modified or unmapped it [43].

To conclude, paging is a key concept of VM. It has a major impact on a system's perform-
ance, therefore it is optimised in many different ways. The most impactful optimisations
include the TLB and multi-level page tables, as both tackle the main issues of paging: fast
translation and large page tables, respectively. But there are also other optimisations for VM
like demand paging, the implemented page replacement algorithm, COW or KSM. Demand
paging lowers the amount of pages present in main memory, while the implemented page
replacement algorithm decides which page is to be evicted whenever the main memory is
full. With COW, resources can be shared efficiently by deferring the copy operation until a
modification is done. KSM on the other hand is a memory-saving de-duplication feature,
which can reduce the amount of present pages by merging pages with identical content.
Most operating systems, including Linux [30] and Windows [44], implement these optim-

isations to guarantee the performance of their VM.

3.2 Linux Kernel Internals

In this chapter different specifics of the Linux kernel are introduced. These core-concepts
help to understand how different COW mechanisms can be implemented in the Linux ker-

nel, whether in the user space or the kernel space.

Page 18

Chapter 3 Virtual Memory Management

3.2.1 Memory Management

The Linux kernel defines many data structures for its memory management. Introducing
all of them is out of scope for this work, so we focus on the relevant ones. We will start off
with describing most of the defined fields and discuss their usage and interactions later. The
two central data structures used in Linux's VM are the memory descriptor and the virtual

memory area—let us start with the former.

Memory Descriptor

The kernel represents a process's address space using a data structure called the memory
descriptor. This structure contains all the information regarding a process's address space.
The memory descriptor data structure is defined as follows—in simplified form:

<linux/mm_types.h>
struct mm_struct {
struct vm_area_struct *mmap ;

struct rb_root mm_rb;

unsigned long mmap_base;

unsigned long highest_vm_end;

pgd_t * pgd;

atomic_long_t pgtables_bytes;

atomic_t tlb_flush_pending;
spinlock_t page_table_lock;

struct rw_semaphore mmap_lock;

atomic_t mm_users;

atomic_t mm_count;

int map_count;

unsigned long total_vm;

unsigned long hiwater_rss;

unsigned long hiwater_vm;

unsigned long def_flags;

unsigned long flags;

unsigned long data_vm;

unsigned long exec_vm;

unsigned long stack_vm;

unsigned long start_code, end code, start _data, end data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

Page 19

Chapter 3 Virtual Memory Management

Admittedly, even in its simplified form, the amount of information in this structure can
be overwhelming. However, the data structure can be broken down into sections, as hinted

by the ellipsis:

O mmap and mm_rb, link together all the virtual memory areas in a doubly linked list and

a red-black tree structure, respectively.

O mmap_base indicates the base of the memory descriptors address space, while the field

highest_vm_end indicates the end of it.

[pgd is a pointer to the page global directory. The pgtables_bytes field represents
the allocated PTE page table pages. The t1b_flush_pending field indicates that an
operation with batched TLB flushing is going on. Anything that can move process
memory needs to flush the TLB when moving a PROT_NONE mapped page.

 page_table_lock and mmap_lock are locking mechanisms to prevent deadlocks or

memory corruption when accessing the respective data structures.

Q mm_users is the number of processes using this address space. For example, if two
threads share this address space, mm_users is equal to two. The mm_count field is the
primary reference count for the mm_struct. All mm_users equate to one increment of

mm_count.

O map_count is the number of virtual memory areas and total_vm is the number of
total pages mapped. The hiwater_rss and hiwater_vm fields represent the high-
watermark, that is the highest peak, of the resident set size (RSS) and virtual memory

usage, respectively.

O def_flags and flags define the default access flags and actual access flags of the
memory descriptor. The {data,exec,stack}_vm fields represent the access flags of

the respective memory section.

Q {start,end}_{code,data,brk,stack}and {arg,env}_{start,end} are the start and
end of the respective memory section.

The usage of most of the described fields is intuitive. However, with mm_users and mm_count
it is not clear why two different counters are used. The reason is simple though: having two
counters enables the kernel to differentiate between the main usage counter (mm_count) and
the number of processes using the address space (mm_users). Only when mm_users reaches
zero is mm_count decremented. When mm_count finally reaches zero, there are no remaining
references to this mm_struct and it is released from memory [45]: 1inux/mm_types.h:518.

Page 20

Chapter 3 Virtual Memory Management

Virtual Memory Area

The Linux kernel implements a data structure called virtual memory area (VMA) to distin-
guish between different logical memory areas (e.g., code, stack, heap). Each VMA describes
a piece of a process's address space; that piece is a (usually contiguous) series of pages with a
uniform set of permissions. In Linux, every VMA is typically either a file-backed mapping that
is backed by a device (e.g., shared libraries), or an anonymous mapping (e.g., stack, heap) [46].
Anonymous mappings are just in-memory, there is no block device backing up the contents

of the page as a device backed mapping has. Below is an excerpt of the VMA data structure:

<linux/mm_types.h>
struct vm_area_struct {

struct mm_struct *vm_mm;

unsigned long vm_start;

unsigned long vm_end;

struct vm_area_struct *vm_next, *vm_prev;
struct rb_node vm_rb;

pgprot_t vm_page_prot;
unsigned long vm_flags;

struct file x* vm_file;

unsigned long vm_pgoff;

struct vm_userfaultfd ctx vm_userfaultfd ctx;

s
Once again we divide the data structure into sections hinted by the ellipsis:
Q vm_mm points to the memory descriptor of the VMA.

Q vm_start is the initial (lowest) address in the interval and vm_end is the first byte after
the final (highest) address in the interval.

O vm_next and vm_prev are pointers to the next and previous element in a doubly linked

list, while vm_rb points to the node in the red-black tree structure.

O vm_page_prot represents the access permissions for an individual page. vm_flags
represent the flags set for the VMA. See Table 3 for details.

Q vm_file is the mapped file of the VMA (can be a null pointer). vm_pgoff is the offset
(within vm_file) in PAGE_SIZE units.

Q vm_userfaultfd_ctx is the context used to enable userfaultfd capabilities.

Page 21

Chapter 3 Virtual Memory Management

Using the vm_start and vm_end field, the length of each VMA can be calculated by subtract-
ing vm_end — vm_start, which exists over the interval [vm_start, vm_end[. VMAs are unique
to their referenced memory descriptor. Consequently, even if two different processes map
the same file into their respective address space, both have a unique VMA linked to their
respective memory descriptor.

The behaviour of different VMAs can be specified by setting pre-defined bits in the field
vm_flags. The following paragraph describes different flags, while also presenting a table

with all (as of version 5.18) available values.

Virtual Memory Area Flags

The possible bit values for vm_flags are defined in <linux/mm.h>. These flags specify beha-
viour for which the kernel is responsible and apply for the whole VMA. Table 3 is a listing
of the possible vm_flags values.

Page 22

Chapter 3

Virtual Memory Management

Table 3: Functional overview of virtual memory area flags.

Flag Effect on VMA

VM_NONE No flags are set.

VM_READ Pages can be read from.
VM_WRITE Pages can be written to.
VM_EXEC Pages can be executed.
VM_SHARED Pages are shared.
VM_MAYREAD The VM_READ flag can be set.
VM_MAYWRITE The VM_WRITE flag can be set.
VM_MAYEXEC The VM_EXEC flag can be set.

VM_MAYSHARE
VM_GROWSDOWN
VM_UFFD_MISSING
VM_PFNMAP
VM_UFFD_WP
VM_LOCKED
VM_I0
VM_SEQ_READ
VM_RAND READ
VM_DONTCOPY
VM_DONTEXPAND
VM_LOCKONFAULT
VM_ACCOUNT
VM_NORESERVE
VM_HUGETLB
VM_SYNC
VM_ARCH_1
VM_WIPEONFORK
VM_DONTDUMP
VM_SOFTDIRTY
VM_MIXEDMAP
VM_HUGEPAGE
VM_NOHUGEPAGE
VM_MERGEABLE

The VM_SHARE flag can be set.

The area can grow downward.

Userfaultfd triggers on missing pages.

The area is purely managed by PFN.
Userfaultfd triggers on write-protected pages.
The pages in this area are locked.

The area maps a device's I/O space.

The pages are accessed sequentially.

The pages are accessed randomly.

The area must not be copied on fork().
This area cannot expand with mremap ().
The pages must be locked when they fault.
This area is a VM accounted object.

This area suppresses VM accounting.

This area uses huge pages.

This area uses synchronous page faults.

This is an architecture-specific flag.

This area's contents are wiped in child on fork ().

This area is not included in core dump.
This area is not soft dirty clean.

This area is managed by PTEs and PFNs.
This area is marked by MADV_HUGEPAGE.
This area is marked by MADV_NOHUGEPAGE.

KSM may merge identical pages in this area.

Page 23

Chapter 3 Virtual Memory Management

Now let us look in-depth at the more important VMA flags listed above. The VM_READ,
VM_WRITE and VM_EXEC flags specify the familiar read, write and execute permissions for
the pages in this particular VMA. These flags can be combined to form the desired ac-
cess permissions that a process must respect when accessing the VMA. For example, the
code segment for a process may be mapped with VM_READ and VM_EXEC, but not with the
VM_WRITE flag. Conversely, the data section may be mapped with VM_READ, VM_WRITE and
even VM_SHARED—that is, if the mapping is to be shared between processes. If the VM_SHARED
flag is set, the mapping is intuitively called a shared mapping. Vice versa, if the flag is not set,
the mapping is called a private mapping [41].

The VM_UFFD_MISSING and VM_UFFD_WP flags are set by the userfaultfd() system call. The
system call allows the user space to intervene in the handling of page faults [47]. Both flags

specify different behaviour of the userfaultfd page fault routine:

O VM_UFFD_MISSING specifies that page faults get raised to user space whenever a page

is missing, that is not present.

 VM_UFFD_WP specifies that page faults get raised to user space whenever a previously

write-protected page is accessed.

Userfaultfd can be used, for example, to implement live snapshotting of running processes
by marking memory regions write-protected, and consequently, generating page faults on
write-access. Those faults can then be used to copy the modified pages (and only those) to
the snapshot [48].

The VM_DONTCOPY, VM_WIPEONFORK, VM_HUGEPAGE, VM_NOHUGEPAGE and VM_MERGEABLE flags
are set by calling the madvise () system call. The madvise() system call is used to give advice
or directions to the kernel about a memory region, specified by the address and the length
arguments. To set the flags, madvise () must be called with the following advice values,

respectively:

 MADV_DONTFORK advises the kernel to not copy the memory region on a fork() call.
This is useful to prevent COW semantics from changing the physical location of a
page if the parent writes to it after a fork ().

 MADV_WIPEONFORK advises the kernel to wipe the contents of the memory region (i.e.,
tilling the pages with zero) on a fork () call. This is useful in forking servers in order to
ensure that sensitive per-process data (for example, pseudo-random number generator

seeds, cryptographic secrets, and so on) is not handed to child processes.

 MADV_HUGEPAGE advises the kernel to replace private anonymous pages with huge
pages. This is useful for applications that use large mappings of data and access large

regions of that memory at a time (e.g., virtualisation systems such as QEMU).

Page 24

Chapter 3 Virtual Memory Management

 MADV_NOHUGEPAGE advises the kernel to ensure that the memory region is not backed
by a huge page.

O MADV_MERGEABLE advises the kernel to enable KSM for the memory region. This is use-
ful for applications that generate many instances of the same data (e.g., virtualisation

systems such as the kernel-based virtual machine).

In most cases, the goal of such advice is to improve system or application performance [49].

Lists and Trees

As discussed earlier, VMASs are accessed via the mmap and mm_rb fields, which represent a
doubly linked list and a red-black tree, respectively. These two data structures independ-
ently point to all VMAs associated to a memory descriptor. In fact, they point to the same
VMAs, merely using different data structures.

The first field, mmap, points to the first element in the doubly linked list. Each VMA is
linked into the list in ascending order of start address using both, the vm_next and vm_prev,
tields. These fields point to the next element and the previous element (or NULL if there is
none). The memory descriptor always has a reference (mmap) to the first element in this list.

The second field, mm_rb, points to the root of the red-black tree. Each VMA is linked into
the tree via the vm_rb field.

Red-black trees are self-balancing binary search trees. Balanced tree structures have the
advantage of guaranteeing a O(logn) time for basic dynamic-set operations (e.g., SEARCH,
PREDECESSOR, SUCCESSOR, MINIMUM, MAXIMUM, INSERT and DELETE) [50].

The doubly linked list is used when every node needs to be traversed. The red-black tree
is used when locating a specific VMA in the address space (e.g., when adding a new region)
the kernel first searches the red-black tree for the region immediately preceding the new
region. Thus, the kernel uses the redundant data structures to provide optimal performance
regardless of the operation performed on the VMAs. Figure 8 illustrates the correlation of a

process, its respective memory descriptor and the VMAs linked to it.

Page 25

Chapter 3 Virtual Memory Management

[] struct vm_area_struct
mm >
Manage vm_area_structs
associated with a process
mmap /// \\\
Process D \ Z 5 Red-black >
\
1/ tree \
|
\ /
Memory ' ,
. \ /
Descriptor p

“~__Doubly linked list -~

Figure 8: The VMAs of a process are organised two different data structures:
a red-black tree and a doubly linked list. The entry pointers to each of these
data structures is in the respective memory descriptor of the process [40].

The Process Memory Map

Linux discloses the VMAs of a process's address space via the /proc/<pid>/maps file. Con-
sider the following simple user space program:

int main (int argc, char *argv([])
{
return O;

3

The annotated output from /proc/<pid>/maps lists all VMAs in this process's address space:

$ cat /proc/38297/maps

start end perm offset device inode file
564£32db9000-564£32dba000 r--p 00000000 103:08 1855001 /home/mario/src/main
564f32dba000-564£32dbb000 r-xp 00001000 103:08 1855001 /home/mario/src/main
564£32dbb000-564£32dbc000 r--p 00002000 103:08 1855001 /home/mario/src/main
564£32dbc000-564£32dbd000 r—--p 00002000 103:08 1855001 /home/mario/src/main
564£32dbd000-564£32dbe000 rw-p 00003000 103:08 1855001 /home/mario/src/main
7£484ea00000-7£484e€a28000 r--p 00000000 103:08 3411360 /usr/lib/libc.so.6
7£484ea28000-7£484eba0000 r-xp 00028000 103:08 3411360 /usr/lib/libc.so.
7£484eba0000-7£484ebf8000 r--p 001a0000 103:08 3411360 /usr/lib/libc.so.
7£484ebf8000-7£484ebf9000 —--p 001£f8000 103:08 3411360 /usr/lib/libc.so.
7£484ebf9000-7£484ebfd000 r--p 001£8000 103:08 3411360 /usr/lib/libc.so.
7£484ebfd000-7£484ebff000 rw-p 001fcO00 103:08 3411360 /usr/lib/libc.so.
7£484ebff000-7£484ec0c000 rw-p 00000000 00:00 O
7£484ecb4000-7£484ecb8000 rw-p 00000000 00:00 O
7£484ecd6000-7£484ecd8000 r—--p 00000000 103:08 3411330 /usr/lib/ld-linux-x86-64.so.
7£484ecd8000-7£484ecff000 r-xp 00002000 103:08 3411330 /usr/lib/ld-linux-x86-64.so0.
7£484ecff000-7£484ed0a000 r--p 00029000 103:08 3411330 /usr/lib/ld-linux-x86-64.so.
7£484ed0b000-7£484ed0d000 r--p 00034000 103:08 3411330 /usr/lib/ld-linux-x86-64.so0.
7£484ed0d000-7£484ed0f000 rw-p 00036000 103:08 3411330 /usr/lib/1d-linux-x86-64.s0.
7££d49307000-7££d49328000 rw-p 00000000 00:00 O [stack]
7££d493ad000-7££d493b1000 r--p 00000000 00:00 O [vvar]
7££d493b1000-7££d493b3000 r-xp 00000000 00:00 O [vdso]
FEFFEFFEFF600000-FEfFEFFE££601000 ——xp 00000000 00:00 0 [vsyscalll

(o)) BN

NN NN

Page 26

Chapter 3 Virtual Memory Management

We already know that there must be a code, a data and a stack segment. Each VMA can
be correlated to a segment, based on the set permissions. The first VMA is a read-only,
private mapping for the main file. This is a private data segment, which most probably con-
tains global variables or constants and is therefore read-only. The second VMA is a readable
and executable, private mapping, again for the main file. Given that it is executable, this
VMA is the code segment. The next differing VMA is the one that is a readable and writ-
able, private mapping, once again for the main file. This VMA represents a data segment in
which the process can store and update variables. Next, there is a mixture of readable, writ-
able and executable VM As that are related to libc, a shared library. There are also additional
helpful pseudo-paths, for example, heap, stack, vdso or vsyscalls [51]. The pseudo-path
vdso stands for virtual dynamic shared object. It is used by system calls to switch to ker-
nel mode [52]. The pseudo-path vsyscalls is also used to accelerate certain system calls in
Linux [53].

Note the memory areas without a mapped file that are on device 00:00 and inode zero.
This is the zero page. The zero page is a mapping that consists of all zeros. By mapping the
zero page over a writable memory area, the area is in effect initialised to all zeros. Because
the mapping is not shared, as soon as the process writes to this data a copy is made (just like
with COW) and the value is updated from zero.

There is also the pmap utility [54] that displays a formatted listing of a process's VMAs. It

is a bit more readable than the /proc/<pid>/maps output, but it is the same information:

$ pmap -x 38297

38297: ./main

Address Kbytes RSS Dirty Mode Mapping
0000564f32db9000 4 4 0 r---- main
0000564f32dba000 4 4 0 r-x-- main

0000564 32dbb000 4 0 0 r---- main
0000564£32dbc000 4 4 4 r---- main
0000564f32dbd000 4 4 4 rw--- main
00007£484ea00000 160 160 0 r---- libc.so0.6
00007£484ea28000 1504 728 0 r-x-- libc.so0.6
00007£484eba0000 352 0 0 r---- libc.so0.6
00007£484eb£8000 4 0 0 ———- libc.so.6
00007£484ebf9000 16 16 16 r---- libc.so0.6
00007£484ebfd000 8 8 8 rw——- libc.so0.6
00007£484ebff000 52 16 16 rw--- [anon]
00007£484ecb4000 16 12 12 rw--- [anon]
00007£484ecd6000 8 8 0 r-—--- 1d-1linux-x86-64.s0.2
00007£484ecd8000 156 156 0 r-x-- 1d-1linux-x86-64.s0.2
00007£484ecff000 44 44 0 r-—-- 1d-linux-x86-64.s0.2
00007£484ed0b000 8 8 8 r-——- 1d-1linux-x86-64.s0.2
00007£484ed0d000 8 8 8 rw—-- 1ld-linux-x86-64.s0.2
00007££d49307000 132 12 12 rw--- [stack]
00007££d493ad000 16 0 0 r--—- [anon]
00007££d493b1000 8 4 0 r-x—- [anon]
fEEEEFEFFF600000 4 0 0 --x-- [anon]

total kB 2516 1196 88

Again the output can be analysed line by line and the given memory regions can be iden-

tified based on the set permissions (annotated as Mode when using pmap). It goes without

Page 27

Chapter 3 Virtual Memory Management

saying that both outputs represent the same VMAs, as both outputs are based on the same
process (which is in the same state). Therefore, every mapping that can be found in the
/proc/<pid>/maps output must also be contained in the pmap output. These utilities can be

of great use to get a detailed overview of the allocated VMAs.

3.2.2 System Calls

The Linux kernel uses system calls, often abbreviated as syscalls, as the fundamental interface
between user space and kernel space. There are hundreds of system calls for more than 40 ar-
chitectures available in the Linux operating system [55]. As covering all system calls clearly
is out of scope for this work, we will only have a detailed look into a few relevant ones. We
already briefly covered two of them in Chapter 3.2.1: userfaultfd() and madvise (). In the

following paragraphs four more will be discussed: fork (), mmap (), munmap () and mremap ()

Fork pid_t fork(void);

The fork() system call is used to create a new process by duplicating the calling process.
The new process is referred to as the child process. The calling process is referred to as the
parent process.

The child process and the parent process run in separate memory spaces, that is they use
separate memory descriptors. At the time of fork() both memory spaces have the same
content. Under Linux, fork() is implemented using COW pages, so the only penalty that
it incurs is the time and memory required to copy the parent's page tables, and to create a
unique task structure for the child [56]. This means that pages are simply shared until one
of the processes modifies a page. Whenever a page is modified, the page gets duplicated as
depicted in Figure 9.

B
%

page A

-I-) page B

pageB &

A

3 pageC page C
page C’
Parent Physical Child Parent Physical Child
Process Memory Process Process Memory Process
(a) Before parent process modifies page C. (b) After parent process modifies page C.

Figure 9: Parent and child process sharing data using COW. When one process modifies
the data the respective page is duplicated.

Page 28

Chapter 3 Virtual Memory Management

Typically, the vast majority of fork() calls are followed nearly immediately by an exec
system call [57]—that is only a few pages actually get modified in the child before its en-
tire memory space ceases to exist and gets replaced by a new program. COW ensures that
fork() does not have to copy vast amounts of data, only to have them destroyed moments
later. The fork () system call is often exploited for its COW semantics [8, 16].

Mmap void *mmap(void *addr, size_t length, int prot,
int fd, int flags, off_t offset);
The mmap () system call is used to create a new mapping in the virtual address space of
the calling process. The system call either creates a new VMA or expands an existing
one, if the created address is adjacent to an existing address and shares the same permis-
sions [58]. Memory mapped by mmap () is preserved across fork (), with the same attributes.
These attributes include the memory protection of the mapping (available values shown in
Table 4) and the type of mapping (e.g., shared or private). The protection bits are defined in

<asm/mman.h>.

Table 4: Mmap page access protection bits.

Bit Effect on the pages of the VMA

PROT_READ Data can be read.

PROT _WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data can not be accessed.

As discussed earlier, VMAs are typically either file-backed mappings or anonymous map-
pings. The mmap () system call can create both mapping types, depending on whether a file
descriptor greater than one or the flag MAP_ANONYMOUS is passed. The flags passed to mmap are
highly architecture dependent, the most common ones are shown in Table 5 and are defined

in <asm-generic/mman-common.h>.

Table 5: Mmap VMA handling flags.

Flag Effect on the VMA

MAP_SHARED The mapping can be shared.

MAP_PRIVATE The mapping can not be shared.

MAP_FIXED The new mapping must start at the given address.

MAP_ANONYMOUS The mapping is not file-backed, but is anonymous.
MAP_POPULATE Populate (pre-fault) page tables.
MAP_HUGETLB The mapping uses huge pages.

Page 29

Chapter 3 Virtual Memory Management

Another limitation of mmap is that mappings are page-granular. The kernel can manage
virtual addresses only at the level of page tables; therefore, the mapped area must be a
multiple of PAGE_SIZE and must live in physical memory starting at an address that is a
multiple of PAGE_SIZE. The kernel forces size granularity by making a region slightly bigger
if its size is not a multiple of the page size. For example, for a file that is not a multiple of
the page size, the remaining bytes in the partial page at the end of the mapping are zeroed

when mapped, and modifications to that region are not written out to the file [59].

Munmap int munmap(void *addr, size_t length);

The munmap () system call is used to delete an existing mapping in the virtual address space
of the calling process. This causes further references to addresses within the range to gener-
ate invalid memory references. The region is also automatically unmapped when the pro-

cess is terminated.

Mremap void *mremap(void *old_addr, size_t old_size, size_t new_size,
int flags, ... /* void *new_addr */);

The mremap () system call is used to expand or shrink an existing memory mapping, poten-

tially moving it at the same time (controlled by the flags argument and the available virtual

address space). The flags bit-mask argument is used to control the behaviour of the system

call, as the functionality of the system call is quite dynamic. The effects of these flags are

shown in Table 6.

Table 6: Mremap behaviour modification flags.

Flag Effect on the system call

MREMAP_MAYMOVE If necessary, the kernel may relocate the mapping to a new
virtual address.

MREMAP_FIXED' If supplied, the fifth argument *new_addr is accepted and
specifies a page-aligned address to which the mapping
must be moved. Any previous mapping at the new ad-
dress range is unmapped.

MREMAP_DONTUNMAPT ~ Remaps a mapping to a new address but does not unmap
the mapping at xold_addr. Any access to the old range of
memory will result in a page fault, which can be handled
by a userfaultfd. Otherwise, the kernel allocates a zero-
filled page to handle the fault.

TMust be used in conjunction with MREMAP_MAYMOVE.

Page 30

Chapter 3 Virtual Memory Management

The mremap () system call can, for example, be used to resize an existing VMA, to move
an existing VMA to another virtual address, or to move an existing VMA to another virtual
address, while keeping the old VMA mapped as write-protected, so that any access to it will
result in a page fault. This page fault can be handled by a userfaultfd. Otherwise, the kernel
allocates a zero-filled page to handle the fault.

To move an existing VMA to another virtual address, the kernel first copies the VMA to a
new virtual address. Then it moves the page tables to the new VMA by creating new PTEs
and dropping the old ones. If there is no error, the old VMA is dropped and the new VMA
is returned.

As part of this thesis, a new flag called MREMAP_COW is proposed, which also requires
MREMAP_DONTUNMAP to be specified. However, instead of simply write-protecting the old
VMA, with MREMAP_COW the old VMA is COW-protected. This means that any read-access
to it will resolve to the same data as accessing the new VMA would have. When either the
old VMA or the new VMA is modified, the COW gets triggered and thus copies for the re-
spective pages are created for the unmodified VMA. More details on the implementation of
MREMAP_COW can be found in Chapter 4.1.2.

3.2.3 Four-Level Page Tables

As discussed earlier, operating systems can use the concept of multi-level page tables to
handle large virtual address spaces by avoiding to keep all page tables in memory. The
Linux kernel maintains the concept of a four-level page table in its architecture independ-
ent code. These four levels consist of the page global directory (PGD), the page upper dir-
ectory (PUD), the page middle directory (PMD) and finally the already known page table
entry (PTE). Each of the directories has a maximum size of 512 entries, which is defined
in <asm/pgtable_64_types.h>. Architectures that manage their MMU differently are ex-
pected to emulate the four-level page table. For example, a 32 bit architecture that only
uses two page table levels defines the PUD and PMD to be of size 1 and thus, they will be
optimised out at compile time [21].

Unlike the 32 bit case, the 64 bit memory map is a direct reflection of hardware constraints.
Linux's four-level page table concept can provide access to a 256 TiB subset at any given
time. This is not a limiting factor though, as current x86_64 processors support a physical
address space of up to 2% bytes of RAM, or 256 TiB [23].

However, Intel has already implemented a scheme with a five-level page table, which
allows Intel 64 processors to support a 57 bit virtual address space [60]. But Linux is already

prepared, as the code for five-level page tables is already available.

Page 31

Chapter 3 Virtual Memory Management

The x86_64 Virtual Memory Map

Currently, the Linux x86_64 virtual memory map implementation splits the address space
into two: the lower region (with the top bits set to 0) is user space, the upper region (with the
top bits set to 1) is kernel space. Note that x86_64 defines canonical lower half and higher
half addresses as an address where the address bits from the most-significant implemented
bit up to bit 63 are all ones or all zeros [23]. This effectively limits the number of implemen-
ted bits to 48 or 57, as each level typically is of size 512.

The Linux kernel defines all page directory types (pte_t, pmd_t, pud_t and pgd_t) in
<asm/pgtable_64_types.h> as unsigned long [45]. There are multiple macros and func-
tions which simplify the process of walking the page table. They all follow the same scheme

and are defined as follows (using the PGD as example):

<linux/pgtable.h>
#define PGDIR_SHIFT 39
#define PTRS_PER_PGD 512

#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
static inline pgd_t *pgd_offset(pgd_t *pgd, unsigned long address)
{

return (pgd + pgd_index(address));
s

The function pgd_offset () basically calculates the pointer to the correct PGD entry. An-
other frequently used macro is the pgd_addr_end ().

<linux/pgtable.h>

#define PGDIR_SHIFT 39

#define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT)

#define PGDIR_MASK (~(PGDIR_SIZE - 1))

#define pgd_addr_end(addr, end) \

€1 unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1) ? __boundary : (end); \

»

This macro basically calculates the address of the next boundary of the PGD. As stated
earlier, these macros and functions are available for each page directory, that is the PGD,
the PUD, the PMD and the PTE.

Page 32

Chapter 3 Virtual Memory Management

When presented a virtual address, the Linux kernel steps through the page tables as de-
picted in Figure 10.

The mm_struct of a process has a pointer to the first entry of the PGD.
P p y
(@ The kernel combines the pgd_t pointer to the first entry and the index using the
pgd_offset () function to find the correct PGD entry.
The kernel combines the pud_t pointer to the first entry and the index using the
p p y &
pud_offset () function to find the correct PUD entry.
@ The kernel combines the pmd_t pointer to the first entry and the index using the
pmd_offset () function to find the correct PMD entry.
The kernel combines the pte_t pointer to the first entry and the index using the
p P y &
pte_offset () function to find the correct PTE entry.
(® The calculated pte_t entry contains the PFN.
@ The PFN is finally indexed by the 12 least significant bits of the address.

63 56|55 4847 40[39 3231 24123 16|15 8|7 0

16 9 12

L 2

9 9 9
All1's for k 1
s for kerelspace pgd_offset () pud_offset () pmd_offset () pte_offset () 4095
All 0's for user space

@ @ blen

®

) pte_t) 0
Page
Frame

) pmd_t)
PTE
) pud_t)
PMD
 pgd_t >
PUD

AN
L4

mm_struct->pgd

PGD

Figure 10: Linux resolving a virtual address using a four-level page table. A 64 bit address is
resolved by calculating the respective page directory index and indexing the consecutive page
directory. The last 12 bit are then used to index the physical PFN.

Page 33

Chapter 3 Virtual Memory Management

Now that we know how Linux translates a virtual address into a physical address, we can
conclude the virtual memory chapter. Virtual memory is indispensable in today's computer
systems. It allows to abstract the difficult problems of physical memory management in a
way that the programmer does not have to worry about it. To ensure that this abstraction
does not compromise performance, many different optimisations are applied. Among them
are the TLB, multi-level page tables, different page replacement algorithms and others.

The Linux kernel uses different data structures to implement its virtual memory manage-
ment, such as the mm_struct and the vm_area_struct. It also leverages different page sizes,
offers interfaces and tools to represent the virtual address space of processes, and offers
system calls to interact with its virtual memory. By implementing a four-level page table
and using the TLB, if available, translations from virtual addresses to physical addresses are
guaranteed to be fast.

These are not the only benefits of virtual memory. Mechanisms such as KSM and COW are
only possible by applying a virtual memory concept and using paging. In the next chapter

we will investigate different COW mechanisms, in both, the user space and the kernel space.

Page 34

Chapter 4 Copy-on-Write Mechanisms

4 Copy-on-Write Mechanisms

To develop a fast and efficient dedicated mechanism to create a COW based snapshot of
a VMA, multiple mechanisms were implemented and investigated. For future reference,
we denote origin as the original VMA and snapshot as the VMA that is a copy of the original
VMA. The requirements of such a mechanism are straightforward: it has to create a snapshot
from an origin, where any modification in the origin triggers the duplication. The triggered
duplication maps the modified data to the origin, while the data in the snapshot remains
unmodified. This duplication must be handled by the Linux kernel. This is typically done,
as stated earlier, by having read- and write-access to a VMA, while the respective PTEs
indicate a read-only page. Additionally, the mechanism shall be as performant as possible.
However, even though the requirements are straightforward, the implementations get quite
sophisticated as we will see with the kernel space mechanisms.

This chapter will introduce the implemented and investigated user space and kernel space
COW mechanisms, and provide an in-depth explanation of the respective concepts. In
Chapter 5 we will measure and compare each mechanism, and also discuss advantages and

disadvantages. Let us now start with the kernel space mechanisms.

4.1 Kernel Space

When implementing a dedicated COW mechanism, the kernel space offers several advant-
ages. First off, system calls are usually atomic in the sense that they either succeed or fail.
If they fail, they do a rollback and have no effect other than returning an error to the caller.
They are also atomic in the sense that they try hard not to expose any intermediate state
between the initial state and the final state to other threads or processes running on the
system. For example, a file is either created or it does not exist.

But not only that, since the creation of a new VMA always demands a context switch to
kernel mode, time can also be saved by completing the required operations while still in

kernel mode. So let us investigate the first kernel space mechanism called mmapcopy.

4.1.1 Mmapcopy void* mmapcopy(void *dup, void *orig,
size_t len, int flags);
The system call mmapcopy () is a kernel extension by Korb et al. [15]. This system call uses the
existing COW functionality of the Linux kernel to avoid duplicating memory when data is
copied. In their work they describe how they use mmapcopy () in the R language to gain sig-
nificant improvements in CPU time compared to KSM without compromising the amount
of memory saved. The R language [61] is commonly used for processing large vector data
structures [62]. It uses pass-by-value semantics, while also implementing garbage collection,

which further increases memory pressure.

Page 35

Chapter 4 Copy-on-Write Mechanisms

Implementation

Korb et al. provided their source code upon request based on a Linux kernel version 4.4.
However, since Linux kernel version 5.18 is used throughout this thesis, the sources were
updated to that version.

To create a new COW mapping, mmapcopy () induces the following steps: First, it searches
for an unmapped and correct sized VMA, using the dup as a hint if not NULL. Next, it copies
the structure of the origin to the found VMA in the same memory descriptor. Then, it copies
the page tables from the origin to the snapshot using the virtual addresses of the new VMA
for the copied PTEs. Finally, all PTEs are write-protected, so that the kernel can detect the
COW pages.

The mmapcopy () system call fulfils the requirements we have set. However, in its current
implementation it does not support huge pages. This is not a direct limitation but the COW
mechanism shall be as generic as possible. Therefore, supporting huge pages is a reasonable
feature. Additionally, the snapshot creation time of conducting a mmapcopy () is actually
significantly higher than a fork (), as we will see in Chapter 5.

41.2 Mremap void *mremap(void *o0ld_addr, size_t old_size, size_t new_size,
int flags, ... /* void *new_addr */);

The main contribution of this thesis is the proposal of adding the MREMAP_COW flag to the
Linux kernel. Supplying mremap () with this flag copies an already existing VMA from
old_addr to new_addr, while ensuring that both copies support COW. This means that
after the mremap() call, both VMAs share the same data. However, any modification to
any page—whether in the origin or the snapshot—triggers the duplication of that respective
page.

The kernel modifications needed for extending Linux with MREMAP_COW are minimal. Ap-
pendix A is the required patch file for the kernel extension. It includes 93 insertions and 71

deletions.

Implementation

To increase the chances of a upstream merge, it is important to reuse available functions in
the Linux kernel. Since fork () shares some semantics with our requirements, it must use a
function which at least copies PTEs to a new destination, because fork () copies all existing

VMAs to its child process. And indeed, there is a function called copy_page_range ().

Page 36

Chapter 4 Copy-on-Write Mechanisms

copy_page_range int copy_page_range(struct vm_area_struct *dst_vma,

struct vm_area_struct *src_vma);
This function is defined in <mm/memory.c> and takes two VMAs as arguments. Accord-
ing to the set requirements for a COW mechanism, the src_vma already exists. Thus, a
dst_vma has to be created that is linked to the same mm_struct as the src_vma. This is done
by calling mremap () and specifying the MREMAP_DONTUNMAP flag. When supplied with this
flag, the mremap () system call internally creates a new VMA through copy_vma() starting
at new_addr that is linked to its respective mm_struct. The code path of mremap() then
calls move_page_tables() to move the PTEs accordingly. However, when calling mremap ()
with the new proposed flag MREMAP_COW, the kernel now calls copy_page_range () instead
of move_page_tables().

Nevertheless, this still does not create the requested COW-mapping since the function
copy_page_range () is traditionally only called by fork(). Because fork() creates a new
process from an existing one, all VMAs of the existing process are copied to the new child
process. Since every process has its own virtual address space, the copied VMAs are rep-
resented in each process's respective virtual address space. Therefore, the VMAs span the
same virtual addresses, in both, the child process and the parent process. That is why
copy_page_range () does not respect the dst_vma virtual addresses, since they are expec-
ted to be the same as the src_vma virtual addresses.

However, this problem is also addressed by the kernel modification required for the
MREMAP_COW flag. To understand the modifications proposed to copy_page_range (), let us
now have a look at how the function traditionally operates. Algorithm 1 is a pseudo-code
representation of the unmodified copy_page_range () function. The function basically iter-
ates through the four-level page table and allocates a new respective entry for the dst_vma. It
then establishes the COW-protection by setting both, the src_pte and the dst_pte, to write-
protected. This effectively tells the kernel that these pages are COW pages, as discussed in
Chapter 3.1.2.

Page 37

Chapter 4

Copy-on-Write Mechanisms

Algorithm 1 Copy page tables without addressing

1: function COPY_PAGE_RANGE(dst_vma, src_vma)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

addr <« start of src_vma
end < end of src_vma
src_mm <— memory descriptor of src_vma
dst_mm <— memory descriptor of dst_vma
while addr # end do
dst_pgd < PGD_ALLOC(dst_mm, addr)
src_pgd ¢ PGD_OFFSET((src_mm, addr)
while addr # end do
dst_pud < PUD_ALLOC(dst_mm,dst_pgd, addr)
src_pud <~ PUD_OFFSET(src_pgd, addr)
while addr # end do
dst_pmd <— PMD_ALLOC(dst_mm,dst_pud, addr)
src_pmd < PMD_OFFSET(src_pud, addr)
while addr # end do
dst_pte ¢ PTE_ALLOC(dst_mm,dst_pmd, addr)
src_pte ¢— PTE_OFFSET(src_pmd, addr)
WRITE_PROTECT(src_pte)
WRITE_PROTECT(dst_pte)
SET_PTE_AT(dst_mm, addr,dst_pte)
addr < addr + PAGE_SIZE
end while
addr < PMD_ADDR_END(addr, end)
end while
addr < PUD_ADDR_END(addr, end)
end while
addr < PGD_ADDR_END(addr, end)
end while

29: end function

> iterate PGDs

> iterate PUDs

> iterate PMDs

> iterate PTEs

> establish COW

The proposed changes to copy_page_range() are intelligible, yet effective: instead of

solely relying on the addr of the src_vma, the code also involves using the addr of the

dst_vma. Algorithm 2 shows the modified pseudo-code. Basically, copy_page_range () now

respects the addressing of the dst_vma, which was unnecessary before, as in the case of

fork () both VMAs represent the same virtual addresses.

Page 38

Chapter 4

Copy-on-Write Mechanisms

Algorithm 2 Copy page tables with addressing

1: function COPY_PAGE_RANGE(dst_vma, src_vma)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

src_addr < start of src_vma
src_end < end of src_vma
dst_addr ¢ start of dst_vma
dst_end < end of dst_vma
src_mm <— memory descriptor of src_vma
dst_mm <— memory descriptor of dst_vma
while src_addr # src_end || dst_addr # dst_end do
dst_pgd < PGD_ALLOC(dst_mm,dst_addr)
src_pgd < PGD_OFFSET((src_mm, src_addr)
while src_addr # src_end || dst_addr # dst_end do
dst_pud < PUD_ALLOC(dst_mm,dst_pgd,dst_addr)
src_pud <~ PUD_OFFSET(src_pgd, src_addr)
while src_addr # src_end || dst_addr # dst_end do
dst_pmd <~ PMD_ALLOC(dst_mm,dst_pud,dst_addr)
src_pmd < PMD_OFFSET(src_pud, src_addr)
while src_addr # src_end || dst_addr # dst_end do
dst_pte < PTE_ALLOC(dst_mm,dst_pmd,dst_addr)
src_pte - PTE_OFFSET(src_pmd, src_addr)
WRITE_PROTECT(src_pte)
WRITE_PROTECT(dst_pte)
SET_PTE_AT(dst_mm,dst_addr,dst_pte)
src_addr < src_addr + PAGE_SIZE
dst_addr < dst_addr + PAGE_SIZE
end while
src_addr <— PMD_ADDR_END(src_addr, end)
dst_addr < PMD_ADDR_END(dst_addr, end)
end while
src_addr < PUD_ADDR_END(src_addr, end)
dst_addr <— PUD_ADDR_END(dst_addr, end)
end while
src_addr <— PGD_ADDR_END(src_addr, end)
dst_addr < PGD_ADDR_END(dst_addr, end)
end while

35: end function

> iterate PGDs

> iterate PUDs

> iterate PMDs

> iterate PTEs

> establish COW

The modification has no effect on a fork() using copy_page_range (), since src_addr

and dst_addr are the same. However, the modified version can now also handle deviating

virtual addresses in the src_vma and the dst_vma, since it implements the addressing of the

dst_vma.

Figure 11 depicts how a mremap () call using MREMAP_COW modifies the page tables to create

a COW mapping. The page table is illustrated in simplified form as a single table. Figure 11a

shows the state of the page table before calling mremap(). The page table is populated
with VMA; that ranges from [0x60000, 0x64000[. Figure 11b shows the state of the page
table after mremap () internally calls copy_vma (). The VMA; belongs to the same memory

Page 39

Chapter 4 Copy-on-Write Mechanisms

descriptor as VMA, and also has the same page_prot set. However, there are no entries
for VMA; in the page table yet. Figure 11c shows the state of the page table after mremap ()
internally calls the modified copy_page_range (). The page table is now populated with the
entries belonging to VMA,. Note that, the protection bits of the individual pages changed
to read-only.

start 0x60000 | RW |PFNy
end 0x61000 | RW |PFNy
page_prot 0x62000 | RW |PFN3
RW 0x63000 | RW |PFNg
VMA; Page Table

(@) Page table before calling
mremap () with MREMAP_COW.

start 0x60000 | RW |PFNp start 0x60000 | R |PFNp
end 0x61000 | RW |PFN; end 0x61000 | R PFN>
page_prot 0x62000 | Rl | PFli3 page_prot 0x62000 | R |PFN3
RW 0x63000 | RW |PFNg RW 0x63000 | R PEFNy
VMA; Page Table VMA;
start start 0x70000 | R |PFNp
end end 0x71000 | R |PFNz
page_prot page_prot 0x72000 | R |PFN3
RW RW 0x73000 | R PFNyg
VMA; VMA,; Page Table
(b) Page table while calling (c) Page table after successfully
mremap () with MREMAP_COW; after calling mremap () with MREMAP_COW.
copy_vma ().

Figure 11: Series of page table states when calling mremap () with MREMAP_CQW.

There is another subtle detail that can be missed easily. Whenever any address space is
modified, the TLB has to be flushed, because entries in the x86 TLB are not associated with
any particular address space; they implicitly refer to the current address space. The sys-
tem call mremap () flushes the TLB whenever calling move_page_tables (). However, with
MREMAP_COW the function copy_page_range () is called instead, which does not flush the TLB.
Therefore, an explicit flush of the TLB is required after calling copy_page_range ().

Huge page support

The kernel extension of MREMAP_COW also supports huge pages through Appendix B. Once

again, the functions implemented in the fork() system call shall be used. When fork() is

Page 40

Chapter 4 Copy-on-Write Mechanisms

confronted with huge pages, it calls copy_hugetlb_page_range (). This function shares the
same semantics as the previously used function copy_page_range () but uses huge pages
(2 MiB or 1 GiB) instead of default pages (4 KiB). Since huge pages require a lot less PTEs
to map the same amount of memory, the Linux kernel only uses the PUD and the PMD to
manage huge pages. However, the pseudo-code for the copy_hugetlb_page_range () still
is approximately the same.

The changes proposed to copy_hugetlb_page_range() are analogous to the proposed
changes to copy_page_range (). The elementary modifications made are, once again, using
the addr of the dst_vma instead of solely relying on the addr of the src_vma.

The extension of the mremap () system call with MREMAP_COW reuses already existing kernel
code. The proposed changes do not interfere with any existing mechanisms. The COW
protection applies to both, the origin and the snapshot. Therefore, the kernel extension
meets the set requirements. In addition, it also supports huge pages. The snapshot creation
time of calling mremap() with MREMAP_COW is mainly bound by creating the copies of the
page tables through the use of copy_page_range (), as we will see in Chapter 5. This makes
MREMAP_COW a serious competitor in the field of COW mechanisms.

Page 41

Chapter 4 Copy-on-Write Mechanisms

4.1.3 AnKer void *vmcopy(void *src_addr, size_t len);

The vmcopy () system call is part of a kernel modification of the AnKer [63] processing
concept. It is used to separate Online Transaction Processing (OLTP) from Online Analytical
Processing (OLAP) by using virtual snapshotting [10]. Once again, it uses the internal COW
functionality of the Linux kernel by write-protecting the respective PTEs.

Implementation

The original patch [63] is based on a Linux kernel 4.16. Therefore, the patch was updated to
Linux kernel 5.18, as the other mechanisms are based on this version.

To accomplish the COW-protection, the mechanism first searches for an unmapped VMA.
However, the location of the unmapped VMA is determined by the kernel as there is no
extra argument available to provide a hint to the kernel. When an unmapped VMA is found,
AnKer copies the protection bits and links the VMA into the memory descriptor and also sets
up the respective management structures. After that, AnKer also iterates through the page
tables and copies each PTE as well as write-protecting them. Finally, the TLB is flushed, as
the page tables are modified.

AnKer also supports the use of huge pages. In their repository they even require them via
the kernel configuration setting CONFIG_TRANSPARENT HUGEPAGE=y. This kernel setting is an
alternative mean of using huge pages for the backing of virtual memory with huge pages

that supports the automatic promotion and demotion of page sizes [64].

The AnKer kernel modification meets the set requirements of a COW mechanism. Both
VMAs, the origin and the snapshot, support COW. However, the changes made to the kernel
are substantial. This eliminates the possibilities of an upstream merge. Therefore, a custom
kernel is required to make use of the vmcopy () system call. So let us now have a look at the

possibilities to create a COW mapping implemented in the user space.

4.2 User Space

There are not many options when to implement a COW mechanism that operates on a
VMA-granular level in user space. Granted, there is always the option to implement an
application-specific COW memory management. However, this thesis aims to find a generic
solution and solve the problem in the operating systems domain. So, let us start with our

first user space mechanism.

Page 42

Chapter 4 Copy-on-Write Mechanisms

4.2.1 Scoot

The scoot () mechanism is a solution to provide a one-sided COW-protected VMA of an
already existing VMA. The term one-sided means, that only one of the two VMAs is actually
COW-protected. Thus, a write-access to one VMA triggers the duplication, while a write-
access to the other VMA simply passes through the modification to both VMAs. This can be
a limitation, but in many contexts—such as database persistence or simultaneous OLTP and

OLAP—it is sufficient, as these operations only require read-access.

Implementation

To create such a mapping, the Linux kernel offers the possibility to create a private COW
mapping using the mmap () system call. However, a prerequisite to this method is to have a
shared file-backed anonymous mapping, which can be mapped by two VMAs. This is done
by utilising the memfd_create () system call. The system call creates an anonymous file and
returns a file descriptor that refers to it. The file behaves like a regular file, and so it can be
modified, truncated, memory-mapped, and so on. However, unlike a regular file, it lives in
RAM and has a volatile backing storage. Anonymous memory is used for all backing pages
of the file [65].

With this file descriptor, scoot () uses a series of system calls to create a COW mapping
as depicted in Figure 12. First, the origin is created through a shared file-backed anonymous
mapping by calling mmap () with the file descriptor as outlined in Figure 12a. To create the
snapshot mapping, a new private mapping has to be created by calling mmap () with the same
file descriptor. However, only the new mapping is COW-protected. This does not meet the
requirements as the origin requires the COW-protection, not vice versa. Therefore, before
creating the snapshot, the origin is remapped by using mremap () to a different location in
the virtual address space as depicted in Figure 12b. This VMA now serves as the snapshot.
Consequently, the origin has to be recreated by calling mmap () and requesting the address
of the former origin VMA. Figure 12c illustrates the state after the snapshot creation. Two
different VMAs map to the same physical addresses, while the origin is COW-protected.
Any modification to the origin triggers the duplication. The scoot () mechanism also fully
supports the use of huge pages, since all system calls that are used in scoot () support huge

pages (i.e., memfd_create(), mmap() and mremap()).

Page 43

Chapter 4 Copy-on-Write Mechanisms

VMA mremap () VMA
Virtual Virtual :
page: | page: | ‘ ‘ | | | pager | pager |
Space R S] Space R S)
) 4
FD FD |
K \
N \ I\ \
¥ \ v
RAM |frame; |frame2| ‘ RAM [|frame; |frame2| ‘
(@) Creation of a shared file-backed (b) Remapping the shared file-backed
anonymous mapping using mmap (). anonymous mapping using mremap ().
VMA? VMA . CoW-protected
Virtual
pages | pages | | pager | pages |
Space [RW] [R S]

w

N \
v \ \

RAM [|frame; | framep | ‘

(c) Creation of a COW-protected private file-backed
anonymous mapping using mmap ().

Figure 12: Scoot using a series of system calls to create a COW mapping.

However, having only a one-sided COW-protection is not the only caveat of scoot. Dur-
ing the creation of the snapshot, the origin gets moved via mremap (). This means that the
origin is not mapped until the final mmap () call. Therefore, accessing the origin in this inter-
val causes a segmentation fault, as there is no VMA that maps the virtual addresses. This
may not be a problem in a single-threaded application. However, any multi-threaded ap-
plication may not be able to guarantee that there is no access to the origin memory while
creating the snapshot. So, to avoid any memory corruption during the scoot () snapshot
creation, the mechanism has to block other threads to achieve atomicity.

Another limitation of scoot () is by virtue of moving the origin via mremap (). As intro-
duced in Chapter 3.2.2 mremap () moves the page tables whenever it has to move an existing
VMA to a new location. This drops all existing PTEs of the old VMA. Therefore, the page
table is not populated when moving the origin using mremap (). But not only that, the page
table of the snapshot also is not populated, since Linux postpones the process of populating
page tables until they are accessed. So any access of any page in either the origin or the

snapshot results in a page fault, introducing additional overhead.

Page 44

Chapter 4 Copy-on-Write Mechanisms

Consider an in-memory database application using the scoot () mechanism to snapshot
its contents. It has two threads: the main thread handles database queries and the second
thread writes the contents to a file on a disk. Whenever the database creates a snapshot, the
main thread has to be blocked until the snapshot has been successfully created. But not only
that, the main thread now has a reference to an origin with unpopulated page tables. Thus,
the main thread gets slowed down as the operating system has to resolve the page fault for
every accessed page.

Finally, the scoot () mechanism can only be used to create a single memory snapshot,
because it can only create a COW mapping from an existing shared mapping. However, to
create the COW mapping, scoot () remaps the origin as a private mapping. Therefore, only
one COW-protected snapshot can exist at any time.

These limitations restrict the performance of an application severely. However, there is

another possibility to implement COW in user space called userfaultfd.

4.2.2 Userfaultfd

The userfaultfd (UFFD) is a file descriptor in the Linux kernel. The file descriptor is created
by the system call userfaultfd(). As stated in Chapter 3.2.1, the system call allows the user
space to intervene in the handling of page faults, something otherwise only the kernel can
do. Basically, a thread in a multi-threaded application can perform paging for other threads
in the process.

The UFFD system call returns a file descriptor that refers to an UFFD object. Memory
regions which should be supervised have to be registered to this object. The UFFD file
descriptor can be polled by using read (), either blocking or non-blocking based on the flags
set in the UFFD object. UFFD supports two operation modes: MODE_MISSING and MODE_WP.
When registered with MODE_MISSING, a page fault notification is sent to the user space each
time a missing page, that is there is no physical block backing the page, is accessed. When
registered with MODE_WP, the notification is sent each time a write-protected page is written
to. Write-protected in this context means, that the pages are marked through the use of an
uffdio_writeprotect object. In both cases the faulted thread stops until the user space
either resolves the page fault by filling the page or unprotects the write-protected page,
respectively [47].

This mechanism can be used to implement COW in user space by registering the MODE_WP
mode and protecting the desired regions in the UFFD object. Whenever one of the regions
is written to, the handling thread needs to duplicate the written pages and then unprotect
these pages to resolve the fault. However this introduces either a context switch as memory
needs to be allocated and filled or it requires the memory to be allocated beforehand which
would basically renders the COW useless.

Page 45

Chapter 4 Copy-on-Write Mechanisms

Since the mechanism operates on page-granularity, it is more appropriate to use it in an
application-specific context. The application itself can decide how to resolve the page faults,

for example, it may only duplicate some of the pages, not all of them.

The possibilities of implementing a dedicated COW snapshot mechanism are limited in user
space. Not only that, they also coincide with a multitude of constraints. On the one hand,
UFFD offers the possibility to handle page faults in user space, but also induces the problem
of how to properly duplicate the pages. On the other hand, scoot () provides a more generic
approach, but has problems with unpopulated page tables and missing atomicity. The ker-
nel already deals with these problems in other contexts. For example, when fork() creates
a new process, it also has to atomically copy the page tables of one process to another.

In conclusion, there are many different ways to create a COW-protected VMA within
the Linux operating system. Whether in user space (scoot () or UFFD) or in kernel space
(mmapcopy (), mremap () or vmcopy ()), every mechanism also comes with different caveats.
In the next chapter, we will measure different scenarios and also discuss advantages and

disadvantages of each mechanism.

Page 46

Chapter 5 Evaluation

5 Evaluation

In this chapter, we will discuss all presented COW mechanisms of Chapter 4, except UFFD,
since it requires application-specific knowledge to implement a reasonable page fault hand-
ling routine. Every other mechanism is tested and measured with specific tools developed
throughout this thesis. The functionality of each tool is described in the respective chapters.

Finally, every tested mechanism is compared and evaluated using different charts.

5.1 Unit Test

To ensure that each mechanism works as expected, a unit test is run for every implement-
ation. Algorithm 3 shows a pseudo-code of the steps executed by this unit test. Basically,
the algorithm first allocates a fixed number of pages in a single VMA called origin. It then
initialises every page of origin to INIT_VAL. Then, the origin gets duplicated by the re-
spective snapshot mechanism (e.g., scoot (), mremap(), efc.). Subsequently, the algorithm
iterates through all pages and validates that the initialisation is correct. This means, that
every page in the origin and the snapshot has the same data and shares a PEN. Finally, the
algorithm sets each page in the origin to TEST_VAL which triggers the duplication of the re-
spective page. Although this time, the algorithm validates that every page in the origin and
the snapshot contains the correct data, and also differs in the PFN, respectively. To validate
that every page differs in the PFN the previously described interface of /proc/<pid>/maps
is used. The file is indexed using the virtual page number—which uses the system's default

page size, that is typically 4 KiB.

Algorithm 3 Test copy-on-write

1: INTT_VAL := OxAA

2. TEST VAL := 0x55

3: origin <— ALLOCATE(page_count)

4: INITIALISE(origin, INIT_VAL)

5: snapshot < SNAPSHOT(origin, page_count)

6: for page := 1 to page_count do > validate initialisation
7: ASSERT(origin[page] == INIT_VAL)

8: ASSERT(snapshot [page] == INIT_VAL)

9: ASSERT(GET_PFN(origin[page]) == GET_PFN(snapshot [page]))

10: end for

11: for page := 1 to page_count do > validate COW
12: origin[page] - TEST_VAL

13: ASSERT (snapshot [page] == INIT_VAL)

14: ASSERT(GET_PEN(origin[page]) # GET_PEN(snapshot [page]))

15: end for

Page 47

Chapter 5 Evaluation

The unit test supports different page sizes, that is pages of size 4 KiB, 2 MiB and 1 GiB.
Table 7 shows a matrix of each COW mechanism and every page size supported by the unit
test. The unit test can either be passed or failed. There is also the keyword not supported.

Table 7: Copy-on-write mechanisms unit test matrix.

Mechanism 4 KiB page size 2 MiB pagesize 1 GiB page size

scoot () passed passed passed
mmapcopy () failed not supported not supported
mremap () passed passed passed
vmcopy () passed passed failed

Admittedly, it is surprising that some mechanisms fail in these tests. The mmapcopy ()
mechanism fails the test even with default page size because it does not flush the TLB prop-
erly. Other page sizes are not supported by the mechanism. The other kernel mechanism
vmcopy () only fails the COW unit test when using pages of size 1 GiB. The kernel reports
an error that the found PUD is a bad entry. Another issue when using 1 GiB pages with
vmcopy () is that the de-allocation of such pages sometimes fails. This issue escalates in a
kernel panic, whenever all of the available huge pages are not de-allocated properly. The
implications of these results are discussed in Chapter 6.

5.2 Measurements

The measuring tool supports three different measurement variants for each mechanism.
These are the snapshot creation time, the access time, and the duplication time. Addition-
ally, the tool also supports pages of size 4 KiB, 2 MiB and 1 GiB. The measurement variants
are each described in their respective chapter below.

The data was gathered on a system running the latest (v5.18 at the time of writing) Linux
kernel. The system is equipped with a Intel Xeon Gold 5118 CPU and 32 GiB of DDR4
RAM clocking at 2666 MT/s. Every measurement was run 1000 times. Also, for every
measurement there are two cases for allocating the origin differently. In the first case the
origin was allocated using the MAP_POPULATE flag, which ensures that the data is actually
allocated in the physical memory. This is indicated by the keyword populated. In the second
case the origin was allocated without this flag, which means that the data will be brought
into memory through a page fault. This is indicated by the keyword unpopulated.

Page 48

Chapter 5 Evaluation

5.2.1 Snapshot Creation Time

In this measurement the snapshot creation time is evaluated, that is the time it takes to create
a snapshot from an origin. Basically this is the time the main program is blocked by calling
the mechanism. For kernel space mechanisms this means the time the actual system call
takes to complete, while for the only measured user space mechanism scoot (), this means
the time the series of system calls takes to complete. Table 8 shows the average snapshot

creation time for each mechanism with an origin of size 2 GiB.

Table 8: Average snapshot creation time of each mechanism with an origin of size 2 GiB.

Populated Unpopulated
Mechanism 4 KiB 2 MiB 1GiB 4KiB 2MiB 1GiB
fork() 19.57 ms 29719 us 76.87 us 0.06 ms 69.19 us 56.64 us
mmapcopy () 51.82 ms) %) 3.81 ms %))
mremap () 19.52ms 283.57 us 20.30 us 0.01ms 20.87us 6.01 us
vmcopy () 31.08 ms 806.68 us %) 0.03 ms 26.58 us %)
scoot () 918 ms 149.22 us 148.66 us 0.01ms 54.89 us 55.20 us

Let us first have a look at the populated case. When using 4 KiB pages, scoot () is at
least twice as fast as the other mechanisms, because scoot () does not populate the page
tables. Therefore, the time is hidden in the access time as we will see in Chapter 5.2.2. Both,
fork() and mremap (), have around the same snapshot creation time. This is unsurprising,
since both internally use copy_page_range (), which determines the runtime when copy-
ing a substantial amount of pages. The other two kernel space mechanisms, vmcopy () and
mmapcopy (), are slower than fork() and mremap(). They both implement their own func-
tion to copy the page tables instead of extending decades-long optimised code.

The measured snapshot creation times of the mechanisms using 2 MiB pages show a sim-
ilar result. While mmapcopy () does not support huge pages at all, the vmcopy () mechanism is
the slowest measured mechanism. Once again scoot () is the fastest mechanism, compared
to fork () or mremap () the scoot () mechanism is about twice as fast.

However, when using 1 GiB pages, the scoot () mechanism appears to have hit its lower
bound, since the reduction in page count has not lowered its snapshot creation time. Both,
fork() and mremap (), are unexpectedly faster than scoot (). The mremap () mechanism even
surpasses the fork () mechanism, since it only has to copy two pages. Therefore, the process
creation of fork () dominates its snapshot creation time when the page count is low.

Now let us have a look at the unpopulated case. The fork() system call has a nearly

constant snapshot creation time among all page sizes, since with unpopulated pages once

Page 49

Chapter 5 Evaluation

again the process creation dominates the snapshot creation time. However, the mremap ()
system call—even though it also uses the same copy_page_range () internally—does not
create a process and thus has the fastest snapshot creation time across all huge page sizes.
Instead of copying the present pages when using copy_page_range (), the kernel vigorously
only allocates the page table structures. It then lets the page fault handling routine fill up
the respective page table structures. The scoot () mechanism once again appears to have hit
a lower bound when using huge pages.

Interestingly, though, this does not apply when using pages of size 4 KiB. The mmapcopy ()
system call is once again the slowest mechanism. Finally, the vmcopy () system call is right
between fork () and mremap (). This is unsurprising, as fork () is bound by the process cre-

ation runtime and mremap () uses optimised code.

These measurements show that scoot () is the fastest mechanism whenever copying a sub-
stantial amount of pages. Meanwhile the mremap () system call is about as fast as the fork ()
system call. However, when the page count gets lower, the mremap () system call surpasses
the fork () system call because it does not create an additional process. The other two mech-

anisms mmapcopy () and vmcopy () are both slower in every measured scenario.

5.2.2 Access Time

Let us now have a look at the access time measurement. The access time denotes the time it
takes to read every page allocated in the origin. Additionally, in the populated case the data
can either be cached or uncached, indicating whether or not the data was cached by the CPU.

This measurement is made to show the differences of the scoot () mechanism and all
other mechanisms. Since scoot () provides mapping with unpopulated page tables, it is
expected that it has a higher access time on uncached access. Because caching involves
reading the data, the page tables must also be populated. Therefore, it is foreseeable that
every mechanism averages the same access time in this case. Table 9 shows the average

access time for a payload of 2 GiB.

Page 50

Chapter 5 Evaluation

Table 9: Average access time of each mechanism with an origin of size 2 GiB.

Populated Unpopulated
Mechanism 4 KiB 2 MiB 1 GiB 4 KiB 2 MiB 1 GiB
Uncached
fork() 27.64 ms 52.03 us 0.33 us 596.88 ms 157.34 ms 155.61 ms
mmapcopy () 25.95 ms %) %) 595.41 ms %) %)
mremap () 25.95 ms 5097 us 0.34 us 595.01 ms 157.16 ms 155.48 ms
vmcopy () 25.95 ms 50.59 us %) 595.46 ms 157.30 ms %)
scoot () 109.81 ms 1708.46 us 15.13 us 1406.99 ms 157.35 ms 0.25 ms
Cached
fork() 26.77 ms 55.66 us 40.30 ns
mmapcopy () 25.85 ms %) %)
mremap () 25.97 ms 50.60 us 38.63 ns
vmcopy () 25.94 ms 50.58 us %)
scoot () 25.76 ms 48.06 us 39.55 ns

In the populated and uncached case the hidden snapshot creation time of the scoot ()
mechanism becomes apparent. The page tables of scoot () are not populated, while with all
other mechanisms they are. Thus, it is no surprise that the other mechanisms have about the
same access time.

In the unpopulated and uncached case, the scoot () mechanism is slower than the other
mechanisms when using 4 KiB pages. However, as the page size increases and therefore
the page count decreases, the scoot () mechanism gets faster when using 1 GiB pages. The
preliminary results of this behaviour observed in the scoot () can be addressed in future
research. All the other mechanisms have, as expected, the same access time.

Finally, in the populated and cached case, every mechanism averages about the same
access time, independent of the page size used. This is no surprise, as the data is directly
accessed from the cache.

The visualised data in Figure 13 highlights the hidden snapshot creation time of the
scoot () mechanism. It shows the access time on the x-axis and the snapshot creation time
on the y-axis. Moreover, the axis are scaled logarithmically and the x-axis scale differs based
on the used page size. Instead of plotting every measurement, a random sample of 10 meas-

urements is taken to decrease visual clutter.

Page 51

Chapter 5 Evaluation
Mechanism fork mmapcopy e mremap © VvVmcopy scoot
Populated Populated Populated
4 KiB pages 2 MiB pages 1 GiB pages
7+ L
~ 6+ £
=
S5t :
=D -
2 1 1 . o o o 1 — 1 | —
£ 7 8 9 5 6 7 8§ 2 3 4 5 6 7 8
L
g Unpopulated Unpopulated Unpopulated
% 4 KiB pages 2 MiB pages 1 GiB pages
E 3
a7 3
<
S 6+ 3
wn
5+ -
4+ - > 3 .
7 8 9 5 6 7 8 2 3 4 5 6 7 8

Access time (ns in 10%)

Figure 13: Snapshot creation time of each mechanism with an origin of size 2 GiB. Access
time of reading every page in the origin of a 2 GiB sized snapshot. Both axis are scaled log-
arithmically. Note that, the scaling of the x-axis differs between page sizes. The keyword
Populated indicates that the allocation of the origin was made using MAP_POPULATE, while
the keyword Unpopulated indicates that the allocation of the origin was made withoutit. A
bigger page size inherently means a smaller page count when allocating the same amount
of memory and therefore less iterations. To decrease visual clutter a random sample of
10 measurement for each mechanism is plotted.

These measurements confirm the claim that scoot () hides its snapshot creation time in

the access time. As expected, the other mechanisms have the same access times, as they

all have populated page tables. Some applications can benefit from hiding the snapshot

creation time in the access time, more on this in Chapter 6.

5.2.3 Duplication Time

The last measure variant measures the duplication time. The term duplication means the pro-

cess of creating the actual copy whenever a COW-protected page is modified. Thus, the du-

plication time denotes the time it takes to modify every page in the payload, which triggers

the duplication of the respective pages. Once again two cases are measured, the populated

case and the unpopulated case. However, since the mechanism mmapcopy () does not pass

the COW unit test, it is not measured. Instead, memcpy () is used as a kind of baseline, since

Page 52

Chapter 5 Evaluation

memcpy () shows the time of simply copying the data without using any COW protection.
Table 10 shows the duplication time for modifying every page in a snapshotted payload of
2 GiB. For kernel space mechanisms, the duplication time is expected to average to the same,

since all use the same internal kernel mechanism to guarantee their COW protection.

Table 10: Average duplication time of each mechanism with an origin of size 2 GiB.

Populated Unpopulated
Mechanism 4 KiB 2 MiB 1 GiB 4 KiB 2 MiB 1 GiB
fork() 1375.37 ms 344.20 ms 342.04 ms 906.55 ms 158.98 ms 158.17 ms
memcpy () 59.16 ms 0.08 ms 293.52 ns 1075.96 ms 1.55 ms 0.01 ms
mremap () 1366.44 ms 37213 ms 361.82 ms 904.76 ms 15292 ms 153.37 ms
vmcopy () 1364.91 ms 368.89 ms %) 899.66 ms 154.73 ms %)
scoot () 1228.43 ms 363.04 ms 0.77 ms 1462.92 ms 153.00 ms 0.21 ms

The measurements confirm the assumption that the duplication times for the kernel space
mechanisms average to about the same. However, what is interesting is that the scoot ()
mechanism duplicates faster than the other COW mechanisms when using huge pages.
Again further investigations have to be conducted to explain why the scoot () mechanism
duplicate faster under the use of huge pages.

The result of the evaluation is that the behaviour of the individual mechanisms varies based
on multiple factors. First, scoot () differs from the other mechanisms in that the page tables
are not populated. This makes its snapshot creation time the fastest among all tested. How-
ever, this does not mean that the scoot () mechanism actually saves time. It basically hides
the supposed time savings in the access time. The measurements confirm this claim.

Second, when comparing the kernel space mechanisms, fork() and mremap() have the
lowest snapshot creation time. They both internally use the same copy_page_range () func-
tion to copy their PTEs. The other kernel space mechanisms have implemented their own
functions to copy the page tables, which appear to be not as efficient as copy_page_range ().
The mremap () even surpasses the fork() when using huge pages, because it does not have
the overhead of creating a new process.

Finally, the duplication time and the access time in the unpopulated case of scoot () sur-
prisingly are faster than the other mechanisms when using huge pages. However, as this
work focuses on kernel space mechanisms future work must address the surprising result

of scoot ().

Page 53

Chapter 6 Discussion

6 Discussion

This work examined what mechanisms other applications that require COW semantics use
to overcome the lack of a dedicated COW mechanism in the Linux kernel. It was found that
some applications [4, 8] accept the induced overhead of fork () —while also ignoring its se-
mantics—to create a COW-protected memory. Although it is a convenient way to overcome
the lack of a dedicated mechanism, it does not allow to select a region for the snapshot.
This can be a limiting factor, if the payload that shall be snapshotted is a fraction of the total
memory used by the process. However, in the cases of [4, 8], both in-memory database man-
agement systems, it is not as costly, as such a database system typically creates snapshots of
its data. Since the data generally makes up most of the memory used in such a system, the
inability to address the exact area in a fork() is not considered as a severe limitation. Ad-
ditionally, the spawned process can be used to do the required input and output operations
when, for example, persisting the system's data. Admittedly, one can also use threads to
do the same, however, the additional overhead of creating a new process is not completely
wasted in these applications.

Other applications even use their own kernel modification to overcome the lack of a
dedicated COW mechanism. Korb et al., for example, implemented their own system call
mmapcopy () to reduce the memory usage of large vectors in R [15]. This system call provides
a dedicated interface to create COW mappings. Another example of a kernel modification
was implemented by Sharma et al. In [10] they use their system call vmcopy () to implement
multi-version concurrency control in their database system. Their system call also provides
a dedicated kernel interface to create a COW mapping.

Summarising the results for this research question, it is possible to overcome the lack of
a dedicated COW mechanism in the Linux kernel. Applications either exploit the existing
system call fork () to create a COW mapping of a whole process's address space, or imple-
ment their own dedicated system call to create a COW mapping of a given VMA. However,
this means application developers have to make a choice to either exploit fork () and accept
the implied possible caveats, or to modify their kernel—which allows for a fine-granular
mechanism, but requires their application to run on a modified operating system—which

reduces accessibility, portability, and perhaps even compromises security.

The second goal of this work was to answer the research question of how the proposed
MREMAP_COW flag enhances the Linux kernel compared to the other researched mechanisms
under the use of quantitative methods. To answer this question, let us first discuss how
the other mechanisms comply with our set of requirements of a COW mechanism. The set
of requirements for such a mechanism are as follows. First, the mechanism has to create a

snapshot memory mapping from an origin memory mapping, where any modification in

Page 54

Chapter 6 Discussion

the origin triggers the duplication. Second, the duplication must be handled by the Linux
kernel. Third, the mechanism shall be as performant as possible. To aggregate valuable
quantitative information about each mechanism, a unit test and a measurement tool were
implemented. However, when testing and measuring the presented mechanisms, it was

found that nearly every mechanism does not comply with at least one requirement.

Kernel Space Mechanisms

The first analysed kernel space mechanism is the fork () system call, which creates a new
process from an existing process. When creating a new process, fork() copies the whole
virtual address space of the existing process to the new process under the use of COW.
This behaviour can be exploited to create new COW mappings. The biggest advantage
of using fork() is that it does not require a kernel modification, nor application-specific
handling. The results showed that its performance is among the fastest of all mechanisms.
However, the results also revealed that when only copying a small amount of pages, the
process creation quickly becomes a significant overhead. Moreover, when exploiting fork ()
to create a COW mapping, there is no option to choose which region to snapshot, the system
call simply snapshots the whole virtual address space. Depending on the requirements of
the particular application, this can also introduce an undesirable overhead.

The second examined kernel space mechanism is the mmapcopy () [15] system call. This
mechanism only supports the use of default pages. However, the unit test of this work
showed that mmapcopy () does not comply to the set of requirements. It failed the unit test
because it did not duplicate the pages properly. While investigating it was found that the
mechanism does not flush the TLB properly. The undefined behaviour of this faulty imple-
mentation can introduce severe security vulnerabilities. Additionally, the measured snap-
shot creation time is also the slowest of all mechanisms.

The third analysed kernel space mechanism is the vmcopy () [10] system call from the
AnKer [63] kernel modification. This mechanism supposedly supports huge pages as it
requires the kernel configuration setting of transparent huge pages. However, the unit test
revealed that the use of 1 GiB pages not only does not work, but also does not de-allocate
system resources properly. The improper handling of system resources can lead to a kernel
panic, compromising the stability of a system. Nevertheless, the performance measurements
showed that vmcopy () is not significantly slower than a fork ().

Finally, the last researched kernel space mechanism is the extension of mremap (). The
kernel modification supports all three tested page sizes of 4 KiB, 2 MiB and 1 GiB and passed
the unit tests for all these sizes. The results of the conducted measurements show that it is
the fastest of all kernel space mechanisms in regards to snapshot creation time. Additionally,
it allows to select the VMA that shall be duplicated. This potentially removes an unwanted

Page 55

Chapter 6 Discussion

overhead. However, when copying a huge amount of pages fork() is as fast as mremap (),

since it uses the same internal function to copy the page tables.

User Space Mechanisms

The first researched user space mechanism is the scoot () mechanism. This mechanism uses
a series of mmap () and mremap() to create a COW mapping, thus, it does not require any
kernel modification. The mechanism passed the unit test for all page sizes. Additionally, the
mechanism also handles its duplication using the Linux kernel. However, scoot () requires
a file descriptor, for example, through the use of memfd_create(). The requirement of a
file descriptor and the fact that it remaps the origin to create a snapshot, induce a variety
of inconveniences. First, the allocation of memory resources must handle the requirement
of a file descriptor. Classic allocators such as glibc's malloc() [66] or the general purpose
allocator jemalloc () [67] typically do not support the use of a file descriptor. This means
that users of scoot () have to implement their own custom allocation routine to handle the
required file descriptor. Second, scoot () is limited to a single snapshot, because during
the creation of the snapshot, the origin is remapped as a private VMA. However, to create a
new snapshot the scoot () mechanism requires the origin to be mapped as a shared VMA.
Finally, because scoot () changes the location of its VMAs rigorously, the respective page
tables are not populated. The results showed that a consequence of the unpopulated page
tables is that some of the snapshot creation time of scoot () is hidden in the access time.
Thus, scoot () has the fastest snapshot creation time of all mechanisms among all page
sizes, but also a slow access time. Whether an application can benefit from this snapshot
creation time hiding or not depends on the application itself. An in-memory database, for
example, can benefit from this time hiding, as reducing the time the database gets blocked
when creating a snapshot can result in faster response times. The additional time required
to access the data is only hindering performance, if the access time of the origin is slowed
down. However, with scoot () that is the case, as the page tables of origin and snapshot are
unpopulated.

The second examined user space mechanism is the UFFD [47] mechanism. The Linux ker-
nel offers this interface to allow user space to intervene in the handling of page faults. With
the help of an application-specific implementation, users of UFFD can decide on a page-
granular level whether individual pages should be duplicated or not. Based on the imple-
mentation this can be very performant. However, as a application-specific implementation
is required, no unit tests or measurements were made for the UFFD mechanism. Moreover,
comparing such a sophisticated application-specific solution to a general approach solution
would not be appropriate.

Page 56

Chapter 6 Discussion

In summary, the results of this work show that the proposed kernel modification of the
system call mremap () with an additional flag called MREMAP_COW extends the Linux kernel in
the following ways.

First, it provides a dedicated interface to create a COW mapping, thus preventing users
from exploiting fork (). The literature research showed that there are cases where applica-
tions exploit the system call to create COW mappings. However, the incapability to select
the data regions to create such mappings can introduce unwanted overhead. Furthermore,
it was shown that the process creation of fork() can also introduce additional overhead
when dealing with a small amount of pages. On the contrary, the mremap () mechanism can
address individual VMAs and operate on a page-granular level, while also skipping process
creation.

Second, users are discouraged to implement their own perhaps faulty version of such
a mechanism. Both other examined kernel modifications either introduce severe security
vulnerabilities or compromise system stability. However, when proposing an extension to
the Linux kernel, an iterative review process begins so that any bugs introduced can be
found before they are incorporated into the upstream. This can increase the security and
stability of applications that implement their own COW mechanism, since the Linux kernel
is lacking such a dedicated mechanism.

Finally, further optimisations of the mechanism can be implemented if the extension is
merged into upstream. Since the Linux kernel is an open source project, everyone can pro-
pose changes to the mechanism. This potentially increases the performance, security and
stability of the mechanism, because many developers of different expertise can then pro-
pose changes themselves. Overall, the extension of the Linux kernel with an additional flag
called MREMAP_COW provides a performant and efficient mechanism to create a page-granular
COW memory mapping. Moreover, applications that either exploit fork () or use their own
kernel modification to create snapshots can also benefit from an upstream merge, since these

applications could instead use the extended mremap () system call to create these snapshots.

Page 57

Chapter 7 Conclusion and Outlook

7 Conclusion and Outlook

In this work, a new flag for the Linux kernel system call mremap () called MREMAP_COW was
proposed to create COW-protected memory mappings from any existing private anonym-
ous VMA. The work also addressed two research questions related to the field of open source
operating system development.

First, it analysed how applications overcome the lack of a dedicated COW mechanism
in the Linux kernel. It was found that basically there are two ways: either the application
exploits fork() for its creation of a COW mapping, or developers implement their own
kernel modification. The results of this work showed that both approaches have different
caveats. While users of fork() do not have the option to choose which VMA to snapshot,
users of kernel modifications like mmapcopy () or vmcopy () are not always safe to use, as the
results revealed. They either compromise stability or introduce undefined behaviour into
the memory management of the system.

The second research question that was addressed, is how does the proposed Linux kernel
extension compare to the existing mechanisms. The conducted experiments of this work
suggest that not only is the proposed MREMAP_COW among the fastest mechanisms evaluated,
but it was also the only kernel space mechanism to pass the implemented unit test in all
page sizes. This suggests that it is the fastest mechanism, while also being the safest to use.

Next, in an effort to bring the changes upstream, the extension of mremap () through the
addition of a new flag called MREMAP_COW will be proposed to the Linux kernel memory man-
agement mailing list. This initiates an iterative review process, where members of the Linux
kernel community will examine the proposed extension thoroughly. This can potentially
improve the mechanism in several ways, as developers with different expertise can suggest
changes.

Furthermore, the mechanism can also be further optimised for different use cases. For
example, in the case of an in-memory database system, it is reasonable that the snapshot
creation time shall be as low as possible, while accepting longer access times in the snapshot.
To do this, the mechanism can hide some of the snapshot creation time in the access time
of the snapshot by creating a COW-protected VMA preemptively and let the page fault
handling routine fill the page tables whenever accessed. Therefore, future work can address

both identifying different use cases as well as further optimising the mechanism.

Page 58

List of Figures, Tables & Algorithms

List of Figures

O 0 NI O O & LW N -

[g |y
W N = O

List of Tables

O 0 NI O O = LW N -

—_
e}

Mapping from virtual address space to physical address space. 6
The position and function of the MMU [20]. 6
Virtual memory management paginginandout. 7
Operating system handling a page fault. 8
A flowchart depicting how pagingusesaTLB. 12
A 32 bit address partitioned with two page table fields. 13
Addressing with two-level page tables. 14
Association of VMAs with the virtual process space of a process. 26
Page duplication initiated by fork's COW. 28
Linux resolving a virtual address using a four-level page table. 33
Series of page table states when calling mremap with MREMAP_COW. 40
Scoot using a series of system calls to create a COW mapping. +4
Access and creation time of a 2 GiB sized snapshot. 52
Functional overview of Linux page table entry protection and status bits. . . . 9
An excerpt of a TLB to speed up paging [20]. 11
Functional overview of virtual memory area flags. 23
Mmap page access protectionbits. oo 0oL 29
Mmap VMA handling flags. 29
Mremap behaviour modificationflags. 30
Copy-on-write mechanisms unit test matrix. 48
Average snapshot creation time of each mechanism with an origin of size 2 GiB. 49
Average access time of each mechanism with an origin of size 2 GiB. 51
Average duplication time of each mechanism with an origin of size2 GiB. . . 53

List of Algorithms

1
2
3

Copy page tables without addressing 38
Copy page tables with addressing 39
Testcopy-on-write Lo 47

Page 59

List of Acronyms

List of Acronyms
COW copy-on-write
KSM Kernel Samepage Merging
LRU least recently used
MMU memory management unit
OLAP Online Analytical Processing
OLTP Online Transaction Processing
PFN page frame number
PGD page global directory
PMD page middle directory
PTE page table entry
PUD page upper directory
TLB Translation Lookaside Buffer
UFFD userfaultfd
VM Virtual Memory
VMA virtual memory area

Page 60

Appendix A MREMAP_COW Support

A MREMAP_COW Support

From 9cb496cad66e78cdfbe0d3ead6cf78e54ad0074a Mon Sep 17 00:00:00 2001
From: Mario Mintel <mariomintel@gmail.com>

Date: Wed, 1 Jun 2022 10:16:00 +0200

Subject: mm: add MREMAP_COW flag to mremap

include/uapi/linux/mman.h | 1+

mm/memory . c | 138 +++++++tttttttttt
mm/mremap. |24 ++++—-
tools/include/uapi/linux/mman.h | 1+

4 files changed, 93 insertions(+), 71 deletions(-)

diff --git a/include/uapi/linux/mman.h b/include/uapi/linux/mman.h
index £55bc680b5b0. .634217617de5 100644

--- a/include/uapi/linux/mman.h
+++ b/include/uapi/linux/mman.h
00 -8,6 +8,7 QQ

#define MREMAP_MAYMOVE

#define MREMAP_FIXED

#define MREMAP_DONTUNMAP
+#define MREMAP_COW

#define OVERCOMMIT_GUESS

#define OVERCOMMIT_ALWAYS
diff --git a/mm/memory.c b/mm/memory.c
index 76e3af9639d9..a89ab8792ba6 100644
-—— a/mm/memory.c

+++ b/mm/memory.c

@@ -770,8 +770,9 @0 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,

QO N =

= O

static unsigned long

copyfnonpresentipte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
struct vm_area_struct *src_vma, unsigned long addr, int *rss)

+ pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma, unsigned long src_addr,
+ unsigned long dst_addr, int *rss)

{

unsigned long vm_flags = dst_vma->vm_flags;
pte_t pte = *src_pte;
0@ -809,7 +810,7 0@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte = pte_swp_mksoft_dirty(pte);
if (pte_swp_uffd_wp(*src_pte))
pte = pte_swp_mkuffd_wp(pte);
- set_pte_at(src_mm, addr, src_pte, pte);
+ set_pte_at(src_mm, src_addr, src_pte, pte);
¥
} else if (is_device_private_entry(entry)) {
page = pfn_swap_entry_to_page(entry) ;
@0 -841,7 +842,7 @@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte = swp_entry_to_pte(entry);
if (pte_swp_uffd_wp(*ksrc_pte))
pte = pte_swp_mkuffd_wp(pte);
- set_pte_at(src_mm, addr, src_pte, pte);

+ set_pte_at(src_mm, src_addr, src_pte, pte);
}
} else if (is_device_exclusive_entry(entry)) {
/%

0@ -851,13 +852,13 Q0@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
* (ie. COW) mappings.
*/
VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
- if (try_restore_exclusive_pte(src_pte, src_vma, addr))
+ if (try_restore_exclusive_pte(src_pte, src_vma, src_addr))
return -EBUSY;
return -ENOENT;

if (luserfaultfd_wp(dst_vma))
pte = pte_swp_clear_uffd_wp(pte);
- set_pte_at(dst_mm, addr, dst_pte, pte);

+ set_pte_at(dst_mm, dst_addr, dst_pte, pte);
return O;
}
00 -883,8 +884,8 00 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
*/

static inline int

copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
- pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
- struct page **prealloc, pte_t pte, struct page *page)

+ pte_t *dst_pte, pte_t *src_pte, unsigned long dst_addr, unsigned long src_addr,

Page 61

Appendix A MREMAP_COW Support

+ int *rss, struct page **prealloc, pte_t pte, struct page *page)
struct page *new_page;

@0 -913,9 +914,9 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma
* over and copy the page & arm it.
*/
*prealloc = NULL;
- copy_user_highpage (new_page, page, addr, src_vma);
+ copy_user_highpage (new_page, page, src_addr, src_vma);
__SetPageUptodate (new_page) ;
- page_add_new_anon_rmap(new_page, dst_vma, addr, false);
+ page_add_new_anon_rmap(new_page, dst_vma, dst_addr, false);
lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
rss[mm_counter (new_page)]++;

@@ -925,7 +926,7 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma
if (userfaultfd_pte_wp(dst_vma, *src_pte))
/* Uffd-wp needs to be delivered to dest pte as well */
pte = pte_wrprotect(pte_mkuffd_wp(pte));
- set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);

+ set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, pte);
return 0;
}
@0 -935,20 +936,20 Q@0 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma
*/

static inline int
copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
- pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
- struct page **prealloc)
+ pte_t *dst_pte, pte_t *src_pte, unsigned long dst_addr, unsigned long src_addr,
+ int *rss, struct page **prealloc)
{
struct mm_struct *src_mm = src_vma->vm_mm;
unsigned long vm_flags = src_vma->vm_flags;
pte_t pte = *src_pte;
struct page *page;

- page = vm_normal_page(src_vma, addr, pte);
+ page = vm_normal_page(src_vma, src_addr, pte);
if (page) {
int retval;

retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
- addr, rss, prealloc, pte, page);
+ dst_addr, src_addr, rss, prealloc, pte, page);
if (retval <= 0)
return retval;

00 -962,7 +963,7 @@ copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,

* in the parent and the child

*/

if (is_cow_mapping(vm_flags) && pte_write(pte)) {
- ptep_set_wrprotect(src_mm, addr, src_pte);
+ ptep_set_wrprotect(src_mm, src_addr, src_pte);

pte = pte_urprotect(pte);
}

@@ -977,7 +978,7 @0 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
if (luserfaultfd_wp(dst_vma))
pte = pte_clear_uffd_wp(pte);

- set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
+ set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, pte);
return O;
}

@0 -1002,8 +1003,8 @@ page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,

static int
copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
- pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
- unsigned long end)
+ pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long dst_addr, unsigned long dst_end,
+ unsigned long src_addr, unsigned long src_end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm src_vma->vm_mm;
@0 -1019,12 +1020,12 @@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
progress = 0;
init_rss_vec(rss);

- dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
+ dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, dst_addr, &dst_ptl);
if (ldst_pte) {

Page 62

Appendix A MREMAP_COW Support

ret = -ENOMEM;

goto out;
}
- src_pte = pte_offset_map(src_pmd, addr);
+ src_pte = pte_offset_map(src_pmd, src_addr);

src_ptl = pte_lockptr(src_mm, src_pmd);

spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING) ;

orig_src_pte = src_pte;

@0 -1050,7 +1051,7 @@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
ret = copy_nonpresent_pte(dst_mm, src_mm,

dst_pte, src_pte,
dst_vma, src_vma,
addr, rss);

+ dst_addr, src_addr, rss);
if (ret == -EI0) {
entry = pte_to_swp_entry(*src_pte);
break;

00 -1069,7 +1070,7 Q@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,

/* copy_present_pte() will clear ‘*prealloc’ if consumed */
ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
- addr, rss, &prealloc);
+ dst_addr, src_addr, rss, &prealloc);
/%
* If we need a pre-allocated page for this pte, drop the
* locks, allocate, and try again.
00 -1087,7 +1088,8 Q0@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
prealloc = NULL;
¥

progress += 8;
- } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
} while (dst_ptet++, src_ptet++, src_addr += PAGE_SIZE, dst_addr += PAGE_SIZE,
+ src_addr != src_end || dst_addr !'= dst_end);

+

arch_leave_lazy_mmu_mode() ;
spin_unlock(src_ptl);
0@ -1106,7 +1108,7 Q0@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,

} else if (ret == -EBUSY) {
goto out;
} else if (ret == -EAGAIN) {
- prealloc = page_copy_prealloc(src_mm, src_vma, addr);
+ prealloc = page_copy_prealloc(src_mm, src_vma, src_addr);

if (!prealloc)
return -ENOMEM;
} else if (ret) {
@@ -1116,7 +1118,7 @@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
/* We’ve captured and resolved the error. Reset, try again. */
ret = 0;

if (addr != end)
+ if (src_addr '= src_end)
goto again;
out:
if (unlikely(prealloc))
@0 -1126,26 +1128,27 @@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,

static inline int
copy_pmd_range (struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
- pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
- unsigned long end)
+ pud_t *dst_pud, pud_t *src_pud, unsigned long dst_addr, unsigned long dst_end,
+ unsigned long src_addr, unsigned long src_end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
pmd_t *src_pmd, *dst_pmd;
- unsigned long next;
unsigned long src_next, dst_next;

- dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
+ dst_pmd = pmd_alloc(dst_mm, dst_pud, dst_addr);
if (!dst_pmd)
return -ENOMEM;
- src_pmd = pmd_offset(src_pud, addr);

+ src_pmd = pmd_offset(src_pud, src_addr);
do {
- next = pmd_addr_end(addr, end);
+ src_next = pmd_addr_end(src_addr, src_end);
+ dst_next = pmd_addr_end(dst_addr, dst_end);

if (is_swap_pmd(ksrc_pmd) || pmd_trans_huge (*src_pmd)
|| pmd_devmap (ksrc_pmd)) {

int err;
- VM_BUG_ON_VMA(next-addr != HPAGE PMD SIZE, src_vma);
+ VM_BUG_ON_VMA (src_next-src_addr != HPAGE_PMD_SIZE, src_vma);

Page 63

Appendix A MREMAP_COW Support

err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
addr, dst_vma, src_vma);
+ src_addr, dst_vma, src_vma);
if (err == -ENOMEM)
return -ENOMEM;
if (lerr)
@@ -1155,34 +1158,36 0@ copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
if (pmd_none_or_clear_bad(src_pmd))
continue;
if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
addr, next))
+ dst_addr, dst_next, src_addr, src_next))
return -ENOMEM;
- } while (dst_pmd++, src_pmd++, addr = next, addr != end);
+ } while (dst_pmd++, src_pmd++, src_addr = src_next, dst_addr = dst_next,
+ src_addr !'= src_end || dst_addr != dst_end);
return O;
}

static inline int
Copy pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pAd_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
- unsigned long end)
p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long dst_addr, unsigned long dst_end,
+ unsigned long src_addr, unsigned long src_end)

+

struct mm_struct *dst_mm
struct mm_struct *src_mm
pud_t *src_pud, *dst_pud;
- unsigned long next;
unsigned long src_next, dst_next;

dst_vma->vm_mm;
src_vma-—>vm_mm;

- dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
+ dst_pud = pud_alloc(dst_mm, dst_p4d, dst_addr);
if (!dst_pud)
return -ENOMEM;
- src_pud = pud_offset(src_p4d, addr);

+ src_pud = pud_offset(src_p4d, src_addr);
do {
- next = pud_addr_end(addr, end);
+ src_next = pud_addr_end(src_addr, src_end);
+ dst_next = pud_addr_end(dst_addr, dst_end);
if (pud_trans_huge(*src_pud) || pud_devmap(*ksrc_pud)) {
int err;

- VM_BUG_ON_VMA (next-addr '= HPAGE_PUD_SIZE, src_vma);
+ VM_BUG_ON_VMA (src_next-src_addr != HPAGE_PUD_SIZE, src_vma);

err = copy_huge_pud(dst_mm, src_mm,
- dst_pud, src_pud, addr, src_vma);
+ dst_pud, src_pud, src_addr, src_vma);

if (err == -ENOMEM)

return -ENOMEM;

if (lerr)

@0 -1192,33 +1197,36 @@ copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
if (pud_none_or_clear_bad(src_pud))
continue;
if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
addr, next))

+ dst_addr, dst_next, src_addr, src_next))

return -ENOMEM;
- } while (dst_pud++, src_pud++, addr = next, addr != end);
+ } while (dst_pud++, src_pud++, src_addr = src_next, dst_addr = dst_next,
+ src_addr !'= src_end || dst_addr != dst_end);

return O;
}

static inline int
~copy_ p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
- unsigned long end)
pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long dst_addr,
+ unsigned long dst_end, unsigned long src_addr, unsigned long src_end)

+

struct mm_struct *dst_mm = dst_vma->vm_mm;
p4d_t *src_p4d, xdst_p4d;

- unsigned long next;
unsigned long src_next, dst_next;

- dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
+ dst_p4d = p4d_alloc(dst_mm, dst_pgd, dst_addr);
if (!dst_p4d)
return -ENOMEM;
- src_p4d = p4d_offset(src_pgd, addr);
+ src_p4d = p4d_offset(src_pgd, src_addr);
do {

Page 64

Appendix A MREMAP_COW Support

- next = p4d_addr_end(addr, end);

+ src_next = p4d_addr_end(src_addr, src_end);
+ dst_next = p4d_addr_end(dst_addr, dst_end);
if (p4d_none_or_clear_bad(src_p4d))
continue;

if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
- addr, next))
+ dst_addr, dst_next, src_addr, src_next))
return -ENOMEM;
- } while (dst_p4d++, src_p4d++, addr = next, addr != end);
+ } while (dst_p4d++, src_p4d++, src_addr = src_next, dst_addr = dst_next,
+ src_addr != src_end || dst_addr !'= dst_end);
return O;
}

00 -1226,9 +1234,11 Q@@ int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)

pgd_t *src_pgd, *dst_pgd;

unsigned long next;

unsigned long addr = src_vma->vm_start;
unsigned long end = src_vma->vm_end;
unsigned long src_next, dst_next;

unsigned long src_addr = src_vma->vm_start;
unsigned long src_end = src_vma->vm_end;
unsigned long dst_addr = dst_vma->vm_start;
unsigned long dst_end = dst_vma->vm_end;
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
struct mmu_notifier_range range;

00 -1268,7 +1278,7 Q@0 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)

+ o+ o+ o+

if (is_cow) {

mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,

- 0, src_vma, src_mm, addr, end);
0, src_vma, src_mm, src_addr, src_end);
mmu_notifier_invalidate_range_start(&range) ;
/*
* Disabling preemption is not needed for the write side, as

00 -1282,18 +1292,20 @@ copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)

ret = 0;
- dst_pgd = pgd_offset(dst_mm, addr);
src_pgd = pgd_offset(src_mm, addr);

+ 1

dst_pgd = pgd_offset(dst_mm, dst_addr);
+ src_pgd = pgd_offset(src_mm, src_addr);
do {
- next = pgd_addr_end(addr, end);
+ src_next = pgd_addr_end(src_addr, src_end);
+ dst_next = pgd_addr_end(dst_addr, dst_end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
- addr, next))) {
+ dst_addr, dst_next, src_addr, src_next))) {
ret = -ENOMEM;
break;
¥
- } while (dst_pgd++, src_pgd++, addr = next, addr != end);
+ } while (dst_pgd++, src_pgd++, src_addr = src_next, dst_addr = dst_next,
+ src_addr != src_end || dst_addr !'= dst_end);

if (is_cow) {
raw_write_seqcount_end(&src_mm->write_protect_seq);
diff --git a/mm/mremap.c b/mm/mremap.c
index 0b93fac76851..94b78b91aa98 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
00 -629,12 +629,18 Q0 static unsigned long move_vma(struct vm_area_struct *vma,
return -ENOMEM;
}

- moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
- need_rmap_locks);
- if (moved_len < old_len) {
err = -ENOMEM;
- } else if (vma->vm_ops && vma->vm_ops—>mremap) {

err = vma->vm_ops-—>mremap (new_vma) ;
if (flags & MREMAP_COW) {

err = copy_page_range (new_vma, vma);

if (lerr)

flush_tlb_range(new_vma, old_addr, old_addr + old_len);

} else {
moved_len = move_page_tables(vma, old_addr, new_vma,new_addr,

+ o+ o+ o+ o+

Page 65

Appendix A MREMAP_COW Support

old_len, need_rmap_locks);
if (moved_len < old_len) {
err = -ENOMEM;
} else if (vma—>vm_ops && vma->vm_ops->mremap) {
err = vma->vm_ops->mremap (new_vma) ;
¥

+ o+ o+ o+ o+

b

if (unlikely(err)) {
@@ -914,7 +920,7 @0 SYSCALL_DEFINE5 (mremap, unsigned long, addr, unsigned long, old_len,
*/
addr = untagged_addr (addr) ;

- if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
+ if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP | MREMAP_COW))
return ret;

if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
@0 -927,6 +933,8 @0 SYSCALL_DEFINESL (mremap, unsigned long, addr, unsigned long, old_len,
if (flags & MREMAP_DONTUNMAP &&
(' (flags & MREMAP_MAYMOVE) || old_len !'= new_len))
return ret;
+ if (flags & MREMAP_COW && !(flags & MREMAP_DONTUNMAP))
+ return ret;

if (offset_in_page(addr))
@@ -971,7 +979,7 ©@ SYSCALL_DEFINEL(mremap, unsigned long, addr, unsigned long, old_len,

goto out;
¥
- if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
+ if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP | MREMAP_COW)) {

ret = mremap_to(addr, old_len, new_addr, new_len,
&locked, flags, &uf, &uf_unmap_early,
&uf_unmap) ;
diff --git a/tools/include/uapi/linux/mman.h b/tools/include/uapi/linux/mman.h
index f£55bc680b5b0..634217617deb 100644
--- a/tools/include/uapi/linux/mman.h
+++ b/tools/include/uapi/linux/mman.h
0@ -8,6 +8,7 @@
#define MREMAP_MAYMOVE
#define MREMAP_FIXED
#define MREMAP_DONTUNMAP
+#define MREMAP_COW

#define OVERCOMMIT_GUESS
#define OVERCOMMIT_ALWAYS

QO N =

= O

Page 66

Appendix B

HUGETLB Support

B HUGETLB Support

From 9332fc795008267daba90ba7fa90c80099e2e531 Mon Sep 17 00:00:00 2001
From: Mario Mintel <mariomintel@gmail.com>

Date: Thu, 14 Jul 2022 11:17:01 +0200

Subject: mm: add hugetlb support for MREMAP_COW

include/linux/hugetlb.h | 3 ++-

mm/hugetlb.c | AT+ttt
mm/memory . c |2+
mm/mremap . c [2 ++

4 files changed, 30 insertions(+), 24 deletions(-)

diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h

index ac2ald758a80..a66262e%9a8c4 100644

--- a/include/linux/hugetlb.h

+++ b/include/linux/hugetlb.h

0@ -137,7 +137,8 0@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
struct vm_area_struct *new_vma,
unsigned long old_addr, unsigned long new_addr,
unsigned long len);

-int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, struct vm_area_struct *);
+int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, struct vm_area_struct *,

+ struct vm_area_struct *);
long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
struct page **, struct vm_area_struct **,

unsigned long *, unsigned long *, long, unsigned int,

diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 3fc721789743..1eeb8af25bb0 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c

00 -4699,23 +4699,24 00 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr

¥

int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
- struct vm_area_struct *vma)

struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)

pte_t *src_pte, *dst_pte, entry, dst_entry;

struct page *ptepage;

unsigned long addr;

- bool cow = is_cow_mapping(vma->vm_flags);

struct hstate *h = hstate_vma(vma);

unsigned long src_addr = src_vma->vm_start;

unsigned long dst_addr = dst_vma->vm_start;

bool cow = is_cow_mapping(src_vma->vm_flags);

struct hstate *h = hstate_vma(src_vma);

unsigned long sz = huge_page_size(h);

unsigned long npages = pages_per_huge_page(h);

struct address_space *mapping = vma->vm_file->f mapping;
struct address_space *mapping = src_vma->vm_file->f_mapping;
struct mmu_notifier_range range;

int ret = 0;

+ o+t |

if (cow) {

vma->vm_start,
vma->vm_end) ;

src_vma->vm_start,
src_vma->vm_end) ;
mmu_notifier_invalidate_range_start(&range) ;
} else {
/%

+ o+ o+

mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, O, vma, src,

mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, O, src_vma, src,

0@ -4727,12 +4728,12 Q0 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,

i_mmap_lock_read(mapping) ;

¥

- for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {

+

spinlock_t *src_ptl, *dst_ptl;
- src_pte = huge_pte_offset(src, addr, sz);
src_pte = huge_pte_offset(src, src_addr, sz);
if (!src_pte)
continue;
- dst_pte = huge_pte_alloc(dst, vma, addr, sz);
dst_pte = huge_pte_alloc(dst, dst_vma, dst_addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
break;

for (src_addr = src_vma->vm_start; src_addr < src_vma->vm_end; src_addr += sz, dst_addr += sz) {

@0 -4753,7 +4754,8 @0 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,

Page 67

Appendix B HUGETLB Support

dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
- spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING) ;
+ if (src_ptl != dst_ptl)
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING) ;
entry = huge_ptep_get(src_pte);
dst_entry = huge_ptep_get(dst_pte);
again:
00 -4776,10 +4778,10 00 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
swp_entry = make_readable_migration_entry(
swp_offset (swp_entry));
entry = swp_entry_to_pte(swp_entry);
- set_huge_swap_pte_at(src, addr, src_pte,
+ set_huge_swap_pte_at(src, src_addr, src_pte,
entry, sz);
¥

- set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
set_huge_swap_pte_at(dst, dst_addr, dst_pte, entry, sz);
} else {
entry = huge_ptep_get(src_pte);
ptepage = pte_page(entry);
00 -4794,20 +4796,20 00 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
* need to be without the pgtable locks since we could
* sleep during the process.

*/
- if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
+ if (unlikely(page_needs_cow_for_dma(src_vma, ptepage))) {

pte_t src_pte_old = entry;
struct page *new;

spin_unlock(src_ptl);
spin_unlock(dst_ptl);
/* Do not use reserve as it’s private owned */
- new = alloc_huge_page(vma, addr, 1);
+ new = alloc_huge_page(src_vma, src_addr, 1);
if (IS_ERR(new)) {
put_page (ptepage) ;
ret = PTR_ERR(new);
break;
H
- copy_user_huge_page(new, ptepage, addr, vma,
copy_user_huge_page(new, ptepage, src_addr, src_vma,
npages) ;
put_page (ptepage) ;

00 -4817,13 +4819,13 00 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
entry = huge_ptep_get(src_pte);
if (!pte_same(src_pte_old, entry)) {
restore_reserve_on_error(h, vma, addr,
+ restore_reserve_on_error(h, src_vma, src_addr,
new) ;
put_page (new) ;
/* dst_entry won’t change as in child */
goto again;

}
- hugetlb_install_page(vma, dst_pte, addr, new);
+ hugetlb_install_page(src_vma, dst_pte, dst_addr, new);

spin_unlock(src_ptl);
spin_unlock(dst_ptl);
continue;
00 -4837,15 +4839,16 00 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
*

* See Documentation/vm/mmu_notifier.rst

*/
huge_ptep_set_wrprotect(src, addr, src_pte);
+ huge_ptep_set_wrprotect(src, src_addr, src_pte);

entry = huge_pte_wrprotect(entry);
¥

page_dup_rmap(ptepage, true);

- set_huge_pte_at(dst, addr, dst_pte, entry);

+ set_huge_pte_at(dst, dst_addr, dst_pte, entry);
hugetlb_count_add(npages, dst);

- spin_unlock(src_ptl);
+ if (src_ptl != dst_ptl)
+ spin_unlock(src_ptl);
spin_unlock(dst_ptl);
}

diff --git a/mm/memory.c b/mm/memory.c

Page 68

Appendix B HUGETLB Support

index a89ab8792bab..ceal77e62eb5 100644
--- a/mm/memory.c
+++ b/mm/memory.c

@@ -1256,7 +1256,7 @@ copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
return O;

if (is_vm_hugetlb_page(src_vma))
- return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
+ return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);

if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
/%

Page 69

References

References

[1] Per Brinch Hansen. “The evolution of operating systems”. In: Classic Operating Sys-
tems. Springer, 2001, pp. 1-34. ISBN: 0-387-95113-X.

[2] Desktop Operating System Market Share Worldwide. URL: https://gs . statcounter .
com/os-market-share/desktop/worldwide/#monthly-202107-202206-bar (visited
on 29/07/2022).

[3] Mobile & Tablet Operating System Market Share Worldwide. URL: https://gs.statcounter.
com/os-market-share/mobile-tablet/worldwide/#monthly-202107-202206-bar
(visited on 29/07/2022).

[4] Redis Ltd. Redis. URL: https://redis.io (visited on 06/07/2022).

[5] Microsoft. Database Snapshots (SQL Server). URL: https://docs.microsoft.com/en-
us/sql/relational ~databases /databases /database - snapshots -sql - server

(visited on 28/06/2022).

[6] Jeff Bonwick. “ZFS”. In: Proceedings of the 21th Large Installation System Administration
Conference, LISA 2007, Dallas, Texas, USA, November 11-16, 2007. Ed. by Paul Ander-
son. USENIX, 2007. URL: http://www.usenix.org/events/1isa07/htgr _files/
bonwick_htgr.pdf.

[7] btrfs Wiki. URL: https://btrfs.wiki.kernel.org/index.php/Main_Page (visited on
28/06/2022).

[8] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots”. In: Proceedings of the 27th Inter-
national Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Ger-
many. Ed. by Serge Abiteboul et al. IEEE Computer Society, 2011, pp. 195-206. DOTI:
10.1109/ICDE.2011.5767867. URL: https://doi.org/10.1109/ICDE.2011.5767867.

[9] Jung-Sang Ahn et al. “Jungle: Towards Dynamically Adjustable Key-Value Store by
Combining LSM-Tree and Copy-On-Write B+-Tree”. In: 11th USENIX Workshop on Hot
Topics in Storage and File Systems, HotStorage 2019, Renton, WA, USA, July 8-9, 2019.
Ed. by Daniel Peek and Gala Yadgar. USENIX Association, 2019. URL: https://www.

usenix.org/conference/hotstoragel9/presentation/ahn.

[10] Ankur Sharma, Felix Martin Schuhknecht and Jens Dittrich. “Accelerating Analytical
Processing in MVCC using Fine-Granular High-Frequency Virtual Snapshotting”. In:
Proceedings of the 2018 International Conference on Management of Data, SIGMOD Con-
ference 2018, Houston, TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M.

Page 70

https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202107-202206-bar
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202107-202206-bar
https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-202107-202206-bar
https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-202107-202206-bar
https://redis.io
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server
http://www.usenix.org/events/lisa07/htgr_files/bonwick_htgr.pdf
http://www.usenix.org/events/lisa07/htgr_files/bonwick_htgr.pdf
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://www.usenix.org/conference/hotstorage19/presentation/ahn
https://www.usenix.org/conference/hotstorage19/presentation/ahn

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Jermaine and Philip A. Bernstein. ACM, 2018, pp. 245-258. DOI: 10.1145/3183713.
3196904. URL: https://doi.org/10.1145/3183713.3196904.

Jonathan M. Smith and Gerald Q. Maguire Jr. “Effects of Copy-on-Write Memory Man-
agement on the Response Time of UNIX Fork Operations”. In: Comput. Syst. 1.3 (1988),
pp. 255-278. URL: http://www.usenix.org/publications/compsystems/1988/sumy
5C_smith.pdf.

Richard F. Rashid and George G. Robertson. “Accent: A Communication Oriented
Network Operating System Kernel”. In: Proceedings of the Eighth Symposium on Oper-
ating System Principles, SOSP 1981, Asilomar Conference Grounds, Pacific Grove, Califor-
nia, USA, December 14-16, 1981. Ed. by John Howard and David P. Reed. ACM, 1981,
pp. 64-75. DOI: 10.1145/800216.806593. URL: https://doi.org/10.1145/800216.
806593.

Memory Management — Memory Protection. URL: https://docs.microsoft.com/en-
us/windows/win32/memory/memory-protection (visited on 25/07/2022).

Akihiko Tozawa et al. “Copy-on-write in the PHP language”. In: Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009. Ed. by Zhong Shao and Benjamin C.
Pierce. ACM, 2009, pp. 200-212. DOI: 10.1145/1480881.1480908. URL: https://doi.
org/10.1145/1480881.1480908.

Ingo Korb, Helena Kotthaus and Peter Marwedel. “mmapcopy: efficient memory foot-
print reduction using application knowledge”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016. Ed. by Sascha Ossowski.
ACM, 2016, pp. 1832-1837. DOI: 10.1145/2851613.2851736. URL: https://doi.org/
10.1145/2851613.2851736.

Redis Ltd. Redis persistence. URL: https ://redis . io/docs/manual /persistence
(visited on 06/07/2022).

M. D. Mcllroy, E. N. Pinson and B. A. Tague. “UNIX Time-Sharing System: Foreword”.
In: Bell System Technical Journal 57.6 (1978), p. 1902. DOI: https://doi.org/10.1002/
j.15638-7305.1978.tb02135.x.

Abhishek Bhattacharjee and Daniel Lustig. Architectural and Operating System Support
for Virtual Memory. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2017. DOI: 10 . 2200/ S00795ED1V01Y201708CAC0O42. URL: https://doi .
org/10.2200/S00795ED1V01Y201708CACO42.

Peter J. Denning. “Virtual Memory”. In: ACM Comput. Surv. 2.3 (1970), pp. 153-189.
DOI: 10.1145/356571.356573. URL: https://doi.org/10.1145/356571.356573.

Page 71

https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904
http://www.usenix.org/publications/compsystems/1988/sum%5C_smith.pdf
http://www.usenix.org/publications/compsystems/1988/sum%5C_smith.pdf
https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/800216.806593
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection
https://doi.org/10.1145/1480881.1480908
https://doi.org/10.1145/1480881.1480908
https://doi.org/10.1145/1480881.1480908
https://doi.org/10.1145/2851613.2851736
https://doi.org/10.1145/2851613.2851736
https://doi.org/10.1145/2851613.2851736
https://redis.io/docs/manual/persistence
https://doi.org/https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/356571.356573

References

[20]

[21]

[22]

[23]

[24]

[25]

[28]

[29]

[30]

[31]

Andrew S. Tanenbaum. Modern operating systems, 3rd Edition. Pearson Prentice-Hall,
2009. 1SBN: 0138134596. URL: https://www.worldcat.org/oclc/254320777.

Gorman Mel. Understanding the Linux virtual memory manager. 2007. URL: https: //
www.kernel .org/doc/gorman/pdf /understand.pdf.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
2 (2A, 2B, 2C & 2D): Instruction Set Reference, A-Z. 2021. URL: https://www . intel.
com/content/dam/develop/public/us/en/documents/325383-sdm-vol-2abcd. pdf
(visited on 23/06/2022).

Advanced Micro Devices Inc. Preliminary Processor Programming Reference (PPR) for
AMD Family 17h Model 31h, Revision BO Processors. 2019. URL: https://developer.
amd . com/wp-content/resources/55803_0.54-PUB. pdf (visited on 08/07/2022).

Abraham Silberschatz, James L. Peterson and Peter Baer Galvin. Operating System Con-
cepts, 3rd Edition. Addison-Wesley, 1991. ISBN: 978-0-201-51379-0.

Nihar R. Mahapatra and Balakrishna V. Venkatrao. “The processor-memory bottle-
neck: problems and solutions”. In: XRDS 5.3es (1999), 2—es. DOI: 10 . 1145/357783.
331677. URL: https://doi.org/10.1145/357783.331677.

John F Couleur and Edward L Glaser. Shared-access data processing system. US Patent
3,412,382. Nov. 1968.

Richard P. Case and Andris Padegs. “Architecture of the IBM System/370”. In: Com-
mun. ACM 21.1 (1978), pp. 73-96. DOI: 10.1145/359327.359337. URL: https://doi.
org/10.1145/359327.359337.

John F. Couleur. “The core of the Black Canyon Computer Corporation”. In: IEEE Ann.
Hist. Comput. 17.4 (1995), pp. 56—60. DOI: 10.1109/85.477436. URL: https://doi.
org/10.1109/85.477436.

David A. Patterson and John L. Hennessy. Computer Organization and Design - The
Hardware / Software Interface (Revised 4th Edition). The Morgan Kaufmann Series in
Computer Architecture and Design. Academic Press, 2012. 1SBN: 978-0-12-374750-1.
URL: http://www.elsevierdirect.com/product. jsp7isbn=9780123747501.

Raghu Bharadwaj. Mastering Linux Kernel Development: A kernel developer’s reference
manual. Packt Publishing Ltd, 2017.

Madhusudhan Talluri, Mark D. Hill and Yousef Y. A. Khalidi. “A New Page Table
for 64-bit Address Spaces”. In: Proceedings of the Fifteenth ACM Symposium on Operat-
ing System Principles, SOSP 1995, Copper Mountain Resort, Colorado, USA, December 3-6,
1995. Ed. by Michael B. Jones. ACM, 1995, pp. 184-200. DOI: 10.1145/224056 .224071.
URL: https://doi.org/10.1145/224056.224071.

Page 72

https://www.worldcat.org/oclc/254320777
https://www.kernel.org/doc/gorman/pdf/understand.pdf
https://www.kernel.org/doc/gorman/pdf/understand.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/325383-sdm-vol-2abcd.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/325383-sdm-vol-2abcd.pdf
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf
https://doi.org/10.1145/357783.331677
https://doi.org/10.1145/357783.331677
https://doi.org/10.1145/357783.331677
https://doi.org/10.1145/359327.359337
https://doi.org/10.1145/359327.359337
https://doi.org/10.1145/359327.359337
https://doi.org/10.1109/85.477436
https://doi.org/10.1109/85.477436
https://doi.org/10.1109/85.477436
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
https://doi.org/10.1145/224056.224071
https://doi.org/10.1145/224056.224071

References

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Rik Van Riel and Peter W. Morreale. Documentation for /proc/sys/vm/*. 2008. URL: https:
//www .kernel .org/doc/Documentation/sysctl/vm.txt (visited on 24/06/2022).

Peter J. Denning. “Working Sets Past and Present”. In: IEEE Trans. Software Eng. 6.1
(1980), pp. 64-84. DOI: 10.1109/TSE. 1980.230464. URL: https://doi.org/10.1109/
TSE.1980.230464.

The kernel development community. Virtual Memory Primer. URL: https : / / www .

kernel.org/doc/html/latest/admin-guide/mm/concepts.html#virtual -memory-
primer (visited on 24/06/2022).

Y Soumya and T Ragunathan. “Lazy Expression Evaluation with Demand Paging In
Virtual Memory Management”. In: International Journal of Engineering and Advanced
Technology (IJEAT) 2.1 (2012), pp. 1-3. URL: https: //www . ijeat . org/portfolio-
item/a0690092112/.

Colin Percival. “Cache Missing for Fun and Profit”. In: In Proc. of BSDCan 2005. 2005.
Vasundhara Rathod, Monali Chim and Pramila Chawan. “A Survey Of Page Replace-

ment Algorithms In Linux”. In: International Journal of Engineering Research and Applic-
ations (IJERA) 3 (June 2013), pp. 1397-1401.

Gorman Mel. Re: CLOCK-Pro algorithm. Jan. 2011. URL: https : / /marc . info/?71=
linux-mm&m=129431080028837 (visited on 27/06/2022).

Theodore Johnson and Dennis E. Shasha. “2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm”. In: VLDB’94, Proceedings of 20th Inter-
national Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile. Ed. by Jorge B. Bocca, Matthias Jarke and Carlo Zaniolo. Morgan Kaufmann,
1994, pp. 439-450. URL: http://www.v1ldb.org/conf/1994/P439.PDF.

Wolfgang Mauerer. Professional Linux Kernel Architecture. John Wiley & Sons, 2010.
ISBN: 978-0-470-34343-2.

Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel - from 1/O ports to pro-
cess management. O'Reilly, 2005. I1SBN: 978-0-596-00565-8. URL: http://www.oreilly.
de/catalog/understandlk/index.html.

Jonathan Corbet. /dev/ksm: dynamic memory sharing. URL: https://lwn.net/Articles/
306704 (visited on 05/07,/2022).

Jonathan Corbet. KSM tries again. URL: https://lwn.net/Articles/330589 (visited
on 05/07/2022).

Sushovon Sinha. Physical and Virtual Memory in Windows 10. URL: https://answers.
microsoft.com/en-us/windows/forum/all/physical-and-virtual-memory-in-
windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938 (visited on 29/06/2022).

Page 73

https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/TSE.1980.230464
https://doi.org/10.1109/TSE.1980.230464
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html#virtual-memory-primer
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html#virtual-memory-primer
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html#virtual-memory-primer
https://www.ijeat.org/portfolio-item/a0690092112/
https://www.ijeat.org/portfolio-item/a0690092112/
https://marc.info/?l=linux-mm&m=129431080028837
https://marc.info/?l=linux-mm&m=129431080028837
http://www.vldb.org/conf/1994/P439.PDF
http://www.oreilly.de/catalog/understandlk/index.html
http://www.oreilly.de/catalog/understandlk/index.html
https://lwn.net/Articles/306704
https://lwn.net/Articles/306704
https://lwn.net/Articles/330589
https://answers.microsoft.com/en-us/windows/forum/all/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938
https://answers.microsoft.com/en-us/windows/forum/all/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938
https://answers.microsoft.com/en-us/windows/forum/all/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938

References

[45] Linux Kernel Source Code. Version 5.18. URL: https://git .kernel . org/pub/scm/
linux/kernel/git/torvalds/linux.git.

[46] John Madieu. Linux Device Drivers Development: Develop customized drivers for embedded
Linux. Packt Publishing Ltd, 2017.

[47] wuserfaultfd(2) Linux Programmer’s Manual. 5.18.

[48] Jonathan Corbet. The next steps for userfaultfd(). URL: https://1lwn.net/Articles/
718198 (visited on 04 /07 /2022).

[49] madvise(2) Linux Programmer’s Manual. 5.18.

[50] Thomas H. Cormen et al. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. ISBN:
978-0-262-03384-8. URL: http://mitpress.mit.edu/books/introduction-algorithms.

[51] proc(5) Linux Programmer’s Manual. 5.18.
[52] wvdso(7) Linux Programmer’s Manual. 5.18.

[53] Jonathan Corbet. On vsyscalls and the vDSO. URL: https://lwn.net/Articles/446528
(visited on 05/07/2022).

[54] pmap(1) User Commands. 5.18.

[55] Marcin Juszkiewicz. Linux kernel system calls for all architectures. URL: https://marcin.
juszkiewicz.com.pl/download/tables/syscalls.html (visited on 06/07/2022).

[56] fork(2) Linux Programmer’s Manual. 5.18.

[57] Fork and Exec. URL: http://www-h.eng.cam.ac.uk/help/tpl/unix/fork.html
(visited on 06/07/2022).

[58] Robert Love. Linux Kernel Development. 3rd. Addison-Wesley Professional, 2010. ISBN:
0672329468.

[59] mmap(2) Linux Programmer’s Manual. 5.18.

[60] Intel Corporation. White paper: 5-Level Paging and 5-Level EPT. Tech. rep. 335252-002.
2017.

[61] The R Project for Statistical Computing. URL: https://www.r-project.org/ (visited on
19/07/2022).

[62] Helena Kotthaus et al. “Runtime and memory consumption analyses for machine
learning R programs”. In: Journal of Statistical Computation and Simulation 85 (Jan. 2015).
DOI: 10.1080/00949655.2014.925192.

[63] AnKer Kernel Modifications. URL: https : / / github . com/BigDataAnalyticsGroup /
anker (visited on 24/07/2022).

Page 74

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://lwn.net/Articles/718198
https://lwn.net/Articles/718198
http://mitpress.mit.edu/books/introduction-algorithms
https://lwn.net/Articles/446528
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
http://www-h.eng.cam.ac.uk/help/tpl/unix/fork.html
https://www.r-project.org/
https://doi.org/10.1080/00949655.2014.925192
https://github.com/BigDataAnalyticsGroup/anker
https://github.com/BigDataAnalyticsGroup/anker

References

[64]

[65]
[66]

[67]

Transparent Hugepage Support. URL: https ://www . kernel . org/doc/html/latest/
admin-guide/mm/transhuge.html (visited on 24/07/2022).

memfd_create(2) Linux Programmer’s Manual. 5.18.

malloc - Glibc source code (glibc-2.36). URL: https ://elixir .bootlin.com/glibc/
glibc-2.36/source/malloc (visited on 31/07/2022).

jemalloc — a general purpose malloc(3) implementation. URL: https : / / github . com/
jemalloc/jemalloc (visited on 31/07/2022).

Page 75

https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://elixir.bootlin.com/glibc/glibc-2.36/source/malloc
https://elixir.bootlin.com/glibc/glibc-2.36/source/malloc
https://github.com/jemalloc/jemalloc
https://github.com/jemalloc/jemalloc

	Introduction
	Motivation & Related Work
	Virtual Memory Management
	Paging
	Page Tables
	Optimisations

	Linux Kernel Internals
	Memory Management
	System Calls
	Four-Level Page Tables

	Copy-on-Write Mechanisms
	Kernel Space
	Mmapcopy
	Mremap
	AnKer

	User Space
	Scoot
	Userfaultfd

	Evaluation
	Unit Test
	Measurements
	Snapshot Creation Time
	Access Time
	Duplication Time

	Discussion
	Conclusion and Outlook
	List of Figures, Tables & Algorithms
	List of Acronyms
	Appendix
	MREMAP_COW Support
	HUGETLB Support
	References

