
TECHNICAL UNIVERSITY OF APPLIED

SCIENCES REGENSBURG

MASTER THESIS

Kernel-Assisted Copy-on-Write
Snapshots for Main-Memory HTAP

Databases

Author:
Lucas WOLF

Supervisor:
Prof. Dr. Wolfgang

MAUERER

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the

Digitalisation Laboratory

Faculty of Computer Science and Mathematics

September 15, 2022

https://www.oth-regensburg.de
https://www.oth-regensburg.de
https://www.lfdr.de/

iii

Erklärung zur Masterarbeit
Erklärung zur Masterarbeit “Kernel-Assisted Copy-on-Write Snapshots for
Main-Memory HTAP Databases” von

Name: Wolf
Vorname: Lucas
Matrikelnummer: 3248234
Studiengang: Master Informatik (IM)

1. Mir ist bekannt, dass dieses Exemplar der Masterarbeit als Prüfungs-
leistung in das Eigentum der Ostbayerischen Technischen Hochschule
Regensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Masterarbeit selbständig verfasst,
noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche
und sinngemäße Zitate als solche gekennzeichnet habe.

Regensburg, den 15. September 2022

Lucas Wolf

v

TECHNICAL UNIVERSITY OF APPLIED SCIENCES REGENSBURG

Abstract
Kernel-Assisted Copy-on-Write Snapshots for Main-Memory HTAP

Databases

by Lucas WOLF

Conventional database management systems (DBMS) are typically oriented
towards either online transactional processing (OLTP) or online-analytical
processing (OLAP). Recently, this dichotomy has been upended by the emer-
gence of so-called hybrid transactional/analytical processing (HTAP) DBMS
that accommodate both analytical and transactional queries in a single data-
base. An early representative of this category is the main-memory system
HyPer which used the copy-on-write semantics of the POSIX system call fork
to isolate OLAP workloads to a transaction-consistent virtual memory snap-
shot of the primary database.

This thesis revisits the idea of virtual memory copy-on-write snapshots for
HTAP workloads in main-memory databases. We explore two alternative
kernel-supported snapshot mechanisms, scoot and an extension of mremap,
and draw a comparison to fork based on a set of criteria. To this end, we
present ScooterDB, an in-memory relational hybrid storage engine that effi-
ciently and transparently supports multiple snapshot mechanisms in a sin-
gle codebase. We run extensive experiments based on the popular TPC-H
and YCSB benchmarks and discuss the strengths and weaknesses of the anal-
ysed methods. ScooterDB achieves 23% lower average OLTP latency and up
to 75% lower snapshot creation times using custom fine-granular snapshot
mechanisms when compared to fork.

HTTPS://WWW.OTH-REGENSBURG.DE

vii

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

Kurzfassung
Kernel-Assisted Copy-on-Write Snapshots for Main-Memory HTAP

Databases

by Lucas WOLF

Konventionelle Datenbankverwaltungssysteme (DBVS) sind typischerweise
entweder auf Online-Transaktionsverarbeitung (OLTP) oder Online Analyt-
ical Processing (OLAP) ausgerichtet. Diese Dichotomie wurde jüngst durch
das Aufkommen sogenannter Hybrid Transactional/Analytical Processing
(HTAP) DBVS durchbrochen, welche transaktionale und analytische Abfra-
gen gleichermaßen unterstützen. Ein früher Repräsentant dieser Kategorie
ist das Hauptspeichersystem HyPer, welches die verzögerte Initialisierung
(copy-on-write) des POSIX-Systemaufrufs fork nutzt, um OLAP Nutzlasten
auf einen transaktionskonsistenten Schnapschuss des virtuellen Speichers
der Primärdatenbank zu isolieren.

Diese Arbeit greift die Idee der Verwendung virtueller Speicherschnappshüsse
mit verzögerter Initialisierung in Hauptspeicherdatenbanken erneut auf. Wir
untersuchen zwei alternative Systemkern-unterstützte Schnappschussmech-
anismen, scoot und eine Erweiterung des mremap Systemaufrufs, und ver-
gleichen sie anhand einer Reihe von Kriterien. Dazu präsentieren wir Scoo-
terDB, ein hauptspeicherresidentes, relationales und hybrides Datenablage-
verwaltungssystem, welches diverse Schnappschussmechanismen effizient
und transparent in einer einzigen Codebasis unterstützt. Wir führen um-
fangreiche Experimente basierend auf den universellen TPC-H und YCSB
Benchmarks durch, und diskutieren die Stärken und Schwächen der analysierten
Methoden. Dabei erreicht ScooterDB mit fein-granularen Schnappschuss-
mechanismen 23% geringere durschnittliche OLTP Latenzen und bis zu 75%
geringere Schnappsschuss-Erstellzeiten gegenüber fork.

HTTPS://WWW.OTH-REGENSBURG.DE

ix

Contents

Erklärung zur Masterarbeit iii

Abstract v

Kurzfassung vii

1 Introduction 1

2 Historical Context and Current Trends 7

3 Background 11
3.1 Virtual Memory . 12
3.2 Data Organisation . 18
3.3 Concurrency Control . 23
3.4 Database Benchmarks . 33

4 Copy-on-Write Snapshots for Main-Memory Databases 37
4.1 Characteristics . 38
4.2 Mechanisms . 41
4.3 ScooterDB . 46

5 Experiments 53
5.1 Setup . 53
5.2 Measurements . 58
5.3 Discussion . 71

6 Conclusion 73

A Implementation Details 75
A.1 ScooterDB . 75
A.2 TPC-H . 84

Bibliography 89

xi

List of Figures

1.1 Data integration into a data warehouse via an ETL pipeline . . 3
1.2 HTAP and disk persistence in the HyPer system, usin fork-

based virtual memory snapshots 4

3.1 Address resolution using a page table with a 16-bit address space 14
3.2 Address resolution using a two-level page table with a 20-bit

address space . 16
3.3 A storage block containing three records, laid out under the

n-ary storage model . 20
3.4 Three blocks laid out under the decomposition storage model,

containing the same tuples as figure 3.3 21
3.5 Continued example from figure 3.3 and 3.4, using the PAX

block layout . 22
3.6 An example of a schedule, involving two transactions 25
3.7 Illustrations of possible scheduling conflicts: dirty write (top

left), dirty read (top right), unrepeatable read (bottom right),
phantom read (bottom left) . 26

3.8 An unrepeatable-read conflict due to globally-inconsistent lock-
ing. 27

3.9 A corrected version of the conflicting schedule from figure 3.8,
using two-phase locking . 28

3.10 Cascading aborts in two-phase locking. 28

4.1 Steps of the scoot mechanism: The origin (top) is moved to an-
other location in virtual memory to create the duplicate (mid-
dle). Then, the origin is recreated using mmap (bottom). Figure
adapted from [83] . 44

4.2 Simplified UML class diagram of ScooterDB’s architecture . . 47
4.3 Architectural overview of ScooterDB using the ScootOrigin

block allocator . 52

5.1 Latency per OLAP query (TPC-H) by scale factor 59

xii

5.2 Latency per OLAP query (YCSB) by dataset size (in million
records) . 61

5.3 Latency per OLTP query (YCSB), factored by read probability
(rows) and dataset size (columns) 62

5.4 Latency per OLTP query (YCSB) for -r=0.4, -u=0.6, factored
by snapshot mechanism (rows) and dataset size (columns) . . 64

5.5 Latency per OLTP query (TPC-H), factored by scale factor. . . 66
5.6 Latency per OLTP query (TPC-H), factored by snapshot mech-

anism (rows) and scale factor (columns) 68
5.7 OLTP Throughput (YCSB) by dataset scale (in million records) 69
5.8 OLTP Througput (TPC-H) . 70

A.1 OLTP Queries used in our TPC-H experiments. 87

xiii

List of Tables

3.1 Isolation levels as specified in the SQL-92 standard 26

5.1 Experiment parameters common to all benchmarks and their
ScooterBench command-line flags. 54

5.2 Additional parameters for YCSB-based experiments. 57
5.3 YCSB experiments design space. 57
5.4 Additional parameters for TPC-H-based experiments. 58
5.5 TPC-H experiments design space. 58

xv

List of Abbreviations

DBMS Database Management System
ACID Atomicity, Consistecny, Isolation and Durability
OLAP Online Analytical Processing
OLTP Online Transactional Processing
HTAP Hybrid Transactional Analytical Processing
ETL Extract-Transform-Load (pipeline)
CoW Copy on Write
MVCC Multi-Version Concurrency Control
MMU Memory Management Unit
TLB Translation Lookaside Buffer
VMA Virtual Memory Area
NSM N-ary Storage Model
DSM Decomposition Storage Model
PAX Partition Attributes Across
RNG Random Number Generator
2PL Two-Phase Locking
SS2PL Strong Strict Two-Phase Locking
OCC Optimistic Concurrency Control
MVCC Multi-Version Concurrency Control

1

Chapter 1

Introduction

Relational database management systems (DBMS) are a fundamental build-
ing block of modern data-intensive applications [68]. As such, they fulfil
numerous duties: storing data reliably on some underlying medium, effi-
ciently serving sustained and diverse query workloads, providing capabili-
ties to recover from hardware and software faults, and maintaining statistics
of frequent access patterns for performance tuning. Additionally, most rela-
tional database systems1 aim to support ACID transactions [53, 48], i.e. the
joint execution of groups of queries under the following set of guarantees:

Atomicity The transaction is “all-or-nothing”; either all queries succeed or
all queries fail. If the transaction is aborted during its execution, the
effects of any intermediate modifications are automatically undone by
the system.

Consistency The transaction leaves the database in a consistent state, i.e.,
the system guarantees that any configured value- and foreign-key-con-
straints remain satisfied after the transaction commits. In a distributed
database system, the definition of consistency is extended to capture
the notion of all clients reading up-to-date data.

Isolation Concurrent transactions do not interfere with each other. This im-
plies that no running transaction sees the modifications made by other
running transactions. Rather, each running transaction has the impres-
sion of being the only user of the system.

Durability The results of a committed transaction are stored durably in the
system such that they can be restored after a system crash.

1Note that we will use the terms “database”, “database system”, and “database manage-
ment system” interchangeably throughout most of this work.

2 Chapter 1. Introduction

Realising these features efficiently involves a deep understanding of the un-
derlying hardware and operating system as well as a careful “systems” ap-
proach to memory management, concurrency, and I/O. Unsurprisingly sub-
stantial engineering effort has flown into the development of database sys-
tems over the recent decades (a brief history is recapitulated in chapter 2, see
also [68, 99, 115, 44] for an overview). Nevertheless, databases are far from
being considered a “solved problem”.

Transactional, Analytical and Hybrid Processing

Up until the early 2010s, most relational database systems could be confi-
dently classified as being geared towards either online transaction processing
(OLTP) or online-analytical processing (OLAP). OLTP workloads feature many
short-lived transactions that are typically write-heavy and modify most fields
of a record. This represents the classical usage pattern of a database. A real-
life example would be the maintenance of account balances within a banking
system or order tracking in an e-commerce application. OLAP queries, on
the other hand, are long-running and typically compute aggregates over few
attributes of an entire relation (or large subsets of it). Queries of this type
typically stem from business intelligence use cases geared towards finding
insights in large datasets.

Due to their long-running nature, OLAP query latencies (i.e. the time be-
tween a query is submitted and the answer is returned by the system) are typ-
ically orders of magnitudes higher than those of OLTP transactions. There-
fore, running many analytical queries together with the baseline OLTP work-
load within the same database implies the risk of “clogging the system”, i.e.
degrading OLTP performance by hogging available system resources.

The common solution to this problem, dating back to the 1990s, is to operate a
separate database dedicated to serving analytical queries (as depicted in fig-
ure 1.1). Such a database is commonly referred to as a data warehouse [33], and
various systems have been built around this specific use case (see e.g. [52, 79,
120, 72, 30]). Data is periodically loaded from the primary database(s) into
the warehouse. However, this is a cumbersome process that requires writ-
ing custom extraction-transform-load (ETL) pipelines which typically involve
costly transformations of the extracted data into special schemata. Also,
maintaining two separate data systems is a significant cost factor, and the
delay between data insertion and the ETL process may lead to analyses of
stale data.

Chapter 1. Introduction 3

Database Data Warehouse

ETL

OLTP OLAP

FIGURE 1.1: Data integration into a data warehouse via an ETL
pipeline

However, the strict OLTP/OLAP dichotomy has recently been upended with
the emergence of hybrid transactional analytical processing (HTAP) systems. As
the name implies, HTAP systems aim to efficiently serve analytical and trans-
actional workloads within the same database, without the need for data du-
plication or ETL pipelines. A key driver of this paradigm shift has been the
increasing viability of in-memory database systems [38], which eschew hard or
solid-state disks as the primary storage medium and instead store the entire
dataset in RAM. While the idea of an in-memory database system dates back
to the 1980s and 1990s [34, 125, 11], realising such a system for widespread
practical use became economically feasible only in the last decade due to ris-
ing RAM capacities at falling prices. As a result, numerous in-memory HTAP
systems have been proposed over the past few years; HyPer [63], SAP HANA
[40, 41], MemSQL [17], Peloton [96, 7], and NoisePage [73] to name a few.

Motivation

A particularly interesting representative is the HyPer system [63], one of
the first in-memory HTAP systems. HyPer was developed at TU Munich
between 2011 and 2020 before being sold to Tableau Software. To support
transactional and analytical queries within the same system, an early version
of HyPer made use of the fork system call’s copy-on-write (CoW) semantics2.
Copy-on-write mappings (also known as shadow copies) are a resource man-
agement technique that allows sharing data without immediately copying
the underlying bytes in memory. As long as the CoW mapping is only ac-
cessed by read operations, all readers reference the same memory location.

2A system call is a privileged operation offered by the operating system kernel.

4 Chapter 1. Introduction

Only when the data is first written to, a physical copy of the overwritten
contents is materialised (however, note that the granularity at which data
is duplicated may vary between implementations). This “lazy” approach
amortises the cost of making one large copy over several write accesses (and
prevents copying those portions that are never written to), which can, in turn,
significantly reduce latencies in performance-sensitive systems.

HyPer used CoW mappings to isolate long-running OLAP queries from its
transactional workload by delegating analytical processing to dedicated OLAP
“snapshots” of the database (see figure 1.2). This allowed the system to main-
tain high OLTP throughput while also letting OLAP queries operate on a
transaction-consistent view of the database from the point in time when the
snapshot was taken. Additionally, HyPer used the same snapshot mecha-
nism to periodically persist the database to disk for crash recovery.

Database

OLTP

OLAP

Snapshot

Snapshot

fork()

fork()

Persistent
Storage

FIGURE 1.2: HTAP and disk persistence in the HyPer system,
usin fork-based virtual memory snapshots

Creating CoW snapshots with fork is particularly appealing as snapshot cre-
ation is fully delegated to the virtual memory (VM) subsystem of the operat-
ing system kernel. Offloading snapshot creation to the kernel has substan-
tial performance benefits over methods acting purely in userspace, by min-
imising the overhead involved in creating and (eventually) materialising the

Chapter 1. Introduction 5

CoW-mapping (see section 4.2 or [83] for an in-depth discussion). Methods
realised in a single system call, such as fork, have the additional benefit of be-
ing thread-safe. However, later versions of HyPer replaced fork-based snap-
shots by multi-version concurrency control ([91, 14], see section 3.3), citing
fork as a bottleneck [114]. Since then, (fork-based) snapshots by-and-large
seem to have fallen out of favour in the database community. 3

Still, we believe that the idea of employing snapshots to support hybrid
transactional and analytical workloads is both promising and under-explored.
This assessment is based on recent work by Mintel [83], who proposed and
evaluated several alternative kernel-supported CoW mechanisms that enable
faster and more fine-granular snapshotting than fork (see section 4.2). There-
fore, this thesis revisits the topic of kernel-assisted VM snapshots in HTAP
databases. We present ScooterDB, our custom open-source hybrid in-memory
storage engine that transparently and efficiently supports different snapshot
mechanisms in a single code base. To our knowledge, there exists only one
related work by Sharma et al. [114], which integrates HyPer-style MVCC
with a custom system call to create fine-grained snapshots in a system called
AnkerDB (see section 3.3). While ScooterDB reaches single-transaction per-
formance competitive with AnkerDB, we stick to strictly serial execution as
in the original HyPer system. This restriction allows us to carry out an ex-
tensive analysis of the latency and throughput behaviour of three different
snapshot mechanisms (fork, scoot, and a modified version of mremap) with-
out having to account for confounding factors from transaction-level paral-
lelism. All of our experiments are based on adaptations of widely-recognised
industry-standard benchmarks (TPC-H [130] and YCSB [24]), modified to as-
sess the benefits and trade-offs of the tested approaches under varied OLTP
and OLAP workloads.

Scope

This work is structured as follows: Chapter 2 provides a condensed history
of database management system and current trends to put this work into a
larger context. Chapter 3 then provides the necessary technical background
on the underpinnings of main-memory databases and snapshot mechanisms.
As an exhaustive discussion would easily exceed the scope of this thesis, we
focus on aspects relevant to HTAP systems, and specifically HyPer. We also

3To our knowledge, Redis [74] is the only mainstream database that still uses fork to
create snapshots for persistence. Also note that Microsoft SQL Server [81] offers snapshot
capabilities, however little is known about its implementation.

6 Chapter 1. Introduction

give a brief overview of the TPC-H and YCSB database benchmark suites.
Chapter 4 introduces the virtual memory snapshot mechanisms analysed in
this work. We provide an in-depth discussion of the characteristics, desider-
ata and trade-offs of snapshots mechanisms in the context of HTAP database
applications. We also present ScooterDB, our in-memory storage engine de-
signed to flexibly and efficiently adapt to to various snapshot mechanisms.
Our experiments, measurements and findings are discussed in chapter 5.
Lastly, chapter 6 concludes this thesis by summarising our work and pro-
viding an outlook on future research.

7

Chapter 2

Historical Context and Current
Trends

Over the past decades, numerous database management systems of different
kind have emerged. DBDB1 alone lists more than 800 systems at the time of
writing. To put our work into a larger perspective we use this chapter to pro-
vide a brief recapitulation of the most important historic and current trends
in database design. We also briefly touch on the present state and highlight
some interesting developments alongsidethe HTAP movement described in
the introduction. For a more in-depth discussion, we refer the reader to [99,
44].

Navigational Databases (1960s)

The idea of an independent database shared between many users dates back
to the 1960s. Enabled by increasing computational capacity and economic vi-
ability of hard disk drives, the first database management systems emerged.
The most important representatives of this era are the Integrated Data Store
(IDS) [10] developed at General Electric, and the Information Management Sys-
tem (IMS) [78] developed at IBM for the Apollo program. Today, both IDS
and IMS are commonly classified as navigational databases due to their un-
derlying data model, which required programmers to manually formulate
query plans that explicitly navigate links between the stored records (often
expressed in the form of raw disk addresses). Doing so required a detailed
understanding of the physical layout of the stored data on disk as well as
available index structures, which resulted in significant engineering over-
head. However, note that despite their seeming obsolescence, navigational

1https://dbdb.io

https://dbdb.io

8 Chapter 2. Historical Context and Current Trends

databases remain relevant today; at the time of writing IMS is still actively
sold by IBM [55].

Relational Databases (1970s-1990s)

Wide-spread proliferation of relational database management systems began
with the development of the relational model by Edgar F. Codd in 1970 [19,
18] (who later also coined the term “OLAP” [111]). The relational model is
a mathematical model that describes the logical organisation of a database.
Instead of modelling data as a network of relationships, the relational model
describes data in terms of relations (tables) containing tuples (rows) from the
cross product of some domains (attribute types). Tuples are located using
logical identifiers (primary keys) instead of physical addresses, and can be
correlated with tuples from other relations via joins.

Imposing this simple mathematical description made it possible to describe a
set of tuples in a declarative way, using a relational algebra based on first-order
predicate logic. This made it both easier for the user to formulate queries, and
also served as a vantage point for generating efficient query plans (rather
than formulating them manually). To this day, relational algebra still forms
the basis of modern query plan compilers.

The first implementations of the relational model, System R [8, 15] at IBM and
the INGRES research project [121] at the University of California Berkeley,
began development in 1973. System R also introduced the SEQUEL query
language that eventually evolved into the SQL standard implemented by
most modern databases. System R and INGRES, in turn, sparked numer-
ous other developments in the space of relational DBMS over the following
decades. This includes database functionalities such as ACID transactions
[53, 48], database normalisation [20, 21, 39], concurrency control (see section
3.3), query optimisation [113] and recovery [84]. Many of today’s most ubiq-
uitous relational database systems [93, 54, 51] can be traced back to these
origins.

NoSQL (2000s)

In the early 2000s, the emergence of companies operating on “web-scale”
data resulted in increasing demand for parallel data processing. As adding
more computational capacity to a single database server (scaling up) reached
its economic and technical limits, several systems [32, 71, 116, 79] approached

Chapter 2. Historical Context and Current Trends 9

the problem by building extensible clusters of commodity machines (scaling
out). However, distributed systems are subject to fundamental constraints
expressed in the CAP [45] theorem: in the face of a network partition, a sys-
tem must choose between remaining available (any non-faulty cluster node
is able to answer a request) or consistent (readers are guaranteed to see the
results of all preceding writes).

In order to support high-availability use cases, some systems therefore aban-
doned consistency in favour for a more loosely defined notion of eventual con-
sistency (i.e., the system is guaranteed to reach a consistent state at some point
in the future). Frequently, these systems do not operate not on a relational,
but on some reduced or specialised, data model. Examples include key-
value stores [74, 92], wide-column stores [71, 16, 43] and document-oriented
databases [85, 42]. Due to their renunciation of fixed relational schemata,
ACID guarantees and SQL as a query language, these systems are sometimes
referred to as NoSQL databases.

NewSQL, HTAP and Specialized Systems (2010s-today)

Several trends can be identified in the larger database field over the past
years: One is the accommodation of OLTP and OLAP workloads within uni-
fied HTAP database systems as discussed extensively in this thesis. Another
is the desire to achieve the scalability of distributed NoSQL systems with-
out compromising on benefits of relational databases such as ACID transac-
tions. Systems that attempt to unify these aspects are frequently refred to as
NewSQL databases [95, 119, 26]. A third is the tendency towards specialised
systems, including graph databases [100, 89, 9], timeseries databases [1, 97,
127, 57], or blockchain databases [88, 98].

11

Chapter 3

Background

Modern database management systems are highly-optimised software sys-
tems. As outlined in the previous chapter, these systems comprise a host of
different architectures each accepting a different set of trade-offs. Yet a num-
ber of common architectural components can be identified (adapted from
[99]):

Transport The Transport subsystem is responsible for communicating with
clients, typically over some network protocol. In distributed database
systems, it is also responsible for orchestrating the communicating with
other nodes in the cluster.

Query Processing The Query Processing component translates incoming queries
from the transport system (usually expressed in a query language such
as SQL) into some executable query plan. Typically, this involves pars-
ing the query into an intermediate representation rooted in relational
algebra, and optimising this representation using cost heuristics.

Query Execution Query Execution is concerned with carrying out the se-
quence of steps laid out in a query plan to produce the desired result
by implementing the various operators such as selections, projections
and joins. This includes execution-specific optimisations such as vec-
torization or just-in-time compilation of queries into machine code.

Storage The Storage layer is responsible for organising the layout of data
on the underlying storage medium, as well as ensuring its integrity in
the face of concurrent transactions. The latter task is also known as
concurrency control. Also, storage engines often provide mechanisms
for crash recovery.

12 Chapter 3. Background

This chapter aims to illustrate selected components of main-memory HTAP
databases relevant to this thesis. Given the nature of our work, special em-
phasis is laid on the underlying operating system which manages the re-
sources upon which the database relies. As most of our work is based on Hy-
Per [63], we will use this system as both a focal point and running example,
and occasionally point out noteworthy alternative approaches. Needless to
say, we cannot possibly provide an exhaustive discussion within the scope of
this thesis. For a comprehensive treatment of these topics, we ask the reader
to refer to an introductory text such as [115, 44, 99] on database management
systems, or [122, 77] on operating systems and the Linux kernel.

The remainder of this chapter is structured as follows: Section 3.1 discusses
virtual memory, a common abstraction of physical RAM provided by the
operating system kernel. All of the copy-on-write snapshot mechanisms pre-
sented in chapter 4 are implemented by cleverly manipulating virtual mem-
ory. The data layout of main-memory databases is discussed in section 3.2.
This layout is typically integrated with concurrency control, discussed in sec-
tion 3.3. Although we do not implement concurrency control in ScooterDB,
it is important to understand the implications to draw a fair comparison to
other systems, such as AnKer [114]. Lastly, section 3.4 provides an overview
of industry-standard benchmarks to assess the performance of database sys-
tems.

3.1 Virtual Memory

We begin our discussion of main-memory databases by investigating the re-
source they primarily rely on: main memory. Main Memory, also known as
random-access memory (RAM), is fundamentally different from secondary stor-
age such as hard-drive or solid-state disks in that it is byte-addressable and
has considerably lower access times. In early computing systems, memory
management was largely left to the program designer [122]. RAM had to be
referenced either directly, using hard-coded addresses, or through crude ab-
stractions such as shifting all memory references by some per-program offset
to enable basic forms of multi-processing [61]. Programs that exceeded the
available (portion of) memory had to rely on hand-crafted workarounds such
as overlays, making them error-prone and difficult to port across systems.
Unsurprisingly, operating systems and hardware vendors soon introduced a

3.1. Virtual Memory 13

more flexible abstraction over raw memory. Tanenbaum [122] identifies two
major objectives to this end:

Protection prevent concurrent processes from accessing each other’s data.
Without protection, an illicit write access from one program might cause
another program to crash. Similarly, an adversary might exploit a lack
of protection to read sensitive data from other processes running on the
same machine.

Relocation transparently move (parts of) a program within memory, or per-
haps even out of memory. This follows the observation that most pro-
grams do not access memory locations uniformly at random, but typi-
cally reference addresses that have been accessed before or are close by
(properties known as temporal and spatial locality, respectively [64]).
Keeping only those parts in memory that are likely to be accessed again
soon decreases initial load times, and also allows for fitting more pro-
grams into memory at the same time, even if their combined resource
requirements would exceed the available physical RAM.

Modern operating systems and processor architectures achieve these objec-
tives by implementing an abstraction of RAM called Virtual Memory [66, 47,
77]. Using virtual memory, each process operates on a contiguous, uniform
address space that is as large as the theoretically addressable memory on the
given CPU architecture (even if less memory is actually available on the sys-
tem). To the process its user space appears exclusive; it is the sole writer and
reader (however, note that regions of the address space can be voluntarily
shared with other processes using memory mappings as discussed below).
This implicitly achieves protection: A process simply cannot access data of
another process as any memory reference is interpreted within the context
of its own address space. The address space is commonly divided into a
“lower” part that is used by the program during its execution (userspace),
and a “higher” part that is used to overlay the kernel’s address space (kernel-
space). On 32-bit x86 systems running Linux, this user-kernel-space split is
typically 3/1, with the user space occupying 3 GiB from address 0x0000_0000
to 0xBFFF_FFFF and kernel space sitting in the remaining GiB at 0xC000_0000
to 0xFFFF_FFFF [77, 28]. On x86-64, the picture gets more complicated due
to hardware implementation details that exceed the scope of this introduc-
tion. In practice, however, the addressable user space is orders of magni-
tudes larger than on x86-32 (several hundred TiB), and therefore likely to
exceed practically available RAM anyway.

14 Chapter 3. Background

0x8

0xa

0xb

0xc

Frame #7
...

0x250xa23 0x24

Page Table

0x 9a23

RAM

0x9

Address

Frame #6
6

...
...

...

FIGURE 3.1: Address resolution using a page table with a 16-bit
address space

Paging

Virtual memory is implemented by dividing the process address space into
a set of pages, i.e. continuous sections of fixed size. The size of a page again
depends on both the operating system and the underlying architecture; on
x86/Linux 4 KiB is the norm, yet larger page sizes are possible and used in
practice. Pages are mapped onto physical memory frames of matching size by
the kernel. Frames are identified by a page frame number (PFN) from which the
physical starting address of the respective frame can be derived. This page-
level granularity enables the operating system to selectively move pages in
and out of memory depending on their usage, thus achieving the goal of
relocation as laid out above.

The mapping from pages to frames is maintained by the operating system
in a so-called page table. Given a (virtual) memory address, a prefix of the
address in binary representation is used as an index into the table. The ta-
ble entry at this position contains information on whether the page exists, is
backed by a frame, and if so, its PFN (next to some additional metadata, such
as flags for read/write/execute privileges). The remainder of the address is
then interpreted as an offset within the frame. Going with the example of
4 KiB pages, addressing each byte within the page requires a 12 bit offset
(212 = 4096), leaving 20 bits for the prefix. (Note that this indexing scheme
effectively constrains page sizes to a power of 2.) Figure 3.1 shows a simpli-
fied example with a 16-bit address space.

3.1. Virtual Memory 15

The actual translation of virtual to physical addresses is typically performed
in hardware, by the Memory Management Unit (MMU). The MMU is a ded-
icated controller that is typically integrated into the CPU and serves as an
intermediary for all instructions referencing memory. When a process exe-
cutes an instruction that interacts with memory, the MMU consults the page
table1 to identify whether the page is backed by a frame. If so, the address
translation is performed as described above. Otherwise, the CPU is trapped
and hands execution to the operating system to provide the required page
(e.g. by loading it from an on-disk swap file). This latter scenario is known
as a page fault. Note that the actual page table resides in (kernel) memory
and the MMU is simply informed about its location (on x86, this is amounts
to setting the CR3 register).

Optimisations

In practice, a few optimisations are implemented to ensure that address trans-
lation is fast enough as to not degrade system performance: Keeping entire
page tables in memory is not feasible. With a page size of 4KiB, a single page
table would comprise one million entries on a 32-bit machine (220 ≈ 1M, note
that the prefix length is the relevant factor here), and several trillion entries
on 64-bit architectures. This is aggravated by the fact that a separate page
table must be maintained for each running process, as each process operates
on a separate address space.

This problem is solved by capitalising on the observation that most processes
are unlikely to ever utilise the full theoretically-available address space (es-
pecially in the 64-bit scenario). Hence, large parts of the address space are
never backed by frames, and the associated page tables are only sparsely
populated. Therefore, OS and MMU use a tree of page tables that impose
a hierarchical structure on the address space. This concept is known as a
multi-level page table. An example with two levels is visualised in figure 3.2.
Lower-level page tables (corresponding to leaves of the tree) act as ordinary
page tables, as described above, but only for some contiguous portion of the
address space. Higher-level page tables (inner nodes) do not index pages di-
rectly, but use some prefix of the address to determine the lower-level page-
table that is authoritative for the requested page. The result is that empty
portions of the address space can be pruned from the tree; for these sections

1Note that this is not fully accurate, see below

16 Chapter 3. Background

0x 0a17c723

First-Level Second-Level
Table Table

RAM

...

...

...

...

FIGURE 3.2: Address resolution using a two-level page table
with a 20-bit address space

no lower-level page tables have to be allocated. At the time of writing, Linux
uses a four-level page table.

A second optimisation is to perform the translation of frequently-used virtual
addresses without requiring one or several additional page-table look-ups in
memory. Modern CPUs accomplish this by adding a dedicated hardware
cache, called the Translation Lookaside Buffer (TLB) to their MMUs. When an
address is resolved, the MMU first queries the TLB; if a mapping is present
(a TLB hit), the physical address of the page frame is directly returned from
the TLB (provided that the request respects the access rights of the requested
page). If the page is not present (called a TLB miss or also a soft miss), the in-
memory page table hierarchy is consulted (performing a page table walk). If
the page exists but is not backed by a frame (a page fault or hard miss), the OS
pages the required page in from disk. Otherwise (e.g. when the page does
not exist or the access violates the page’s privileges), the requesting process
is notified with a SIGSEGV signal.

Translation lookaside buffers and multi-level page tables are by far not the
only optimisations found in practical virtual memory implementations. Other
ideas include deferring page allocations to their first use (demand paging [69]),
coalescing pages referencing frames with identical contents at runtime (kernel

3.1. Virtual Memory 17

samepage merging [23]) and optimised page replacement algorithms [47].

Virtual Memory Areas

In Linux, a process’s userspace is further divided into virtual memory areas
(VMAs), also referred to as memory mappings. Essentially, a VMA is some con-
tiguous range of pages that are used and managed together. Common VMAs
include the process’s text segment (storing the program code), its initialised
and uninitialised data segments (storing global and static variables), and the
well-known stack and heap segments. The nature of a mapping depends on
a number of factors (see e.g., [64, 105]), but can be largely categorised along
two dimensions:

Type A VMA can be either file-based or anonymous. File-based mappings are,
as the name implies, backed by some file descriptor, allowing to overlay
external resources into the address space. Anonymous mappings are
simply a range of bytes in memory.

Visibility Similarly, a mapping can be either shared or private. Shared map-
pings allow multiple processes to modify the VMA’s contents by map-
ping the same pages in their respective address spaces. Private map-
pings, on the other hand, are copy-on-write: If several processes map
the same pages, changes made by one process will not be made visible
to the other processes. Rather, the kernel will create a private copy of
the modified pages and adjust page-table entries accordingly. In prac-
tice, this is achieved by marking the mapped pages read-only while as-
signing read- and write-privileges to the VMA. This signals the kernel
that write-accesses should be resolved using CoW.

The entirety of a process’s active memory mappings can be inspected through
the proc filesystem (/proc/<pid>/map) or the ‘pmap‘ command. Memory
mappings can be created and managed via mmap [105] and associated system
calls. We will revisit one of these syscalls, mremap [106] in section 4.2 in more
detail. A full discussion of mmap and its parameters would easily exceed the
scope of this section. Therefore, suffice it to say that mmap is used pervasively
throughout the Linux system. For example, malloc [107] falls back to mmap
when requested to allocate blocks of memory larger than a certain size (de-
fined by the MMAP_THRESHOLD parameter [104]).

18 Chapter 3. Background

3.2 Data Organisation

A central question in database design is how data is laid out on the underly-
ing storage. The answer to this question largely depends on two factors: 1)
the primary storage medium (on-disk or in-memory) and 2) the anticipated
workload (OLTP, OLAP or hybrid). This section briefly touches on the first
factor to provide some general context, and then discusses the second factor
in greater detail with special regard given to main-memory databases.

Buffer Pools

A defining assumption of conventional disk-based DBMS is that the col-
lective database contents (i.e., schemata, records, indexes, . . .) exceed the
available RAM. As disk accesses are orders of magnitude more costly than
reading from RAM, the system has to make an informed decision which
database items (tuples, catalogs, indexes, etc.) to hold in memory. To this
end, database systems subdivide the managed data into fixed-sized pages,
typically chosen to be some (small) multiple of the disk’s block size, usually
4 KiB.

Pages are cached in a so-called buffer pool, a fixed-length array of page buffers
(called frames) managed by the database system. [44, 99] Once the buffer
pool runs full, a request for an absent page will cause the database to remove
a page from the buffer (according to some eviction strategy), write the re-
moved page to disk if necessary, and load the requested page into the evicted
frame. 2 The database system might additionally choose to prevent the evic-
tion of certain highly-used pages, such as root nodes of a primary index’s
B-tree. This is known as pinning the respective page to the buffer.

In-memory Block Storage

The picture looks fundamentally different in main-memory databases: Here,
the entire dataset is always resident in memory, obviating the need for a ded-
icated buffer pool. Also, note that disk-oriented systems must maintain all
database objects, including indexes, catalogs, schemas and other metadata

2The astute reader will notice that buffer pools closely resemble the virtual memory
mechanism described in the previous section. A natural idea would thus be to offload
(database) page management to the kernel by creating a disk-backed memory mapping us-
ing the mmap system call. In fact, this has been tried by some storage managers (e.g. the
NoSQL storage manager WiredTiger [86], which was later acquired by MongoDB [85]), but
has turned out to be suboptimal since the OS lacks semantic information about (database)
page usage and running transactions. [29]

3.2. Data Organisation 19

in pages to ensure persistent storage. Main-memory databases, on the other
hand, are free to use ordinary data structures. Although such a system could
choose to store records (i.e. table rows, or more formally tuples) directly in a
dynamic array or tree index, most main-memory systems still resort to allo-
cating fixed-size blocks3 for tuple storage.

While this makes the development of such a system more cumbersome, it
allows more fine-grained control over memory allocations, especially under
transactional workloads. Consider for example the straw man idea of stor-
ing all records in a dynamic array (known as a vector in some programming
lanuages). Once the array has reached its capacity, the entire array would
need to be reallocated and all its contents moved to the new location. Even
though insertions can be proven to have constant amortized time complex-
ity [27], the disruption in transaction processing due to resizing is typically
not tolerable in practice. (Also note that indices would have to be rewritten
whenever the physical location of the indexed records changes).

N-ary Storage Model

There are several strategies for organising records within a block: Under the
n-ary storage model (NSM), the rows of a table are laid out sequentially within
a page. Figure 3.3 depicts an example with one block containing three tuples,
each consisting of three attributes (A, B and C) of different lengths. Typi-
cally, only records from a single table are stored within a specific page to re-
duce management overhead. Systems that employ the NSM are also known
as row stores. Row stores are particularly well-suited for OLTP workloads
where inserts and updates are frequent, because most of the modified tuple
is prefetched into the cache when the tuple is first referenced.

However, special care must be given to the treatment of variable-length at-
tributes such as VARCHAR or BLOB columns. These lead to non-uniform tuple
lengths, which can cause fragmentation within the page as deletes and inserts
accumulate and create more and more “gaps” between the stored records.
This, in turn, makes it both difficult to 1) locate tuples (since possible starting
positions are not simply some multiple of the record length as in an conven-
tional array), and 2) wastes space (as the individual gaps might not be large
enough to accommodate an inserted tuple even though the net free space
might be sufficient).

3Going forward, we use the terms “block” and “page interchangeably.

20 Chapter 3. Background

A1 B1 C1 A2 B2

C2 A3 B3 C3

. . .

FIGURE 3.3: A storage block containing three records, laid out
under the n-ary storage model

The first problem is typically approached through a technique called slotted
pages, that maintains a separate pointer array at a fixed location within the
page to index the starting locations of the contained records. Figure 3.3 shows
such a slot array at the end of the block. Solving the second problem requires
recompacting (defragmenting) pages, either when writing a page out to disk,
or more commonly, periodically on a background vacuum process or thread.
An alternative to slotted pages could involve fixing attribute lengths artifi-
cially by moving variable-length records to dedicated varlen blocks and only
store pointers within the record. Note however, that this strategy is only vi-
able in memory as following a pointer to a varlen block involves fetching a
second page (which might not be cached in the buffer pool). Also, the varlen
block itself still suffers from internal fragmentation and must be periodically
re-compacted.

Decomposition Storage Model

An alternative to organise data within a block is the decomposition storage
model (DSM) [25, 65]. Whereas NSM stores tables by row, DSM stores tables
by column: All attribute values belonging to a single column across all tuples
from a given relation are laid out sequentially, one after another. Figure 3.4
shows the block contents of figure 3.3 under DSM layout. Unsurprisingly,
systems that follow this approach are commonly referred to as column stores.

While row-oriented storage is well-suited for transactional workloads, col-
umn storage lends itself to analytical queries which typically compute ag-
gregates over relatively few columns. By laying out all values inside a col-
umn contiguously in succession, scanning the full column (as is required for
calculating aggregates) is likely to exhibit high cache hit rates. Additionally,

3.2. Data Organisation 21

A1 B1

C1

B3A2 B2

C2

A3

C3

.

. . .

FIGURE 3.4: Three blocks laid out under the decomposition
storage model, containing the same tuples as figure 3.3

column stores allow for efficient lossless data compression to decrease the
overall database size. This is especially relevant to main-memory systems,
as RAM is still a limited resource. A simple compression scheme is to repre-
sent column data in run-length encoding (RLE) [110]: Instead of storing each
value explicitly, repeated column entries with the same value are coalesced
into a triple containing the value itself, the logical starting index within the
column, and the number of compressed elements. (Note that the achievable
compression ratio using RLE is dependent on the sorting of the compressed
column.) While more optimised column compression schemes exist [3, 87,
12], a detailed discussion extends the scope of this chapter.

The idea of column-oriented data layout was initially explored by Cantor
[62] and Sybase IQ (now SAP IQ [76, 112]), and has since then permeated
the field of database systems. To our knowledge, virtually all main-memory
OLAP/HTAP systems use columnar storage in some form (see e.g. [72, 56,
132, 7]). Most major current relational database systems that we are aware of
[51, 93, 54, 82] offer table-scoped options for either row or column storage.

Hybrid Storage

Given the trade-off between row and column storage, recent database sys-
tems have attempted to reconcile DSM and NSM in order to facilitate HTAP
workloads. These endeavours are largely driven by an insight into common
patterns in tuple accesses: Records are typically modified most frequently
immediately after being inserted into the database. These records are said
to be “hot”. Over the record’s lifetime, write accesses become less frequent,
until eventually the tuple is effectively read-only (i.e., “cold”).

22 Chapter 3. Background

A1

B1

C1

A2

B2

C2

A3

B3

C3

. . .

FIGURE 3.5: Continued example from figure 3.3 and 3.4, using
the PAX block layout

Given the strengths of the storage schemes described above, a straightfor-
ward optimisation would be to maintain hot tuples in a row store, and cold
tuples in a column store. This idea has been realised in several ways over the
past years: The fractured mirrors approach [108] chooses to maintain a DSM-
structured logical copy of the primary NSM-structured database, and period-
ically update the copy. OLTP transactions operate on the original, whereas
OLAP queries are served from the mirror. This is in essence, similar to an ETL
pipeline, only that the process takes place within the same database system
and does not involve schema migrations. However, this has the downside of
unnecessary space overhead, as both hot and cold tuples are present in either
“side” of the database. A simple alternative is thus to maintain use the DSM
store exclusively to stage updates to the main (NSM) store. This approach is
referred to as delta storage and employed by the SAP HANA system [40, 41].

Both fractured mirrors and delta stores require separate specialised query
operators to realise the same functionality, depending on where the queried
tuples are located. This is a considerable disadvantage, as it amounts to de-
veloping, optimising and maintaining two separate execution engines within
the same database system. To remove this redundancy, Peloton [7] imple-
mented a dedicated abstraction layer called “tiles” to provide a unified view
on the row- and column-store parts of their fractured mirrors system. How-
ever, the working group behind Peloton has reported to have abandoned
the single-execution adaptive storage model, citing “significant engineering
overhead” (see [94], slide 44).

Their most recent system, Noisepage [73], instead follows an older, consid-
erably more simple approach called partition attributes across (PAX) [2]. In
PAX, each block stores full tuples (as in DSM), however within a given block,
records are laid out column-wise (as in NSM). An example is shown in figure

3.3. Concurrency Control 23

3.5. This effectively strikes a compromise between row and column stor-
age, with the advantage of only requiring a single execution engine. Al-
though PAX is a relatively crude combination compared to the mechanisms
presented above, it is reported to perform competitively in practice.

Log-structured Storage

An entirely different approach to data organisation is log-structured storage,
also known as immutable storage [68]. Under this approach, stored records
are never modified; instead, each transaction simply adds some delta to an
append-only log. This also holds for deletions, which mark deleted records
with a special log entry called a tombstone. Periodically, a background com-
paction thread scans the log and eliminates redundant entries to keep the
size of the growing log at bay. To expedite lookups (which otherwise would
have to scan through the entire log), the log is frequently indexed using
log-structured merge trees, possibly in combination with bloom filters [13].
While log-structured storage is rarely seen in relational DBMS (we are at the
time of writing not aware of a relevant representative), they are intensively
used in NoSQL systems [16, 71, 46, 36].

3.3 Concurrency Control

The concurrency control system of a DBMS ensures isolation of concurrent
transactions. Recall from chapter 1 that isolation is one of the ACID guar-
antees made by most (relational) databases. Specifically, modifications made
by one transaction do not influence other concurrently-running transactions
that operate on the same data.

Isolation is trivial to achieve in a single-threaded system where only one
query can modify the database at any given time. This however neglects
the realities of modern-day computing systems featuring multi-core CPU
and hyper-threading. A comparatively simple improvement is to partition
the database into disjunct portions and require that only one transaction per
partition is admitted in parallel. This strategy was pursued by the initial Hy-
Per system [63] for OLTP queries, in conjunction with snapshotting to isolate
long-running OLAP queries that typically cross partition boundaries.

However, this approach has the downside of severely limiting the maximum
degree of parallelism in the system. HyPer therefore migrated to a solution

24 Chapter 3. Background

based on multi-version concurrency control [91, 14], which was later com-
bined with a custom system call for creating virtual-memory snapshots in
the AnKer system by Sharma et al. [114]. We do not consider concurrency
control in this work, as we aim to scrutinise the effects of different snapshot
mechanisms without interference from concurrent transactions. Neverthe-
less, this section will provide a condensed overview of the field as well as
briefly discuss the strategies pursued by HyPer and AnKer to put our work
into a broader context.

Concurrency Control Theory

So far, we have defined isolation only in a prosaic way. In practice, concur-
rency control algorithms are based on an underlying mathematical formal-
ism that precisely captures this notion. While a full discussion lies outside
the scope of this thesis, we want to briefly sketch the most important aspects
of this theory:

The central object of concurrency control theory is a schedule, which is de-
fined as a total4 order on the operations executed by the considered set of
transactions. Here, the term operation refers to an abstract set of possible in-
teractions with the database. We use R(X) to denote an operation that reads
from some database object X, and similarly W(X) for an operation that writes
to X. The specific nature of the database object is not important; X might be
a table, tuple, or attribute, depending on the underlying storage model and
granularity of the concurrency control implementation. Further, we consider
committing and aborting to be operations, and will occasionally extend the
set of operations if required. An example of a schedule with two transactions,
T1 and T2, is depicted in figure 3.6: different columns correspond to different
transactions and time is represented by the vertical axis, running from top to
bottom.

Given the notion of a schedule, concurrency control theory asks which of the
constructible schedules for a given set of transactions is valid. In particular,
given two concurrent transactions T1 and T2, a valid schedule should avoid
the following set of conflicts:

Dirty Writes T2 overwrites a value written by T1 before T1 has committed.
This is also known as a write-write conflict.

4Note that the order may only be partial, depending on whether concurrency is realised
by truly parallel execution or time sharing. However, this detail does not bear any implica-
tion on the topics discussed in this section.

3.3. Concurrency Control 25

T1 T2

R(X)
R(Y)

W(X)
COMMIT

R(X)
W(X)
COMMIT

FIGURE 3.6: An example of a schedule, involving two transac-
tions

Non-Repeatable Reads T1 reads a value before and after it has been written
by T2. This is known as a read-write conflict.

Dirty Reads T2 reads a value written by T1, then T1 aborts, sometimes re-
ferred to as a write-read conflict.

Phantom Reads T1 computes some aggregation (e.g. a COUNT (*)) before
and after the underlying collection is modified by T2. This is another
type of read-write conflict.

Figure 3.7 contains examples of schedules that illustrate these types of con-
flicts. Note that we deviate from the previously introduced notation and use
COUNT(*) and INSERT X to signify the conflicting operations causing a phan-
tom read anomaly.

To avoid these conflicts, concurrency control theory introduces the concept
of serialisability. In general terms, a schedule is serialisable if its execution has
the same net effect on the database as executing an equivalent serial schedule,
i.e., one where all transactions are executed in strict sequence, one at a time.5

However, higher degrees of parallelism can typically be achieved by compro-
mising on serialisability at the cost of accepting some of the inconsistencies
outlined above. The SQL-92 standard therefore defines four isolation levels
under which transactions can be executed. Note that all levels prevent write-
write conflicts. The specific levels and their implications are listed in table 3.1
(replicated from [75]). Most SQL-compliant database systems allow for con-
figuring the desired isolation level on a system-wide or per-transaction basis,

5Practical algorithms and proofs typically approach serialisability through some deriva-
tive notion, such as conflict-serialisability. Conflict-serialisable schedules represent a subset
of serialisable schedules which can be analysed using graph-theoretical means. However,
these specifics are outside the scope of this thesis.

26 Chapter 3. Background

T1 T2

R(X)
W(X)

W(X)
COMMIT

COMMIT

T1 T2

W(X)
R(X)
W(X)
COMMIT

ABORT

T1 T2

COUNT(*)
INSERT X

COUNT(*)
COMMIT

COMMIT

T1 T2

R(X)
R(X)
W(X)
COMMIT

R(X)
COMMIT

FIGURE 3.7: Illustrations of possible scheduling conflicts: dirty
write (top left), dirty read (top right), unrepeatable read (bot-

tom right), phantom read (bottom left)

Dirty Read Unrepeatable Read Phantom Read

SERIALIZABLE No No No
REPEATABLE READ No No Maybe
READ COMMITTED No Maybe Maybe

READ UNCOMMITTED Maybe Maybe Maybe

TABLE 3.1: Isolation levels as specified in the SQL-92 standard

e.g. [93, 51, 81]. The remainder of this section will discuss several approaches
to construct schedules that satisfy different isolation levels.

Pessimistic Approaches

Pessimistic concurrency control approaches are based on the assumption that
conflicts between transactions are frequent and therefore, must be avoided.
The most common approach to avoid conflicts is by enforcing mutual exclu-
sion: Before a transaction may read or modify a database object, it first has to
acquire a lock6 on it.

6Note that the term “lock” is used differently in the context of database management
systems compared to other systems programming disciplines. In particular, a “lock” is not
necessarily a synchronisation primitive offered by the operating system to mediate shared
memory resources between threads, but a higher-level object managed by the database. For
example, some database systems offer intention locks to efficiently lock many database ob-
jects in hierarchical granularity [49]. These details are however beyond the scope of this
introduction.

3.3. Concurrency Control 27

T1 T2

LOCK(X)
R(X)

UNLOCK(X)
LOCK(X)

W(X)
UNLOCK(X)

COMMIT
LOCK(X)

R(X)
UNLOCK(X)

COMMIT

FIGURE 3.8: An unrepeatable-read conflict due to globally-
inconsistent locking.

However, note that locking alone is not sufficient to ensure serialisability.
Figure 3.8 shows an example where transaction T2 experiences an unrepeat-
able read although both T1 and T2 have acquired all appropriate locks. The
problem is that while locking is correct locally (i.e., on an operation level), T1

releases a lock midway to reclaim it later, allowing T2 to cause the inconsis-
tency in the mean time.

The problem described above is remedied by a technique called two-phase
locking (2PL) [118]. To our knowledge, 2PL is the oldest existing concurrency
control technique, dating back to the System R project at IBM. Under 2PL, the
transaction is divided into two phases: a growing phase (or expanding phase) in
which locks can be acquired, followed by a shrinking phase in which locks are
released (but no further locks can be acquired). This effectively prevents the
second lock acquisition on T1 in the previous example and thereby avoid-
ing the read-write conflict. Figure 3.9 shows a conflict-free version of the
example from figure 3.8 using 2PL, annotated with dashed horizontal lines
to visually separate the growing from the shrinking phases of the respective
transactions.

While 2PL can be proven to only generate serialisable schedules, it is not free
of problems. One common problem, known as cascading aborts, refers to the
phenomenon that an aborting transaction can lead to an abort of a dependent
transaction to prevent a dirty read conflict. An example is shown in figure
3.10: T2 has to abort, because the R(X) operation has read data written by the
W(X) of T1 before T1 aborted. This is undesirable, as the work done by T2

gets lost as well.

28 Chapter 3. Background

T1 T2

LOCK(X)
R(X)

LOCK(X)
...

(waiting on lock)
...

R(X)

UNLOCK(X)
(lock granted)

COMMIT
...

W(X)

UNLOCK(X)
COMMIT

FIGURE 3.9: A corrected version of the conflicting schedule
from figure 3.8, using two-phase locking

T1 T2

LOCK(X)
W(X)

UNLOCK(X)
LOCK(X)

R(X)
W(X)

...
ABORT (must abort as well)

FIGURE 3.10: Cascading aborts in two-phase locking.

3.3. Concurrency Control 29

A common remedy to this problem is a modification of the 2PL algorithm
referred to as Strong String 2PL (SS2PL), or sometimes Rigorous 2PL. SS2PL
avoids cascading aborts by releasing locks only after the holding transac-
tion has committed or aborted. In the example above, this prevents T2 from
acquiring the lock on X before T1 aborts, thereby preventing the write-read
anomaly from happening.

A different problem is that of a deadlock, i.e. a cycle of transactions mutu-
ally waiting for the release of a lock held by another transaction. Deadlocks
have been extensively studied in Computer Science and are characterised by
the well-known Coffman conditions [60]. In particular, a deadlock can arise
if (and only if) all of the following four conditions (here phrased using the
terminoloy of transactions) are satisfied:

Mutual Exclusion A lock must be held exclusively by one transaction at a
time.

Hold and Wait A transaction currently holding a lock may request arbitrary
many more locks.

No preemption A lock being held by a transaction may only be released vol-
untarily by that transaction.

Circular Wait Each transaction involved in the deadlock must be waiting
for another lock held by a different transaction such that the graph of
acquisition requests forms a cycle.

Strategies to resolve deadlocks must invariably prevent one or more of these
conditions from becoming fulfilled. In the case of 2PL and its variants, two
strategies are commonly employed: Under deadlock detection, the database
systems maintains a graph of pending lock acquisition requests (known as a
waits-for graph) and regularly checks that graph for cycles. When a cycle is
detected, one of the waiting transactions is aborted and its locks are released.
This effectively prevents the circular-wait condition from becoming fulfilled
by sacrificing the no-preemption guarantee. Deadlock prevention on the other
hand, imposes an order by which locks must be acquired (typically based on
a timestamp assigned when the transaction is admitted), thus restricting the
hold-and-wait condition.

30 Chapter 3. Background

Optimistic Approaches

Optimistic approaches are based on the assumption that scheduling conflicts
are rare and should therefore be resolved ad hoc, while allowing for higher
parallelism during normal execution. Contrast this to the pessimistic concur-
rency approaches discussed above, such as 2PL, which assume that conflicts
occur frequently and must therefore be avoided by explicit locking.

Optimistic approaches typically resolve conflicts by imposing a serialisabil-
ity order on running transactions based on monotonic timestamps assigned
at the beginning of the transaction. In particular, if for two transactions T1

and T2 it holds that τ(T1) < τ(T2) (where τ(Ti) denotes the timestamp of
transaction Ti), then the resulting schedule must be equivalent to a serial
schedule where T1 commits before T2. Mechanisms that operate based on
this principle are therefore also known as timestamp ordering protocols.

A popular representative of timestamp ordering is the basic timestamp order-
ing protocol. Basic timestamp ordering is guaranteed to generate serialisable
schedules, without resorting to locking (and is therefore explicitly deadlock-
free). Note that there exist modifications of the basic timestamp ordering
protocol that trade-off (conflict-)serialisability for higher parallelism (such as
the Thomas Write Rule [126]), which are however beyond the scope of this
introduction.

Under the basic timestamp ordering protocol, each database object X is an-
notated with a read timestamp τR(X) and a write timestamp τW(X). Whenever
a transaction T attempts to read an object X, it first checks whether its times-
tamp is larger or equal compared to τW(X). If so, the most recent write of
X happened before T’s admission and is therefore safe to read. T will then
copy X into a local buffer (to ensure repeatable reads) and update τR(X) to
max(τR(X)), τ(X)) (i.e., the most recent time that X has been read).

Otherwise, i.e. if τ(T) < τW(X), X has been written between T’s admission
and the attempted read, and therefore cannot be read safely. In this scenario,
T has no other options but to abort and try again later (with a newer trans-
action timestamp). Writes are similar: The transaction first asserts that its
timestamp is at least as new as the latest recorded read and write of the ob-
ject (i.e., τ(T) ≥ τR(X) and τ(T) ≥ τW(X)). In this case, it updates the value
of X, copies it into a local buffer for read repeatability, and sets τW(X) to its
own timestamp τ(T). Otherwise T aborts to reattempt execution at some
later point in time.

3.3. Concurrency Control 31

A second important representative of timestamp-based optimistic concur-
rency control is the optimistic concurrency control (OCC) protocol [70]. Note
that the established nomenclature is prone to confusion: both basic times-
tamp ordering and OCC are representatives of optimistic concurrency con-
trol, and also of timestamp ordering.

The principal idea of OCC is to let each transaction execute in a transaction-
local workspace and only check conflicts at commit time. To this end, OCC
proceeds in three phases: In the read phase, the transaction executes, copy-
ing each accessed tuple into its private workspace. (Note that, despite its
name, the read phase also includes writing operations). When the transac-
tion is ready to commit, the database compares the workspace contents to
concurring transactions (identified by their transaction timestamps) in the
system to detect conflicts. If the working sets intersect in a way that would
break serialisability, the validating transaction is aborted and restarted. Oth-
erwise, the transaction proceeds to the write phase where the transaction-
local workspace is reintegrated into the main database.

The serialisability check in the validation phase depends on the interleaving
of the respective transactions. Consider again, two concurring transaction T1

and T2 with T1 entering the validation phase while T2 is still running. In the
following, we use σR(Ti) and σW(Ti) to denote the read and write sets (i.e., the
set of database objects read and written) of transaction Ti, respectively. The
trivial case is when T1 completes its read phase before T2 begins execution;
in this scenario both transactions are not influencing each other and T1 can
immediately progress to the write phase. If T1 completes before T2 starts its
write phase, the system has to ensure that T1 has not overwritten any data
read by T2, i.e. σW(T1) ∩ σR(T2) = ∅. The third scenario occurs when T1

begins its validation phase while T2 is still in its read phase. In this case, Tj

has to additionally ensure that the write sets of both transactions are non-
intersection, i.e. σW(T1) ∩ σR(T2) = ∅ and σW(T1) ∩ σW(T2) = ∅.

Multi-Version Concurrency Control

Almost all modern database management systems implement a variant of
concurrency control known as Multi-Version Concurrency Control (MVCC) [109].
Strictly speaking, MVCC is not a concurrency control protocol in the nar-
row sense, but rather an architectural pattern under which the system main-
tains multiple physical versions of the same logical database object. In fact,
MVCC can be (and has been) combined with any of the concurrency control

32 Chapter 3. Background

approaches discussed above. Examples include Oracle [93] (MVCC + 2PL),
Postgres [51] (MVCC + Timestamp Ordering) and Microsoft’s in-memory
system Hekaton [35] (MVCC + OCC).

Instead of transactions overwriting database objects in-place, under MVCC
each write creates a new version of the object, annotated with a timestamp.
Additionally, each version maintains a pointer to its predecessor version (or
successor, depending on the system), creating a version chain that represents
the object’s history. When a transaction reads an object, it traverses the ver-
sion chain to find the version visible to the transaction at its time of admis-
sion. Taken together, this approach has the advantage that readers never
block writers and writers never block readers, as both operate on different
physical memory locations.

However, MVCC systems are known to suffer from the so-called write skew
anomaly. This refers to a phenomenon where, by operating on disjunct por-
tions of the database, multiple (non-conflicting) writers cause an end result
that could not have arisen from a serialisable schedule. For illustration, con-
sider the following example: Let X1, X2 be two database objects with X1 = a
and X2 = b (where Xi = x denotes that object Xi has the value x). Next,
assume that transaction T1 overwrites all objects currently holding value a
with value b, and transaction T2 overwrites all objects of value b with value
a. This results in two new versions, X′

1 = b and X′
2 = a, created by T1 and T2

respectively. Thus, a transaction admitted after both T1 and T2 would expe-
rience the database as X′

1 = b, X′
2 = a. However, this state could never have

arisen from any serial schedule involving T1 and T2, as any such schedule
would have resulted in either X1 = a, X′

2 = a or X′
1 = b, X2 = a.

Due to write skew, most MVCC implementations do not offer full serialis-
ability, but only a weaker version called snapshot isolation (referring to the
fact that the versions visible to a transaction create an implicit snapshot of
the database). In terms of the isolation level hierarchy presented above, snap-
shot isolation ranks en par with the repeatable read level. Note however, that
the two are mutually exclusive: Snapshot isolation guarantees that phantom
reads cannot happen, whereas repeatable reads rules out write skew anoma-
lies.

There are numerous ways in which MVCC systems can be realised. Wu et
al. [131] identify four critical dimensions of the design space: the underlying
concurrency control protocol, the choice of version storage (i.e., how versions
are stored in the database), garbage collection (how versions older than any

3.4. Database Benchmarks 33

active transactions are being identified and discarded), and how primary and
secondary indexes interact with version chains. All of these concerns are
however beyond the scope of this work.

As mentioned above, the HyPer system eventually replaced fork-based snap-
shots with an OCC-based MVCC implementation [91]. In particular, HyPer
uses a column-oriented data layout where versions are stored as transaction-
local deltas to their predecessor versions. Notably, HyPer’s MVCC imple-
mentation can be amended to guarantee full serialisability, using a form of
precision locking [59] during its validation phase. Another improvement of
HyPer’s MVCC implementation over previous systems is its fine-granular,
eager approach to garbage collection [14]. This follows the insight that long
version chains result in a “vicious cycle”: long version chains are slow to
traverse, resulting in slow read operations, which causes read-heavy trans-
actions to take longer (proportional to write-heavy transactions). This sup-
presses garbage collection, which ultimately results in growing version chains.

Later Sharma et al. [114] expanded on this idea by integrating HyPer-style
MVCC with vmcopy, a custom system call to create fine-grained virtual mem-
ory snapshots. In the resulting system, AnKer OLTP execution is left to MVCC,
while OLAP queries to dedicated virtual memory snapshots (similar to the
early fork-based HyPer system). While our work is similar to AnKer in that
respect (i.e., we also use kernel-assisted mechanisms to create fine-grained
virtual memory snapshots for OLAP queries), we do not consider MVCC.
This choice is deliberate, as it allows us to analyse the behaviour of the re-
spective snapshot mechanisms without having to account for noise from con-
current OLTP workloads.

3.4 Database Benchmarks

Before bringing this chapter to a close, we want to devote this final section
to a brief overview of database benchmarks. As discussed throughout this
and the previous chapter, there are numerous ways to design a database
management system, each approach with their own set of advantages and
drawbacks. The number of choices involved makes the resulting systems in-
herently hard to compare. This led to the development and establishment of
standardised benchmarks for database systems.

Unsurprisingly, the number of available benchmark suites is equally large;
as each database is geared towards a specific purpose, each benchmark aims

34 Chapter 3. Background

to portray a certain type of application scenario. For a (non-exhaustive) list
of examples, see [128, 129, 130, 24, 5, 6, 22]. The remainder of this section
therefore only discusses the three popular benchmarks relevant to this thesis:
TPC-C, TPC-H, and YCSB.

TPC-C and TPC-H

TPC-C [128] and TPC-H [130] are two benchmark suites designed by the
Transaction Processing Performance Council (TPC), an international commit-
tee of representatives from industry and academia. Both benchmarks are
geared heavily towards relational database management systems and explic-
itly specify table schemata, foreign key relationships and permissible optimi-
sations based on primary and secondary indexes. Moreover, it is assumed
that transactions satisfy the ACID criteria outlined in chapter 1.

Both TPC-C and TPC-H are modelled based on a fictitious business use-
case. In TPC-C, an unnamed wholesale retail enterprise serves customer
orders from a number of warehouses. Each warehouse serves ten sales dis-
tricts, which in turn each serve 3000 customers, who place orders and make
payments. Orders consist of a number of order lines which each specify an
item type, quantity, price, and so on. In total, TPC-C specifies nine tables and
a set of five OLTP transactions that comprise the benchmark. The number
of warehouses serves as a scale factor to regulate the size of the generated
dataset and the workload. Ten warehouses (the minimum allowed configu-
ration according to the specification) correspond to roughly 1 GiB of data.

TPC-H can be thought of as the OLAP-equivalent of TPC-C. The motivat-
ing scenario is again that of a retail sales business, however the benchmark
operates on different table schemata. TPC-H consists of eight tables and 22
queries. As in TPC-C a scale-factor is used during data generation to control
the resulting dataset size.

TPC-C and TPC-H specify throughput as the relevant performance metric.
Results are reported in transactions per minute (tpmC) on TPC-C and queries
per hour (QphH) on TPC-H. Moreover the standard defines (monetary) price
of operation (measured in $/tpmC and $/kQphH, respectively) and energy
consumption (measured in Watts/tpmC and Watts/kWQpH), both in rela-
tion to performance achieved at a given scale factor, as secondary metrics.
To this end, the benchmark specification lays out precise patterns in which
queries may be generated and parameterised.

3.4. Database Benchmarks 35

YCSB

The Yahoo Cloud-Serving Benchmark (YCSB) [24] is a popular and considerably
simpler alternative to the TPC benchmarks presented above. As the name
implies, YCSB was developed to foster comparability between database sys-
tems backing cloud-based applications7, including NoSQL databases men-
tioned in chapter 2.

YCSB therefore neither imposes a relational schema nor does it require ACID
transactions. Instead, queries operate on a simple hash table where records
are identified by integer keys, and each record consists of ten 100-byte ASCII
strings. Further, YCSB specifies five basic query types: read (read a single
record from the table), insert (insert a new record into the table), update (mod-
ifying a single field of a record in the table), delete (delete a record from the
table), and scan (linearly read a contiguous portion of the table, starting at a
given key).

These query primitives are then composed into workloads by specifying the
number of records and the number of queries performed. Queries are se-
lected based on a workload-specific set of probabilities for query types. Sim-
ilarly, record keys for the respective operations, as well as range lengths for
scans, are drawn from workload-specific distributions. To this end, YCSB de-
fines a “core package” of five canonical workloads based on common usage
scenarios in cloud applications. However, note that YCSB understands itself
not as a fixed set of benchmarks, but as a set of building blocks from which
new custom workloads can be derived. We make use of this flexibility to
derive our own workloads in section 5.1 in order to selectively probe certain
characteristics of our ScooterDB implementation.

7In particular, the original intention behind YCSB was to draw a fair comparison between
five very heterogeneous systems: Yahoo PNUTS, Google BigTable, Apache HBase, Apache
Cassandra and a distributed MySQL instance.

37

Chapter 4

Copy-on-Write Snapshots for
Main-Memory Databases

After having discussed the fundamentals of main-memory databases in the
previous chapter, we now turn our attention to the topic of database snap-
shots. As outlined in the introduction, virtual memory copy-on-write snap-
shots have been used in main-memory DBMS, notably HyPer [63], to ac-
commodate short-lived transactional workloads and long-running analytical
queries within the same database system. To this end, HyPer used the fork
[102] system call. This chapter lays a foundation for answering our research
question of whether the performance of fork-based snapshots can be im-
proved upon by using alternative copy-on-write mechanisms (and if so, at
what trade-offs).

All discussions in this chapter focus on the use case of HTAP main-memory
databases (chapter 6 provides an outlook on application scenarios beyond
HTAP not investigated in this thesis). In particular, we assume a database de-
sign of a single worker thread serving queries from some task queue. OLTP
queries are executed directly on this thread (i.e., there are no concurrent
transactions in the system). For OLAP queries, a consistent copy-on-write
snapshot of the database is created, and execution is deferred to either a ded-
icated thread or process operating on that snapshot. This closely models the
behaviour of HyPer [63], and also of our own storage engine ScooterDB.

Section 4.1 charts the design space by identifying several desirable charac-
teristics of copy-on-write snapshot algorithms and discussing their inherent
trade-offs. Section 4.2 then presents the several copy-on-write mechanisms
analysed in this thesis. Lastly, section 4.3 presents ScooterDB, our in-memory

38 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

storage manager that is designed to elegantly accommodate multiple snap-
shot mechanisms without compromising on performance. Our experiments
with ScooterDB, measurements, and findings are summarised in chapter 5.

4.1 Characteristics

As with any sufficiently complex engineering endeavour, choosing a snap-
shot mechanism for the HTAP DBMS use case is governed by a set of trade-
offs. This section aims to give an overview of the relevant dimensions of
these trade-offs to provide a basis for discussing several concrete copy-on-
write snapshot implementations in the following section.

To assess the strengths and weaknesses of concrete copy-on-write snapshot-
ting strategies, we are interested in the following characteristics:

Execution Time

We define the execution time of a snapshot operation as the (wall-clock) run-
time that it takes to create the snapshot. Note that using the created snapshot
as a basis for executing OLAP queries likely requires additional setup (e.g.,
obtaining a working thread from a thread pool, initialising shared memory
and thread-local buffers, updating indexes, etc.). This blurs the line between
snapshot creation and OLAP query dispatch. We therefore narrowly define
the execution time to only account for the duration of the call of the snapshot
routine.

It is self-explanatory that low execution times are desirable: The sooner snap-
shot creation completes, the sooner the depending OLAP query can be dis-
patched. Also, keep in mind that under our concurrency model the main
thread is blocked while the snapshot is being created; during this time, no
other OLTP queries can be served.

Latency

The latency of a transaction is the duration between its admission and the
point in time when the transaction commits. Latency plays an important role
in large distributed systems where individual component latencies can add
up and degrade system performance substantially [31]. Therefore the discus-
sion on latency is frequently centred around maxima, whereas the full latency
distribution is often only of secondary concern. While the query latencies

4.1. Characteristics 39

observed in the system are not a property of the employed copy-on-write
mechanism, we expect them to be influenced by it. In particular, we expect
the distribution OLTP transaction latencies to exhibit “spiking” behaviour
after snapshot creation:

The kernel-supported copy-on-write mechanisms that we are interested in
(see section 4.2) provide copy-on-write mappings on a per-page basis. That
is, once a copy-on-write protected page is first written a physical copy is ma-
terialised by the kernel. Immediately after a snapshot has been created, we
expect most of the ensuing OLTP transactions to write to pages for which no
physical copy exists yet (causing the copy to be created). The incurred over-
head of copying the pages will increase the latencies of these OLTP transac-
tions substantially. Eventually, as more and more pages are already dupli-
cated, we expect the initial spike to level off to its prior steady state. OLAP
query latencies, on the other hand, are read-only and should therefore not be
influenced by the copy-on-write mechanism.

Throughput

Whereas latency measures the time of a single query, throughput measures
the average number of committed transactions over a give time interval. In
this sense, throughput can be understood as the reciprocal of the sum of
query latencies over the observed period. Again, we are mostly interested
in OLTP throughput, as we assume there to be orders of magnitudes more
OLTP transactions than OLAP queries. (In fact, the copy-on-write mecha-
nisms that we investigate currently support only a single “active” snapshot
at a time.)

Given the definition of throughput, we expect its behaviour to be inversely
proportional to the aggregate query latencies: During “normal” operation,
throughput should be more or less stable (depending on the computational
demands of the individual queries). When a snapshot is made and OLTP
latencies spike, throughput should deteriorate accordingly, before reverting
to its mean as written pages are duplicated. Moreover, steady-state through-
put is entirely unaffected by the snapshot mechanism; we are therefore only
interested in the throughput degradation during the refractory period right
after snapshot creation.

40 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

Granularity

We refer to granularity as the extent in memory to which copy-on-write map-
pings can be created. As mentioned above, the mechanisms investigated in
this thesis resolve writes on a per-page level. In this sense, the page size of
the underlying operating system serves as an implicit lower bound on gran-
ularity. The other extreme is represented by the case of the fork system call,
which snapshots the entire address space of the calling process (see sec. 4.2).

Finer-grained snapshots decrease execution time as fewer pages have to be
copy-on-write protected. As a side note, the interplay between granular-
ity and concurrency control (see sec. 3.3) can directly influence throughput
during snapshot creation as explored by Sharma et al. [114]: OLTP transac-
tions operating on pages not affected by the snapshot can still be admitted
and allowed to commit without interfering with snapshot creation. This is
in contrast to the strictly sequential execution scenario explored in this work
where any concurring OLTP query must wait while the snapshot is taken to
guarantee consistency.

Portability

We use the term portability for the degree of work required to use a given
snapshot mechanism (and by extension, a reliant DBMS) on a new system. It
is therefore a mostly qualitative measure. As a rough proxy, we say that
a mechanism is portable if it comes pre-included in the kernel, and non-
portable if it requires kernel modification. This rating is motivated by our ex-
perience that applying custom kernel patches is cumbersome, and the chance
for an upstream merge is typically very slim. Portability may have an impact
on security: If implemented incorrectly, a modification of the kernel can serve
as an attack vector for system compromise.

However, reality is less clear-cut. For example, the POSIX standard [50] does
not prescribe copy-on-write semantics for implementations of fork (however
we are not aware of any implementation that would implement it differ-
ently). The recent emergence of sandboxed in-kernel execution technologies
like eBPF [37] blurs the lines even further.

Usability

Different snapshot mechanisms favour different programming styles. For
example, fork() inevitably requires a process-oriented architecture as the

4.2. Mechanisms 41

created snapshot is only accessible from the forked child process. As a con-
sequence, OLAP and OLTP execution happens on different processes and
must be synchronised using some form of inter-process communication (typ-
ically in the form of system calls). Contrast this to a thread-oriented approach
where multiple threads share the same process heap, giving them more flex-
ibility in their synchronisation (e.g. by protecting shared data with mutexes
or enforcing mutual exclusion via atomic operations).

While these considerations have an impact on system performance it is likely
dominated by other factors, e.g. query execution. However, there is a hu-
man factor playing into the equation: Some programming styles are easier
to “get right” than others, either due to lower engineering overhead or sim-
ply because more people are used to them and know what pitfalls to avoid.
Choosing a less common programming style can therefore have an impact
on program correctness, and in the worst case, security [58]. We use usability
as an umbrella term for these aspects.

4.2 Mechanisms

This section presents the snapshot methods investigated in this work: our
baseline fork [102], as well as scoot and a modification of mremap [106], both
introduced by Mintel [83]. We discuss the underlying implementations and
their implications on the characteristics outlined in the previous section. Our
experiments regarding latency and throughput under load are described in
chapter 5.

Note that these are by far not the only available alternatives to fork; oth-
ers, such as the mmapcopy and vmcopy [114] system calls have been proposed.
However, earlier work by Mintel [83] revealed that these methods do not
hold up to thorough investigation in terms of implementation correctness.
This is especially damning, as bugs in system calls open up potential attack
surfaces for privilege escalation. Also, scoot and mremap are reported to out-
perform them in terms of execution time.

Throughout this and the following chapter, will refer to the snapshot as the
duplicate and to the source data as the origin. All of the mechanisms discussed
in this section exploit the Linux Kernel’s virtual memory implementation by
manipulating page table entries, either directly or through other system calls.
Moreover, the underlying idea is similar in all cases: both origin and dupli-
cate are VMAs with the duplicate mapping the same pages as the origin.

42 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

While both VMAs have both read- and write-privileges the backing page ta-
ble entries only allow read access. Recall from sec. 3.1 that this informs the
kernel that write-accesses should be resolved with copy-on-write semantics.
Copying the underlying page contents to resolve the CoW mapping is there-
fore entirely offloaded to the kernel’s virtual memory implementation. Yet,
details in how the respective snapshot mechanisms handle the copying of
page tables lead to substantial differences in performance, as we shall see in
the remainder of this section.

fork

pid_t fork ();

LISTING 4.1: Signature of the fork system call

fork is a system call specified by the POSIX standard [50] to create a copy of
the calling process. We call the forked process the child and the forking pro-
cess the parent. The signature of fork is relatively straightforward (see listing
4.1); fork takes no arguments and returns the process id (pid) of the child. On
UNIX systems, fork is the primary way of spawning new processes. This is
typically immediately followed by a system call from the exec [103] family
on the child to load a new program executable into the child’s address space.

While the child is a process in its own right (i.e., it has a distinct pid and
address space from the parent), its address space is initialised with the same
contents (mappings) as the parent. Copying the entire address space of the
parent into the child would however be prohibitively expensive, especially
given the usage pattern outlined above. Instead, the child process obtains
a private anonymous mapping of the parent’s address space. This is signifi-
cantly cheaper compared to copying page contents, as only page table entries
need to be initialised (on the child) or modified (on the parent) [117]. Recall
from section 3.1 that such a mapping implicitly creates a copy-on-write snap-
shot.

As mentioned in earlier chapters, HyPer [63] first introduced the idea of us-
ing fork to support HTAP use cases by isolating OLAP queries to forked
child processes. A clear advantage of this approach is its portability; fork
is available on all POSIX systems and all implementations that we know of
implement CoW semantics. However, as CoW needs to be established for the
entire address space, the entire page table of the parent must be copied when
spawning the child. On the other hand, only a portion of the address space

4.2. Mechanisms 43

(i.e., the dataset) needs to be snapshotted to support OLAP queries. This
mismatch in terms of granularity therefore unnecessarily increases execution
time. Also, as hinted in the previous section, fork has some particular id-
iosyncrasies that the programmer needs to be aware of: In a multi-threaded
environment, only the thread calling fork remains running in the child pro-
cess. Similarly, all locks held by other threads on the parent remain locked
indefinitely on the child [102, 58]. This puts fork at a clear disadvantage in
terms of usability.

scoot

void* scoot_alloc (size_t size , size_t align);
void* scoot_duplicate ();

LISTING 4.2: Signatures of the functions used in the scoot

mechanism

The scoot mechanism (as used in this work) consists of two functions: scoot_alloc
and scoot_duplicate. Their signatures are shown in listing 4.2. scoot_alloc(size,
align) allocates size bytes of memory with a guaranteed alignment of align
bytes. A subsequent call to scoot_duplicate creates a CoW view of all data
that has been previously allocated and returns a raw pointer to it.

Upon initialisation, the scoot library creates an origin VMA using the mmap
system call1 (see section 3.1). This VMA is used as a memory pool to serve
all following allocation requests to scooot_alloc. Once scoot_duplicate is
called, the origin VMA is moved to a different location2 in virtual memory
using the mremap system call. Additionally, the access rights of the moved
memory area are restricted to read-only. This “moved origin” VMA becomes
the duplicate. To keep the origin intact, mmap is used a second time to create a
new private mapping with read-write access that references the same frames
as the moved origin (thus having CoW). The entire process is visualised in
figure 4.1.

A consequence of this approach is that CoW is only provided on the (new)
origin VMA (i.e., writes to the duplicate are simply propagated to the un-
derlying frames). As the duplicate is intended to serve as a read-only snap-
shot in the HTAP use case, it becomes the database system’s task to ensure

1The specific implementation of scoot is a bit more involved; it creates an anonymous
(i.e., memory-backed) via the memfd_create system call and uses the returned file descriptor
to create the origin VMA. However, these specifics exceed the scope of this thesis.

2At the time of writing, the origin is statically initialised at virtual address
0x6000_0000_0000 and then shifted to 0x7000_0000_0000.

44 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

Pages
Origin

p1 p2 p3

Frames

Duplicate

p′1 p′2 p′3

mremap

Duplicate

p′1 p′2 p′3

New Origin

p1 p2 p3

mmap

FIGURE 4.1: Steps of the scoot mechanism: The origin (top) is
moved to another location in virtual memory to create the du-
plicate (middle). Then, the origin is recreated using mmap (bot-

tom). Figure adapted from [83]

4.2. Mechanisms 45

that no writes ever happen on the duplicate. Another consequence is due to
an implementation detail in mremap: existing page table entries of the origin
VMA are discarded when the original VMA is moved to become the dupli-
cate. Similarly, Linux defers the creation of page table entries of the (moved)
duplicate to the first access. We, therefore, expect faster executions time com-
pared to fork (because less data is copied upon snapshot creation), at the cost
of latency and conversely throughput (because all initial page accesses after
the snapshot has been created will result in a page fault, on both OLTP and
OLAP queries). In other words, scoot amortises the cost of snapshotting
over subsequent page accesses. Initial measurements by Mintel support this
hypothesis.

A clear upside of scoot is its portability: The routines themselves run en-
tirely in user space and simply call pre-existing system calls. Also, scoot
implicitly supports the handling of hugepages (all constituent calls do). An-
other benefit compared to fork lies in its granularity: instead of snapshotting
the entire address space, only the data allocated with scoot_alloc is being
duplicated. At the time of writing, the scoot library only supports a single
VMA to accommodate all allocations. However, this is mostly due to prac-
ticality and not a fundamental limitation of the mechanism. It is easy to see
how scoot could be extended to allow ad-hoc creation of arbitrary origin
VMAs, thereby reducing granularity to the page level. In terms of usability,
the picture is less clear. On the one hand, scoot allows for a multi-threading-
oriented architecture as the duplicate is a pointer that can be passed to a
dedicated OLAP thread. On the other hand, a scoot_duplicate call is not
atomic (and thereby, not thread-safe). Accessing the origin VMA after it has
been moved by mremap and re-created by mmap results in a segfault.

mremap

void *mremap(void *old_address , size_t old_size ,
size_t new_size , int flags , ... /* void *new_address */);

LISTING 4.3: Signature of the mremap system call

mremap [106] is a system call from the mmap [105] family. Its signature is given
in listing 4.3. The originally intended use case for mremap is to resize an
existing mapping of old_size bytes, located at old_address to a new size
of mew_size bytes. This behaviour can be altered by specifying a range of
flags and optional parameters: For example, the MREMAP_MAYMOVE flag allows

46 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

mremap to move the mapping to a new address in virtual memory if the map-
ping cannot be expanded by appending pages at its current position (with-
out MREMAP_MAYMOVE, mmap would fail with an error code in such a scenario).
Specifying MREMAP_MAYMOVE together with MREMAP_DONTUNMAP sginals mmap to
leave the mapping at old_address in place. Similarly, MREMAP_FIXED together
with MREMAP_MAYMOVE enforces moving the mapping to the address given by
the optional new_address parameter.

Mintel proposes an additional MREMAP_COW flag that extends mremap to cre-
ate an explicit copy-on-write mapping at new_address on the origin VMA
located at old_address. To this end, a new read-write anonymous mapping
is created for the duplicate, and the access privileges of the pages of both ori-
gin and duplicate are lowered to read-only. Recall from section 3.1 that this
implicitly enforces CoW semantics for either mapping due to the kernel’s
write-access resolution strategy. Also note that using MREMAP_COW requires
MREMAP_DONTUNMAP to be specified.

To create the mapping of the duplicate, MREMAP_COW modifies the copy_page_range
function originally used by fork to copy the page table entries of the ori-
gin to the duplicate. This approach has several advantages: Page tables
remain initialised, therefore remedying the initial latency overhead we ex-
pect to observe in scoot. Also, the kernel changes introduced to implement
MREMAP_COW are relatively economic; they rely on and build upon existing
functionality in the Linux kernel’s memory management subsystem. This
implies that the underlying mechanisms have likely been optimised over
several years, and also increases the chance for an upstream merge. Still,
using MREMAP_COW as of date requires compiling a custom kernel, making the
approach less portable than fork or scoot.

Other than that, we rate mremap similar to scoot in terms of granularity and
usability, with the distinctive benefit of executing atomically. Regarding exe-
cution time, we expect mremap to be faster than fork, as only a subset of the
work needs to be done.

4.3 ScooterDB

To evaluate the snapshot mechanisms presented in the previous section, we
implement a custom relational main-memory storage engine that we call

4.3. ScooterDB 47

Database

BlockAllocator Table

Block

1

n
n

1

n

1
1

1

creates

BlockLayout

1

n accesses

1

1

Schema

1

1

informs

1

1

describes

FIGURE 4.2: Simplified UML class diagram of ScooterDB’s ar-
chitecture

ScooterDB. ScooterDB is designed to transparently support arbitrary snap-
shot mechanisms while yielding performance similar to a conventional re-
lational database system. The ScooterDB source code is freely available on
GitHub3.

To minimise the surface for memory management bugs, we implement Scoo-
terDB using the Rust programming language [123]. Most of ScooterDB is
written in safe Rust which guarantees memory safety through move seman-
tics and static analysis at compile time. Occasionally, we need to venture into
unsafe Rust in order to allocate raw memory, do pointer arithmetic or allow
multiple mutable borrows of a shared resource in performance-critical sec-
tions. However, we aim to isolate and hide these places in the code behind
safe abstractions.

This section provides a high-level, bottom-up overview of the architecture
of ScooterDB. A simplified UML class diagram is given in figure 4.2. For
selected implementation-specific details, see appendix A.

Block Storage

We design ScooterDB as an in-memory hybrid-layout storage engine follow-
ing the PAX [2] data layout scheme described in section 3.2. On the lowest
level, we subdivide allocated memory into fixed-size blocks of 1 MiB. A block

3https://github.com/lfd/scooterdb

48 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

contains records of a single table and stores tuple attributes in a column-
oriented fashion. Confining tuples to blocks has the added benefit of know-
ing precisely which memory regions need to be snapshotted. This makes it
easy to decide which allocations should be handled by, say scoot_alloc, and
which data structures can be allocated through Rust’s default global alloca-
tor.

Spreading tuples across columns implies that rows cannot be referenced us-
ing raw memory pointers. To still support reasonably fast row access, we
follow an addressing scheme first proposed by Li et al. for the NoisePage sys-
tem [73]: We align blocks to 1 MiB boundaries, thereby ensuring that the
lower 22 bits of a block pointer will always be zero. This lets us store the
logical position of a tuple within its block in the unused lower portion of the
pointer. For example, the 42nd tuple in a block at address 0xbc000004 would
be represented as 0xbc00042.

Following NoisePage, we call such an identifier a tuple slot. Tuple slots al-
low us to identify any tuple in the database and load it into CPU registers
within cycle5. At first glance, this might seem like premature optimisation.
However, as nearly all operations on the data store (inserts, selects, deletes or
range scans) involve tuple addressing, small effects accumulate quickly. The
individual block pointer and tuple offsets can be efficiently recovered from a
tuple slot by AND-ing a bit mask for the respective portion. Similarly, a tuple
slot can be created efficiently by simply adding the tuple offset to its block’s
address.

Block Allocation

To manage the allocation and deallocation of storage blocks, we introduce
the BlockAllocator abstraction. We provide a separate block allocator im-
plementation for each of the supported mechanisms (i.e., fork, scoot and
mremap). This lets us hide the idiosyncrasies of the several snapshot methods
behind a common facade.

The fork block allocator simply falls back to malloc and dealloc using the
standard Rust global memory allocator (by default, glibc). As fork dupli-
cates the entire process, thus leaving all pointer structures in tact, no further

4Address length shortened for readability.
5We run all our experiments on a 64-bit architecture. This is not a restriction in practice,

as the constraints on addressable userspace memory on a 32-bit platform (≈ 3 GiB) would
render the point of a main-memory database moot.

4.3. ScooterDB 49

action is necessary. The scoot and block allocator, on the other hand, allo-
cates memory in the respective virtual memory area using the scoot_alloc
function. The mremap block allocator works analogously6. Both scoot and
mremap block allocators tear down their respective VMAs when the alloca-
tor object is dropped by Rusts scoping rules (similar to a destructor in other
programming languages).

Additionally, we proxy all block allocator implementations with a basic re-
source pool. When a block is released by the system and the pool has not
reached capacity yet, the block is not freed directly. Instead a pointer to the
block is buffered in the pool. As long as the pool is non-empty, all further
allocation requests will be served from the pool, rather than allocating a new
block. This helps to prevent thrashing when the system repeatedly allocates
and frees blocks in quick succession (e.g due to alternating inserts and deletes
of records on a block boundary).

Tables

The next structure above block-level is the Table. A table contains all tuples
for a given Schema, which is a read-only structure that describes an ordered
list of attributes (i.e., the table’s columns). All attributes are strongly typed.

As of now, ScooterDB supports five different attribute types, defined in the
SqlType enum:

• Integer: A 32-bit signed integer, stored in two’s complement.

• Double: A 64-bit IEEE 754 floating point number.

• Char(size): A fixed-length ASCII character string of the given size.

• Date: A 64-bit timestamp, represented as the number of milliseconds
since the UNIX epoch

• YCSBField: A special type of 100 unsigned integers of one byte in size,
used to represent a record field in YCSB-derived benchmark [24] (see
section 5.1)

6Note that we do not call mmap and mremap directly from Rust, but rather rely on a preex-
isting C wrapper that provides convenience functions around the MREMAP_COW mechanism.
The wrapper has the same function signatures as those of the scoot library, which allows us
to treat mremap as a “drop-in” replacement for scoot

50 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

Upon creation, a table synthesises information from the schema into a BlockLayout
struct. The block layout holds information about the sizes of the table’s at-
tributes, the resulting column and tuple sizes, as well as the maximum num-
ber of slots in an underlying storage block. Precomputing this information at
table creation-time expedites accesses and also helps us to achieve memory
safety at runtime, by validating the extents of inserts and updates against the
sizes of the modified attributes.

As ScooterDB currently only supports fixed-length attributes, we can (for
now) forego the implementation of varlen blocks and vacuum processing
as described in section 3.2. While this may seem like a limitation, it ac-
tually plays into our hands: any background re-compaction pauses would
likely only interfere with our measurements (see section 5.1). At the same
time, fixed-length records allow us to handle deletions and inserts gracefully:
Within each block, we maintain the current tuple count within that block.
When a record is deleted, we decrement the count and immediately swap
the last tuple in the block into the deleted tuple slot. Swapping from the end
makes sure that blocks never experience internal fragmentation, thereby en-
suring optimal caching behaviour for column scans. New records are always
inserted at the end. Note that the respective tuple slot can be easily computed
from the block’s address and tuple count. The extra cost incurred for dele-
tions is a trade-off that we are happy to make: in most OLTP applications,
insertions and scans are far more common than deletions [68].

A table maintains pointers to its blocks in two hash sets; one containing all
used blocks, and one containing only those with free tuple slots. The second
set is used to quickly find a tuple slot for the next insert operation. If the free
set is empty, the table requests a new block (pointer) from the block allocator
and adds it to both sets. Likewise, when the last tuple within a block is
deleted, the table requests the block allocator to reclaim the block.

Table provides methods to insert and select a record for a given tuple slot
from and into a Row buffer (not shown in figure 4.2). The Row struct rep-
resents a full materialised row for a given schema. Recall from above that
rows are not laid out contiguously in memory but scattered across columns
and must therefore be “pieced together”. Type-safe access to rows is accom-
plished through a RowAccessor object that fulfils a similar function to rows
as BlockLayout does for tables. This is necessary, as the in-memory layout
of a row is only known at runtime after the corresponding schema has been
created. Additionally, the Table struct provides accessors to read a specific

4.3. ScooterDB 51

attribute from a given tuple slot, without the extra copy into a row buffer. We
use this type of direct access to implement column scans in a cache-optimal
manner in our benchmark suites (see 5.1).

Databases and Duplication

Finally, a Database structure acts as a top-level container of named tables be-
longing to the same database instance. Database takes the desired BlockAllocator
as a generic type parameter, leveraging Rust’s support for compile-time monomor-
phisation. This allows us to add a snapshot method to only those database
instances that use snapshot strategies which support snapshot creation within
the same thread (i.e., scoot and mremap). Calling snapshot on the database
object triggers the underlying function to create the CoW mapping (scoot_duplicate
or mremap with the MREMAP_COW flag, respectively). The database then iterates
over its tables and creates new Table structs with block pointers referencing
the snapshotted blocks. Lastly, a second database struct holding the snap-
shotted tables is returned. Figure 4.3 illustrates this process for the scoot
case; the mremap case is completely analogous.

Note that the second database object also requires a BlockAllocator type
parameter to be specified. However, repurposing the allocator type from the
original database would allow for calling snapshot on the returned duplicate
database object. To prevent this, we represent both scoot and mremap not as
one, but as two separate block allocators each: The original database object is
parameterised with an origin-version of the block allocator (i.e. ScootOrigin
or MremapOrigin, respectively). This allocator functions as described at the
beginning of this section. The duplicate however, is parameterised with a
related duplicate-version (ScootDuplicate or MremapDuplicate). This results
in the duplicate database instance being of a different type than the original
in the eyes of Rust’s type system, which allows us to enable the snapshot
method only on those databases parameterised with an origin block allocator.
At the same time, having a separate block allocator allows us to raise an error
if block allocation should be attempted on the (read-only) duplicate.

52 Chapter 4. Copy-on-Write Snapshots for Main-Memory Databases

b
1

Table<ScootOrigin>

Database<ScootOrigin>

t1

t2

allocator

BlockAllocator<ScootOrigin>

Table<ScootDuplicate>

Database<ScootDuplicate>

t ′1

t ′2

allocator

BlockAllocator<ScootDuplicate>
duplicate()

b
2

b
3

b
4

b ′1
b ′2

b ′3
b ′4

O
rigin

V
M

A
D

uplicate
V

M
A

scoot_duplicate()

F
IG

U
R

E
4.3:A

rchitecturaloverview
ofScooterD

B
using

the
ScootOrigin

block
allocator

53

Chapter 5

Experiments

After having discussed copy-on-write snapshots and their usage in detail,
this chapter presents the experiments conducted in this thesis. We collect
high-resolution data on execution time, latency and throughput data of the
tested snapshot methods via extensive experiments derived from the YCSB
and TPC-H benchmark suites (see 3.4). All of our experiments are based on
ScooterDB and implemented in ScooterBench, our Trireme-inspired [4] testbed
written in the Rust programming language.

Section 5.1 describes ScooterBench, charts the experiment design space and
motivates our choices of experiment parameters. The results of our measure-
ments are listed and visualised in section 5.2. Lastly, section 5.3 discusses our
findings.

5.1 Setup

We implement our experiments in a custom testbed that we call Scooter-
Bench1. ScooterBench was originally inspired by the Trireme system [4] and,
like ScooterDB, is implemented in the Rust programming language. Imple-
menting our benchmarking suite in a systems language was a deliberate
choice in order to eliminate possible confounding factors, such as garbage
collection, that could impact measurements. Also, writing ScooterBench in
Rust allows us to use the ScooterDB storage engine as a library, sidestepping
the need for any query parsing or optimisation that would further distort the
picture.

To foster comparability with other database systems, all experiment work-
loads (i.e., queries, query parameters, table schemata and generated data) are

1https://github.com/lfd/scooter-bench

https://github.com/lfd/scooter-bench

54 Chapter 5. Experiments

Parameter Description Domain

-n Database size benchmark dependent
-t No. OLTP transactions integer
-o Time of OLAP injection

(measured in committed
OLTP transactions)

integer

-v Snapshot strategy {scoot, fork, mremap}
-s RNG seed integer

TABLE 5.1: Experiment parameters common to all benchmarks
and their ScooterBench command-line flags.

derived from standard benchmarks (see section 3.4). In particular, we base
one set of experiments on YCSB, which allows for precise control of read- and
write-probabilities of OLTP queries. This enables us to gather insights into
the latency and throughput behaviour after snapshot creation under varied
workloads. A second set of experiments is derived from the TPC-H bench-
mark, to test system performance under a more realistic scenario. More de-
tails are given below.

All experiments follow the same general formula: At first, the database in-
stance is initialised with data generated according to the benchmark specifi-
cation. Then, the system is put under load by generating a stream of OLTP
queries. Recall from previous chapters that execution is strictly serial; only
one OLTP transaction at a time is admitted to the system. After a fixed num-
ber of OLTP transactions have committed, an OLAP query is injected into
the stream. To this end, we either fork the process or spawn a worker thread
and instruct ScooterDB to create the snapshot. After the OLAP query has
been successfully dispatched, the stream of OLTP transactions continues to
be served on the main thread (or process, respectively).

Each experiment is controlled through a number of shared parameters. De-
pending on the benchmark additional parameters may be required. To facili-
tate experimentation, ScooterBench offers a command-line interface to easily
specify experiment parameters on a per-run basis. Experiment parameters
and their respective command-line flags are listed in table 5.1. Additionally,
the ScooterBench distribution includes a Python script to run batches on con-
figuration files and persist the recorded data to disk. For more details, see the
README.md file in the ScooterBench repository linked above.

5.1. Setup 55

Timestamp Logging

We use monotonic timestamps to measure execution time, latency and through-
put behaviour of the investigated snapshot methods. More specifically, a
timestamp is logged directly before an OLTP transaction is admitted and af-
ter it commits. For OLAP queries, an additional timestamp is logged when
the query is dispatched, i.e. when the spawned thread (or forked process, re-
spectively) begins execution and the main thread becomes unblocked again.

Nevertheless, precise engineering is paramount when measuring events on
a microsecond scale: Rust’s standard library provides the Instant::now()
function to obtain a monotonic timestamp of the current system time. On
UNIX this function is implemented using the clock_gettime [101] system
call. However, the incurred context switch is substantial; we measured a
call to Instant::now() to take between 1 and 3 microseconds. To rule out
this potential source of noise, we therefore resort to reading out the x86 time
stamp counter TSC directly using the RDTSC instruction. The amount of wall-
clock time passed between two TSC timestapms can then be recovered by
multiplying their delta with the CPU frequency2.

To prevent timekeeping from becoming a bottleneck, collected timestamps
are pushed into an in-memory buffer. The buffer is pre-initialised to a suffi-
cient capacity to prevent automatic resizing from interfering with our mea-
surements. After the experiment is conducted, all collected events are either
printed to stdout or written to disk.

YCSB

The strengths of the YCSB benchmark lie in its simplicity. Precisely control-
ling transaction read- and write- probabilities results in highly predictable
query behaviour. This enables us to test the latency and throughput response
of the snapshot methods under test in a systematic manner.

We implement YCSB in good faith by replicating the official publicly avail-
able Java implementation3. Unfortunately, the workloads in the YCSB core
package are not optimally suited for our purposes: Workloads C, D and E do

2Note that this approach is also not entirely precise due to intra-CPU processes such as
out-of-order execution or frequency scaling. However, the resulting interference is several
magnitudes beneath the timescale of a context switch. We found our measurements to be
reasonably consistent to see any indication that these effects impact our results.

3see https://github.com/brianfrankcooper/YCSB

https://github.com/brianfrankcooper/YCSB

56 Chapter 5. Experiments

not modify existing records (i.e., they are either read-only or all writes are in-
serts) and thus would never trigger the materialisation of physical copies.
Workload B only performs updates in 5% of the generated queries. This
leaves workload A (50% read, 50% update) as the only interesting choice for
our use cases.

We, therefore, modify the core package slightly, using the experimentation
scheme described above: First, we interpret the -n command-line parameter
(see table 5.1) as the number of records to populate the database with. Recall
from section 3.4 that each YCSB record consists of 10 fields of 100 byte-sized
ASCII characters, which determines the effective dataset size as #records ×
1 KiB. Since the content of the records is irrelevant to the benchmark, we
simply initialise them with zero-bytes. We also add two additional exper-
iment parameters that control the probability of a generated OLTP query
being either read-only (-r) or performing an update (-u). This effectively
strikes a compromise between maintaining flexibility while closely sticking
to the original benchmark.

Each OLTP transaction operates on a single record identified by a key drawn
from a Zipf distribution over the entire keyspace (i.e., all records in the store).
Read-only queries read the full record into a transaction-local buffer, whereas
update queries overwrite one field of the record. Since YCSB assumes the
database be a simple key-value store, we formulate the OLAP query as a
simple full-table scan.

We additionally use YCSB to sanity-check the implementation of ScooterDB.
To this end, we implement a second storage backend based on a simple in-
memory hashtable and mirror our experiments using this backend. Compar-
ing results of otherwise identically configured experiments lets us rule out
any substantial performance degradation due to oversights.

The full list of additional parameters for YCSB-based experiments is listed in
table 5.2. Throughout all our experiments discussed in section 5.2, we choose
-b = scooterdb, -t = 5× 105 and -o = 105. Holding these parameters fixed,
we run one experiment for every combination of the parameter choices in
table 5.3, resulting in a total of 180 measurements.

5.1. Setup 57

Parameter Description Domain

-r Read probability [0; 1]
-u Update probability [0; 1]
-b Backend {hashtable, scooterdb}
-o Time of OLAP injection

(measured in committed
OLTP transactions)

integer

TABLE 5.2: Additional parameters for YCSB-based experi-
ments.

Parameter Value Range

-n { 103, 5 × 103, 105, 106, 2 × 106, 5 × 106, 7.5 × 106, 107,
1.2 × 107, 1.4 × 107 }

-r/-u {0.0/1.0, 0.2/0.8, 0.4/0.6, . . . , 1.0/0.0}
-v {scoot, fork, mremap}

TABLE 5.3: YCSB experiments design space.

TPC-H

While YCSB gives us detailed insights into latency and throughput, experi-
ments based on the TPC-H benchmark allow us to observe the system’s be-
haviour under realistic relational workloads. In particular, we select a subset
of four queries, Q1, Q4, Q6 and Q17 (see the TPC-H secification [130] for de-
tails), operating on the part, orders and lineitem tables, and use these as
OLAP queries for our experiments. The specific OLAP query used in an ex-
periment is controllable via an added -q command-line parameter.

As TPC-H does not specify transactional workloads, we additionally imple-
ment nine parameterized OLTP queries4 operating on the same tables (see
section A.2). For each transaction, foreign key parameters are drawn from
the set of existing corresponding primary keys. Query parameters relating to
attribute values are chosen based on attribute values of other records, chosen
uniformly at random from the respective table.

Otherwise, experiment execution is analogous to the YCSB case: Initially, the
database is populated. To this end we interpret the -n parameter (see table
5.1) as the scale_factor specified in the TPC-H standard. The total dataset

4This idea was taken from a preprint of Sharma et al. [114], published on the ArXiv
preprint server (see https://arxiv.org/abs/1709.04284). Notably, the 2018 SIGMOD
publication used TPC-C and custom OLAP queries instead. We conjecture that this change
was made to highlight the concurrency control aspects of the presented AnKer system. For
our scenario, however, the previous configuration is more interesting.

https://arxiv.org/abs/1709.04284

58 Chapter 5. Experiments

Parameter Description Domain

-q OLAP transaction type {Q1, Q4, Q6, Q17}

TABLE 5.4: Additional parameters for TPC-H-based experi-
ments.

Parameter Value Range

-n {1, 2, 3, . . . , 8}
-v {scoot, fork, mremap}

TABLE 5.5: TPC-H experiments design space.

size is thus roughly equal to 1.5GiB × scale_factor. To generate the data,
we faithfully follow the specification, with one minor exception: Instead of
a random number of one to seven lineitem rows for each order row, we
statically assign five lineitems to each order. This guarantees stable dataset
sizes across random seeds. The stream of OLTP transactions is generated by
choosing queries from the nine available candidates uniformly at random,
with parameters chosen as outlined above. Into this stream, we inject one of
the four implemented OLAP queries, depending on the experiment.

We implement all queries (OLTP and OLAP) as stored procedures in Scooter-
Bench (see appendix A for details). The full set of additional TPC-H-based
experiment parameters is listed in table 5.4. However, after initial exper-
imentation, we found that the -q parameter hardly influences latency and
throughput. This was to a degree expected; after all, the entire point of iso-
lating OLAP queries to a dedicated process/thread is to prevent interference
with the OLTP workload. We, therefore, keep -q = Q1 fixed during all TPC-
H experiments. In total, we collect 24 measurements by fixing -t = 3 × 105,
-o = 105 and iterating over all combinations from the value ranges in table
5.4.

5.2 Measurements

We run all experiments described in the previous section on a single server
equipped with an Intel Xeon Gold 5118 CPU and 32 GiB of DDR4 RAM. Our
system runs a custom Linux kernel with Mintel’s mremap modification, based
on version 5.18. In total, we collect roughly 3.8 GiB of raw measurement data.

5.2. Measurements 59

Q1

2 4 6 8
0

50000

100000

150000

200000

Scale Factor

O
LA

P
La

te
nc

y
[m

s]

Mechanism fork mremap scoot

FIGURE 5.1: Latency per OLAP query (TPC-H) by scale factor

60 Chapter 5. Experiments

OLAP Latency

Figure 5.1 shows olap latencies of the several mechanisms as measured in
our TPC-H experiments. The x-axis charts the scale factor of the dataset and
the y-axis the measured latency in milliseconds. In accordance with our ex-
pectations, fork is the slowest mechanism and scoot the fastest. Across all
scale factors, fork exhibits consistently about 300% higher OLAP latencies
than scoot, and 24% higher OLAP latencies than mremap.

Figure 5.2 plots the same information for our YCSB experiments. Each plot
corresponds to one read/update ratio, with the x-axis denoting dataset size
in GiB. Curiously, while fork and scoot behave as expected, mremap now
takes longer than fork and shows substantially less uniform scaling behaviour.
Initial investigations have not produced a conclusive explanation for this
phenomenon, marking the need for future research.

OLTP Latency

To understand the OLTP latency behaviour of the tested methods, we first
create a set of overview visualisations: Figure 5.3 contains a grid view of
twenty plots, each corresponding to one of the YCSB experiments described
above. (All figures are taken with permission from an upcoming joint publi-
cation from our lab.) The individual plots are sorted horizontally by dataset
size, and vertically by the read/update probability ratio of the OLTP work-
load. Within each plot, each line corresponds to the latency behaviour of one
snapshot method as indicated by the legend. The x-axis denotes time in sec-
onds at which the query at the respective ordinate was dispatched, the y-axis
charts the query’s latency in milliseconds on a logarithmic scale. Addition-
ally, the execution time of the respective snapshot mechanism is plotted as a
filled rectangle of the respective colour.

As anticipated in section 4.2, OLTP latencies exhibit a distinct “mean-reversion”
behaviour across all experiments, spiking directly after snapshot creation
and then reverting to their prior steady state. The duration of the reversion
process is influenced by several factors:

Most significantly, in all scenarios scoot is the slowest to return to the steady
state. Across all YCSB experiments, we found scoot latencies to be 220%
higher on average5 compared to fork, and 316% higher compared to mremap.

5All averages in this section are computed over the first 105 OLTP transaction latencies
after the snapshot was taken, and then aggregated across the considered experiments.

5.2. Measurements 61

r=
0.

6
r=

0.
8

r=
1

r=
0

r=
0.

2
r=

0.
4

0
5

10
0

5
10

0
5

10

0

50
00

0

10
00

00

15
00

00 0

50
00

0

10
00

00

15
00

00

Sc
al

e

OLAPLatency[ms]

M
ec

ha
ni

sm
fo

rk
m

re
m

ap
sc

oo
t

FI
G

U
R

E
5.

2:
La

te
nc

y
pe

r
O

LA
P

qu
er

y
(Y

C
SB

)b
y

da
ta

se
ts

iz
e

(i
n

m
ill

io
n

re
co

rd
s)

62 Chapter 5. Experiments

100
K

iB
2

M
iB

7.5
M

iB
14

M
iB

r=0r=0.2r=0.4r=0.6r=0.8r=1

0
50

100
150

0
100

200
300

400
500

0
200

400
600

800
0

300
600

900

1e-01
1e+01
1e+03
1e+05

1e-01
1e+01
1e+03
1e+05

1e-01
1e+01
1e+03
1e+05

1e-01
1e+01
1e+03
1e+05

1e-01
1e+01
1e+03
1e+05

1e-01
1e+01
1e+03
1e+05

Tim
e

[s]

Latency [ms] (log)
M

echanism
fork

m
rem

ap
scoot

F
IG

U
R

E
5.3:Latency

per
O

LTP
query

(Y
C

SB),factored
by

read
probability

(row
s)and

datasetsize
(colum

ns)

5.2. Measurements 63

mremap is the fastest of the three mechanisms, with 23% lower average latency
than fork.

This effect becomes more pronounced the more read-heavy the workload is
(i.e., the lower the plot is located in the grid). In the extreme case of a purely
read-only workload (bottom row), both fork and mremap immediately return
to steady-state behaviour since no page must ever be duplicated, whereas
scoot takes considerably longer due to missing page table entries. However,
as the workload becomes progressively write-heavy, post-snapshot latencies
are increasingly dominated by the materialisation of CoW-protected pages.
In this case, the overhead from repopulating page table entries becomes less
impactful compared to the copying of page contents. When compared across
all dataset sizes, the relative increase in average latency of scoot compared to
fork is 96% in the write-only scenario, which is about 7× smaller compared
to the read-only case (667% rel. increase). mremap is still the fastest contender,
with 30% lower average latency compared to fork in the write-only scenario.

In the case of scoot, the observed increase in latency can be explained by
the fact that the page table entries of the origin VMA are dropped during
duplication. Repopulating said entries upon the first access of the respective
pages after the snapshot was created accounts for the difference in latency.
However, mremap consistently outperforming fork comes as a surprise. Ac-
cording to our understanding and Mintel’s description, both methods exe-
cute the same code path to resolve the copy-on-write mapping. We would
therefore anticipate that both methods show very similar OLTP latency be-
haviour post-snapshot. The data, however, refutes this assumption. Further
research is necessary to investigate this behaviour.

Similarly, the observed steady-state return becomes slower across all meth-
ods as dataset size increases. Across all methods, mean latency on the 14
GiB dataset is about 500% higher compared to the 100 MiB dataset. This is
simply a matter of statistics: Larger datasets are backed by more pages, thus
the probability that an OLTP transaction accesses a not-yet-duplicated page
after snapshot creation increases. Note that in some of the plots, latencies do
not fully return to the prior level (especially for large dataset sizes). This is
mainly due to our hardware constraints; since we have to keep the record
log in memory to prevent artefacts due to I/O pauses, there is an inherent
tradeoff between the number of transaction timestamps we can record and
the dataset size. Given enough time, we still expect latencies to fully return
to base level.

64 Chapter 5. Experiments

100K
2M

7.5M
14M

forkmremapscoot

0
50

100
150

0
100

200
300

400
0

200
400

600
800

0
300

600
900

1e-01

1e+01

1e+03

1e+05

1e-01

1e+01

1e+03

1e+05

1e-01

1e+01

1e+03

1e+05

Tim
e

[s]

Latency [ms] (log)
O

bservation
Extrem

e
V

alue
Standard

V
alue

operation
R

ead
U

pdate

F
IG

U
R

E
5.4:

Latency
per

O
LTP

query
(Y

C
SB)

for
-r=0.4,

-u=0.6,factored
by

snapshot
m

echanism
(row

s)
and

dataset
size

(colum
ns)

5.2. Measurements 65

To gain deeper insights into the observed phenomena, we visualise each the
data as a series of scatter plots of individual query latencies. The plots in
figure 5.4 are based on data from YCSB experiments with read-probability
-r=0.4 and update-probability -u=0.6. The plots within each figure are or-
dered horizontally by dataset size, and vertically by snapshot mechanism.
Plot axes are identical to figure 5.3. Black points indicate extreme values
within the (two-sided) 99.95-percentile, all other points are coloured in yel-
low. The red curve is computed as a moving average, computed over a win-
dow of up to 50000 samples.

Notably, OLTP latencies exhibit a certain band structure across all plots: an
upper band of slow queries and a lower band of fast queries. Over time,
the slow band thins out, whereas the fast band grows visibly thicker. This
behaviour closely captures the page-level duplication process. Points in the
slow band correspond to queries that perform the first write to a page after
the snapshot was created. These accesses trigger the page to be copied in
order to resolve the copy-on-write mapping. Subsequent writes can directly
access the duplicate, resulting in the (growing) fast band. Reads are always
in the fast band, as they do not trigger copy-on-write resolution.

Figure 5.5 displays a grid of plots for our experiments on TPC-H, similar to
figure 5.3, with scale factors increasing from left to right. Analogous to the
YCSB case, all experiments on TPC-H show the mean-reversion pattern dis-
cussed above. Again, the overhead of populating page tables makes scoot
the slowest mechanism in terms of OLTP latency. However, the scoot and
mremap curves are now converging much faster compared to YCSB. In par-
ticular, mremap latencies are now only 33% lower compared to scoot when
averaged across all experiments. Given our insights sensitivity of this be-
haviour with respect to access patterns, this can be attributed to the higher
diversity in the OLTP query workload in TPC-H.

Note that overall, OLTP latencies are growing as a function of dataset size.
This can be explained by the structure of the TPC-H benchmark: Operating
on full relational tables (versus a simple hashtable as used in YCSB) requires
an index structure on primary keys for query execution to be reasonably fast.
For TPC-H, we implement this index as a B-Tree which has logarithmic time
complexity for look-ups. This, together with the logarithmic scaling of the
y-axis, leads to the pattern in figure 5.5.

Less expected is that fork() now appears to outperform all other mecha-
nisms. In particular, we currently measure average latencies of 15% lower

66 Chapter 5. Experiments

Scale
1

Scale
2

Scale
3

Scale
4

Scale
5

Scale
6

Scale
7

Scale
8

Q1

0
250
500
750

1000
0

500

1000

0

500

1000

1500
0

500
1000
1500

0
500

1000
1500

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

3 10 30

100

300

Tim
e

[s]

Latency [ms] (log)
M

echanism
fork

m
rem

ap
scoot

F
IG

U
R

E
5.5:Latency

per
O

LTP
query

(TPC
-H

),factored
by

scale
factor.

5.2. Measurements 67

than mremap across all experiments. This matches neither our intuition nor
previous results on YCSB and requires further research.

Figure 5.6 applies the scatter plot approach from figure 5.4 to the collected
TPC-H data. Scale factors increase from left to right, while rows of the grid
again correspond to different snapshot mechanisms. In contrast to YCSB, the
TPC-H scatter plots show a seemingly finer structure; a number of finer sub-
bands can be identified within the major “fast” and “slow” bands. This is
likely due to the fact that we use nine different OLTP queries, each involving
several tuples, for our TPC-H experiments. Each query corresponds to a dif-
ferent code path. OLTP transactions on YCSB, on the other hand, are either
updating a single record or are strictly read-only.

Throughput

Lastly, figure 5.7 visualises throughput on YCSB, measured in queries per
second over the entire experiment duration, and plotted as a function of
dataset size. Note that the high-end latencies directly after snapshot creation
substantially distort this metric, which is why throughput may appear low
in absolute terms.

Each plot corresponds to a certain ratio of read and update queries in the
workload. In particular, plot zero corresponds to -r=0.0, -u=1.0, plot two
-r=0.2, -u=0.8, and so on. The visualisations are consistent with our previ-
ous findings: Throughput is highest for mremap and lowest for scoot, which
respectively, cause the lowest and highest OLTP query latencies. Generally,
throughput decreases with increasing dataset size, due to a higher proba-
bility of writes triggering page copies. Along the same line of reasoning,
throughput increases the more read-heavy the workload becomes.

Finally, figure 5.8 visualises throughput on TPC-H, similar to figure 5.7. In
line with our observations on OLTP latencies, scoot and mremap now behave
much more similar compared to YCSB (note the difference in y-axis range
between the two plots), which can be attributed to a higher heterogeneity
in the workload. Again, fork unexpectedly exhibits higher throughput than
the other methods. As mentioned above, this is likely due to an unaccounted
systemic effect and requires further investigation.

68 Chapter 5. Experiments

Scale
1

Scale
2

Scale
3

Scale
4

Scale
5

Scale
6

Scale
7

Scale
8

forkmremapscoot

0
250
500
750

1000
0

500

1000

0

500

1000

1500
0

500
1000
1500

0
500

1000
1500

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

Tim
e

[s]

Latency [ms] (log)
O

bservation
Extrem

e
V

alue
Standard

V
alue

F
IG

U
R

E
5.6:Latency

per
O

LTP
query

(TPC
-H

),factored
by

snapshotm
echanism

(row
s)and

scale
factor

(colum
ns)

5.2. Measurements 69

3
4

5

0
1

2

0
5

10
0

5
10

0
5

10

1020304050 1020304050

Sc
al

e
[M

]

Queries/s[Hz]

M
ec

ha
ni

sm
fo

rk
m

re
m

ap
sc

oo
t

FI
G

U
R

E
5.

7:
O

LT
P

Th
ro

ug
hp

ut
(Y

C
SB

)b
y

da
ta

se
ts

ca
le

(i
n

m
ill

io
n

re
co

rd
s)

70 Chapter 5. Experiments

Q1

2 4 6 8

1.5

2.0

2.5

3.0

3.5

Scale Factor

Q
ue

ri
es

/s
[H

z]

Mechanism fork mremap scoot

FIGURE 5.8: OLTP Througput (TPC-H)

5.3. Discussion 71

5.3 Discussion

After having examined fork, scoot and mremap in great detail, it appears
that no method is unequivocally superior to the others. Rather, the optimal
snapshotting approach depends on the anticipated workload and the design
constraints at hand. This section summarises the pros and cons of the indi-
vidual methods according to our findings.

fork

The clearest advantage of fork is its portability: as part of the POSIX standard
it is available on most UNIX-derived systems. This is contrasted by generally
slower execution times compared to mremap and scoot, and higher OLTP
latencies compared to mremap. (That is, except for aberrations the TPC-H
case which remain to be investigated.) However, as we have seen in our
experiments, the gap shrinks as the workload becomes more write-heavy.

Downsides of fork are its granularity and usability. In general, snapshots can
only be created and used at a process-level, which makes it hard to share mu-
table data when compared to thread-level approaches. Also, recall from sec-
tion 4.2 that fork exhibits some unintuitive semantics with respect to threads
running in the parent process and locks held by these threads.

scoot

scoot is the clear winner in terms of execution time. However, this comes at
the expense of higher OLTP query latencies (and therefore, lower through-
put), due to erased page-table entries. This effect is especially severe under
read-heavy workloads, where the recreation of the missing entries becomes
the dominant factor.

Compared to fork, scoot is fine-granular and can be used in a multi-threading
architecture without kernel modifications. However, users must keep in
mind that the mechanism itself is not atomic, which might impede integra-
tion in AnKer-style MVCC architectures with multiple OLTP threads.

mremap

mremap can in some sense be considered a middle ground between scoot
and fork: Like scoot, mremap is faster than fork in terms of execution time
(again, except for the inconsistencies observed in the TPC-H benchmark).

72 Chapter 5. Experiments

However, it does not suffer from the increase in OLTP latencies observed on
scoot. Against our initial expectations, we have observed it to even system-
atically outperform fork in terms of OLTP latencies, which makes mremap a
very strong contender.

In terms of granularity and usability, mremap behaves similar to scoot to the
point that it can be used as a drop-in replacement with the added benefit
of executed atomically. Its greatest drawback is its portability, as it requires
compile a custom kernel. However, note that this might only be a temporary
detriment, as the prospects of inclusion into the mainline Linux kernel seem
promising.

73

Chapter 6

Conclusion

In this thesis, we revisited the use of virtual memory copy-on-write snap-
shots in in-memory databases to support HTAP workloads. This idea has
first been propagated by the HyPer system, which used the fork system call
to separate long-running analytical OLAP queries from short-running OLTP
transactions. We iterated on this idea by investigating alternative copy-on-
write strategies that outperform fork along various dimensions. In partic-
ular, we investigated two mechanisms: scoot, a userspace approach that
achieves copy-on-write by cleverly moving and reclaiming virtual memory
areas, and an extension to the mremap system call that allows for the dedicated
creation of copy-on-write views on existing memory mappings.

To systematically test the competing approaches, we presented ScooterDB,
our relational in-memory hybrid storage engine that transparently and effi-
ciently supports various snapshot algorithms within the same system. Us-
ing ScooterDB, we assessed the latency and throughput behaviours of fork,
scoot and mremap under workloads derived from TPC-H and YCSB, two
industry-standard benchmarks. To provide a full picture, we also discussed
qualitative aspects such as usability and portability of the contenders.

Our experiments have shown that, although there is no one single “silver bul-
let” approach, both scoot and mremap mark substantial improvement over
fork: scoot’s execution time is up to 75 % lower than that of fork, and
mremap has up to 30% lower OLTP query latency on average. However, we
have also seen that these numbers get diluted to a certain, extent depending
on the workload. In particular, the differences tend to diminish as workloads
become more write-dominant (as seen on YCSB) or overall heterogeneous
(TPC-H).

74 Chapter 6. Conclusion

Future Work

Motivated by the results obtained in this work, there are several research
directions that we believe would be worthwhile pursuing in the future:

First and foremost, an extensive root-cause analysis for the unexpected ob-
servations from our measurements made in section 5.2 should be conducted.
Initial debugging and performance profiling produced no conclusive evi-
dence, which suggests that more intricate system effects might be at play.

Another route is the extension and improvement of ScooterDB. After having
assessed scoot and mremap in a strictly sequential setting, integration with
concurrency control similar to AnKer [114] would be an obvious next step.
Also, ScooterDB as of now supports only a limited set of data types and oper-
ators. Extending the system to a “full” database with indexes, variable-length
records, query optimisation and crash recovery would serve as a starting
point for further research in DBMS-OS-co-design. Transactionality is another
point.

A second route is the exploration of alternative use cases for copy-on-write
snapshots in the context of main-memory database management systems.
One such use case is persistence. To our knowledge, both HyPer and Redis use
fork to periodically write a consistent snapshot of in-memory data to disk. It
would be interesting to investigate whether fine-granular snapshots can pro-
vide an advantage for this task. A different use case is data egress, i.e., sharing
data from the database with third-party systems. This style of processing is
reminiscent of the data lake approach, where data is stored in a centralised
repository in a common file format and accessed by analytical applications
on a by-need basis. To our knowledge, [80], which proposes a proprietary
system to share copy-on-write snapshots with external processes, is the only
system going into this direction. Extending the investigated mechanisms to
support this use-case seems like a promising endeavour.

75

Appendix A

Implementation Details

This appendix contains further information on some of the technical intri-
cacies of our work. ScooterDB is discussed in section A.1, and the TPC-H
implementation of ScooterBench in section A.2. We omit an explicit discus-
sion of our YCSB implementation, as it is considerably simpler than TPC-H
and the technical difficulties encountered are almost a strict subset.

Instead of replicating the entire source code ad verbatim, we focus on the
major technical challenges encountered and support our remarks by selected
code passages. Note that excerpts are edited for clarity and brevity, e.g.,
by inlining function calls, adding comments, or changing variable names to
match the accompanying text. The shown snippets are therefore not always
identical to the original source but rather capture and highlight the critical
parts.

We assume the reader to have basic familiarity with the Rust programming
language. If not, the official Rust book [67] provides an excellent starting
point. For an advanced discussion on unsafe Rust and performance tuning,
see the Rustonomicon [124] and the Rust Performance Book [90], respectively.

A.1 ScooterDB

The major share of complexity in ScooterDB arises from two concerns: man-
aging memory at runtime and orchestrating the creation of database snap-
shots.

Block Memory Management

A fundamental challenge with the PAX approach described in section 3.2 is
that the in-memory layout of a Block cannot be determined at compile-time.

76 Appendix A. Implementation Details

Recall that under PAX, blocks store full tuples column-by-column. As the
size of a block is fixed (1 MiB), the starting positions of the respective column
vectors depend on both the number of columns and their widths (i.e., the
data type sizes of the stored attributes). In other words, the layout of a block
is dependent on the schema of its containing Table, which is only known at
runtime.

This is further complicated by the fact that all memory accesses must respect
alignment: x86 architectures require the memory addresses of variables hold-
ing primitive data types to be evenly divisible by the type’s size (i.e., a 4-byte
integer must be stored at addresses that are multiples of four). Only then can
the memory contents be loaded in a single cycle. Otherwise, x86 will silently
use multiple load instructions to “piece the data back together”, resulting in
a 2x slowdown.

To implement alignment-aware runtime-dependent memory layouts we sub-
divide the Block struct into a fixed-length and a variable-length portion. As the
name implies, the fixed-length portion contains all member variables whose
size is known at compile-time. In the case of Block, this is exactly one vari-
able, num_records, which tracks the number of filled tuple slots within the
block. For the variable-length portion, we add a contents byte array of size
zero at the end of the struct. While the Rust compiler will strip the member
at compile-time, this trick allows us to obtain a raw-pointer on the end of
the fixed-length section (by coercing &num_records into a *mut u8). This lets
us to address arbitrary data within the variable-length portion using pointer
arithmetic.

The resulting definition of the Block struct, given in listing A.1, is there-
fore comparatively simple. Note the #[repr(packed)] annotation, which in-
structs the compiler to not add extra padding or rearrange struct members.
This guarantees that the contents member is always at the end of the struct.

LISTING A.1: The Block struct.

// scooterdb/src/storage/block.rs

#[repr(packed)]
pub struct Block {

pub num_records: u32,
contents: [u8; 0],

}

A.1. ScooterDB 77

A consequence of this approach is that blocks must never be instantiated
using conventional methods, e.g. by creating a new instance on the heap
via Box::new. (Doing so would not allocate the 1,048,572 bytes expected at
&contents.) Instead, blocks are created by manually allocating 1 MiB of raw
memory and reinterpreting the returned *mut u8 (a raw pointer to a byte
in memory, similar to void* in C/C++) as a *mut Block (a raw pointer to a
Block instance). This is precisely how block allocators operate. An example
from the ScootOrigin allocator is given in listing A.2:

LISTING A.2: Block allocation in the ScootOrigin block alloca-

tor.

// scooterdb/src/storage/alloc.rs (impl ScootOrigin)

unsafe fn alloc(&mut self) -> *mut Block {
// Try to acquire a block from the pool; otherwise create one explicitly
// by calling alloc_raw()
let block = self.pool.acquire_or_alloc(|| ScootOrigin::alloc_raw());

// --snip--

block
}

unsafe fn alloc_raw(&self) -> *mut Block {
// Allocate BLOCK_SIZE (= 1MiB) bytes of memory aligned to BLOCK_SIZE
// using scoot_alloc and cast it to a Block pointer
scoot_alloc(Block::BLOCK_SIZE, Block::BLOCK_SIZE) as *mut Block

}

The variable-length part of a block is laid out as follows: At the beginning
(i.e., starting directly at &content) we maintain the offsets of each column
from the block’s starting address as an array of 32-bit unsigned integers.
The columns themselves are laid out after that in the order specified in the
schema, with optional padding in front to align the beginning of each column
to an eight byte boundary. This ensures that values stored in the columns are
always aligned correctly, irrespective of their actual data type. The specific
column offsets depend on the both the number of columns and the column
widths. Note that all columns have the same length in terms of items (be-
cause a block always stores full tuples) but not in terms of bytes (different
columns have different widths). Listing A.3 contains the code to compute
the column offsets:

LISTING A.3: Computation of column offsets within a Block.

78 Appendix A. Implementation Details

// scooterdb/storage/block.rs (impl BlockLayout)

fn compute_column_offsets(column_widths: &Vec<usize>) -> Vec<u32> {
let mut col_offsets: Vec<u32> = Vec::with_capacity(column_widths.len());

// The first column starts at an offset equal to the length of the
// fixed-length section (Block::STATIC_HEADER_SIZE) plus the length
// of the offset array in the variable-length section, padded to
// align to eight byte
let mut offset = Block::STATIC_HEADER_SIZE

+ column_widths.len() * size_of::<u32>();
offset = pad_to_alignment(size, size_of::<u64>());

// Each column is padded to align to an eight byte boundary, thus
// requiring a maximum of size(u4) - 1 bytes of padding
let max_padding = size_of::<u64>() - 1;

// We always use the pessimistic lower bound of available bytes
// assuming the maximum amount of padding is actually needed to
// to lay out the columns
let mut bytes_available = Block::BLOCK_SIZE

- offset
- attr_sizes.len() * max_padding;

// The maximum number of full tuples that can be fit into
// the block
let tuple_size = column_widths.iter().sum();
let max_num_slots = (bytes_available / tuple_size) as u32;

for width in column_widths {
col_offsets.push(offset as u32);
let col_size = width * max_num_slots as usize;

// Compute the amount of padding actually required
offset += pad_to_alignment(col_size, size_of::<u64>());

}

col_offsets
}

Recall from section 4.3 that BlockAllocator implementations cache blocks in
an internal resource pool. As a consequence, a block that was once used in
one table might subsequently be used for a different table. To enable this flex-
ibility, we do not store schema information (such as the column widths) in the
blocks themselves, but move them to a dedicated BlockLayout struct owned

A.1. ScooterDB 79

by the corresponding Table. The table uses the block layout to determine the
in-memory position of attributes at runtime. An example is given in listing
A.4 that traces the code path to read 64-bit floating point value from a given
tuple slot and column. Note that the column is identified by its column_id
which is simply its zero-based position within the schema.

LISTING A.4: Reading a 64-bit floating point value from a table.

// scooterdb/src/table.rs (impl Table)

pub fn read_f64(&self, slot: TupleSlot, column_id: u16) -> f64 {
let raw = self.get_attribtue_at(slot, column_id);

unsafe {
let bytes = from_raw_parts_mut(raw, size_of::<f64>());
f64::from_ne_bytes(bytes.try_into().unwrap())

}
}

/// Returns a raw pointer to the attribute at the given column in
/// the row at the given tuple slot.
fn get_attribtue_at(&self, slot: TupleSlot, column_id: u16) -> *mut u8 {

// Use the block layout to check that the row exists
assert!(

slot.offset() < self.layout.num_slots(),
"Offset␣out␣of␣bounds"

);

// Obtain the attribute size (i.e., the selected column’s width)
// from the block layout
let attribute_size = self.layout.attr_sizes()[column_id as usize];

let column = self.get_column(slot.block(), column_id);
let offset = attribute_size * slot.offset() as usize;

unsafe { column.add(offset) }
}

/// Returns a raw pointer to the requested column from the given
/// block.
fn get_column(&self, block: *mut Block, column_id: u16) -> *mut u8 {

assert!(
column_id < self.layout.num_columns(),
"Column_id␣out␣of␣bounds"

);

80 Appendix A. Implementation Details

unsafe {
let column_offsets = (*block).column_offsets();
let column_offset = *column_offsets.offset(column_id as isize);
(block as *mut u8).offset(column_offset as isize)

}
}

// -- snip --

// scooterdb/src/storage/block.rs (impl Block)

/// Returns a raw pointer to the column offsets array in the block’s
/// variable-size portion.
pub fn column_offsets(&mut self) -> *mut u32 {

self.contents.as_mut_ptr() as *mut u32
}

The Row and RowAccessor structs work completely analogous to Block and
BlockLayout, respectively. The only difference is that RowAccessor also im-
plements access methods to manipulate a row, similar to how Table manip-
ulates its blocks as shown in the listing above.

Snapshot Orchestration

As mentioned in section 4.3, snapshot orchestration is handled by the Database
struct, which acts as a top-level container for the tables of the respective
database instance. The definition of the database struct is given in listing
A.5.

LISTING A.5: The Database struct.

pub struct Database<T: BlockAllocator> {
// The underlying block allocator
allocator: Rc<RefCell<T>>,

// Maps table names to Table instances
tables: HashMap<String, Table<T>>,

}

A detail worth explaining is the use of Rc<RefCell<T» in the type of the
allocator member. Rc<T> is a smart pointer that implements reference count-
ing. The contained RefCell<T> provides interior mutability, a concept that
allows multiple mutable borrows of the same object by deferring borrow-
checking from compile-time to runtime. Taken together, Rc<RefCell<T» is

A.1. ScooterDB 81

a common Rust idiom to enable multiple ownership of the same object. In
this instance this is necessary, as the same BlockAllocator is used by both the
database and its contained tables.

The implementation blocks of Database variants parameterised with the origin-
side allocators of scoot and mremap contain a snapshot() method as de-
scribed in section 4.3. The implementation is again relatively straight-forward:
At first, the duplicate-side allocator is created by calling the duplicate method
of the origin-side allocator, which in turn creates the copy-on-write mapping
via the mechanism-specific C API. Listing A.6 shows the duplicate imple-
mentation of the ScootOrigin block allocator as an example.

LISTING A.6: Definition and implementation of the ScootOri-

gin block allocator.

// scooterdb/src/alloc.rs

pub struct ScootOrigin {
// The resource pool for allocated blocks
pool: AllocationCache,

// The address of the first allocation. Currently, this is always
// 0x6000_0000_0000 (plus padding)
base_addr: Option<usize>,

// True if duplicate has already been called, false otherwise
is_duplicated: bool,

}

// -- snip --

// scooterdb/src/alloc.rs (impl ScootOrigin)

// Note the return type: ScootOrigin::duplicate returns a ScootDuplicate,
// the duplicate-side block allocator
pub fn duplicate(&mut self) -> ScootDuplicate {

// Ensure that at least one allocation has been made
let base = self

.base_addr

.unwrap_or_else(|| panic!("scoot-duplicate␣before␣scoot-allocate"));

// Ensure that duplicate has not been called yet
if self.is_duplicated {

panic!("multiple␣scoot-duplicate␣invocations")
}

82 Appendix A. Implementation Details

// Create the actual duplicate by calling scoot’s C API
let duplicate = unsafe { scoot_duplicate() as usize };
self.is_duplicated = true;

// equivalent to let offset = 0x1000_0000_0000;
let offset = duplicate - base + 0x200_000;

// Create and return the duplicate-side block allocator
ScootDuplicate { offset }

}

snapshot() then instructs each Table to create a duplicate version of itself by
redirecting pointers to the snapshot VMA. Listing A.7 traces this process for
scoot, however the mremap version is almost identical.

LISTING A.7: Implementation of

Database::<ScootOrigin>::snapshot()

// scooterdb/src/database.rs (impl Database<ScootOrigin>)

// Again, note the return type. Database::<ScootOrigin>::snapshot returns
// a Database<ScootDuplicate> which represents the duplicate-view
// of the database instance
pub fn snapshot(&mut self) -> Database<ScootDuplicate> {

// Create the duplicate-side block allocator and capture it in a
// Rc<RefCell<ScootDuplicate>>> to enable multiple ownership
let allocator = self.allocator.borrow_mut().duplicate();
let allocator = Rc::new(RefCell::new(allocator));

// Duplicate the tables by calling Table::<ScootOrigin>::duplicate
// with the duplicate-side allocator
let mut tables = HashMap::with_capacity(self.tables.len());
for (name, table) in self.tables.iter_mut() {

let duplicate = table.duplicate(Rc::clone(&allocator);
tables.insert(name.clone(), duplicate));

}

// Create and return the duplicte-side database instance
Database { allocator, tables }

}

// -- snip --

// scooterdb/src/table.rs (impl Table<ScootOrigin>)

pub fn duplicate(&mut self,

A.1. ScooterDB 83

allocator: Rc<RefCell<ScootDuplicate>>
) -> Table<ScootDuplicate> {

// Obtain the in-memory offset from the origin VMA to the
// duplicate from the duplicate-side allocator
// (Currently, this is always 0x1000_0000_0000 for scoot)
let offset = allocator.borrow().offset();

// Clone the "blocks" hash set, shifting all pointers to
// the duplicate
let blocks = self

.blocks

.iter()

.map(|block| unsafe {
(*block as *mut u8).add(offset) as *mut Block })

.collect();

// Do the same for the "free blocks" hash set
let free_blocks = self

.free_blocks

.iter()

.map(|block| unsafe {
(*block as *mut u8).add(offset) as *mut Block })

.collect();

// Create and return the duplicate-view of the table
// with a reference to the duplicate-side block allocator
Table {

layout: self.layout.clone(),
allocator,
blocks,
free_blocks,

}
}

This concludes the snapshot creation process. The returned Database<ScootDuplicate>
(or Database<MremapDuplicate>, respectively) behaves exactly like the orig-
inal database, only that all block allocation requests to the MremapDuplicate
allocator result in an error, see listing A.8.

LISTING A.8: The ScootDuplicate block allocator.

// scooterdb/src/alloc.rs

impl BlockAllocator for ScootDuplicate {
unsafe fn alloc(&mut self) -> *mut Block {

84 Appendix A. Implementation Details

panic!("alloc␣on␣duplicate")
}

unsafe fn dealloc(&mut self, _block: *mut Block) {
// NOOP

}
}

A.2 TPC-H

This section sheds light on our (partial) implementation of the TPC-H bench-
mark. As mentioned in section 5.1, we make use of the queries Q1, Q4, Q6 and
Q17 as well as nine custom OLTP transaction types in our experiments. All
queries operate exclusively on the orders, part and lineitem tables.

While the TPC-H suite provides data and query generators, ScooterDB’s lack
of an SQL frontend makes them cumbersome to use. We therefore opt for
creating our own data generation routines and implement queries as pure
Rust functions in ScooterBench. While doing so, we carefully follow the TPC-
H standard [130] to ensure a base level of comparability and expressivity of
our experiment results.

For the data generation phase, we closely follow the value distributions and
table size ratios prescribed by the standard, except for two small deviations:
Firstly, we use simple dummy values for string attributes that are never writ-
ten nor read (except in full-record SELECTs). Secondly, the primary keys of the
order table are not sampled sparsely from the key space, but assigned incre-
mentally. However this does not change query behaviour since o_orderkey
is not used as a foreign key in any of the relevant tables.

The queries are implemented as follows:

OLAP

As mentioned above, each of the four OLAP queries is implemented as a pure
Rust function. Listing A.9 shows the implementation of Q6 as an example.

ScooterDB does not (yet) support indices. We work around this limitation by
creating an external primary key index for each table during data generation.
Each index is a simple B-tree (using the Rust standard library’s BTreeMap
implementation) that maps primary keys to their respective tuple slots. Note

A.2. TPC-H 85

that the structure of tuple slots guarantees that the order of leaf nodes in the
index is consistent with the order of records within a storage block.

This works well for the case of fork-based snapshotting. With scoot and
mremap however, the indices must be shared between OLTP queries operating
on the origin-side database and the OLAP queries operating on the duplicate.
(Copying the index structures during snapshot creation would eradicate the
latency benefits of scoot and mremap.) This is reminiscent of the problem of
sharing a block allocator instance across tables as outlined in section A.1. The
difference is that in this scenario, ownership is not shared across structs, but
across threads. This is problematic because the Rust compiler only allows
concurrent accesses on objects that explicitly mark themselves as thread-safe
by implementing the Sync marker trait (which BTreeMap does not do).

We therefore wrap each index inside an Arc<RWLock<T». This can be thought
of as a thread-safe analogue to Rc<RefCell<T»: Arc<T> is a reference-counting
smart pointer similar to Rc<T>, only that all modifications of the reference
count happen atomically. RWLock<T> is a read-write lock that guarantees mu-
tual exclusion of mutating accesses, while allowing parallel read-accesses.
Since all of our queries only read from an index and never write to it (i.e.,
the OLTP queries do not insert or delete tuples, only modify existing ones),
acquiring the RWLock<T> does not deteriorate performance.

This lets us efficiently share indices between OLTP and OLAP queries. How-
ever, note that in the fork/scoot scenario, tuple slots stored in an index will
always point to records inside the origin VMA. OLAP queries operating on
the duplicate therefore need to reinterpret the indexed pointers by adding
the offset to the memory area of the duplicate.

LISTING A.9: TPC-H OLAP query Q6.

// fix_index_slots marks whether the OLAP query operates on a scoot/mremap
// snapshot (true) or a fork snapshot (false)
fn olap_q6(&mut self, fix_index_slots: bool) {

// Acquire read-lock on the "lineitem" index
let lineitem_index = self.lineitem_index.read().unwrap();

// The result computed by the query
let mut _result = 0.0;

// Generate query paramets (according to spec)
let mut rng = self.rng.borrow_mut();

let year = rng.gen_range(1993..=1997);

86 Appendix A. Implementation Details

let end_date = start_date + Duration::days(366);
let start_date = datetime!(1980-01-01 00:00 UTC)

.replace_year(year)

.unwrap();

let discount = rng.gen_range(0.02..=0.09);
let quantity = rng.gen_range(24..=25);

// Scan over all lineitems.
// Iterating over lineitem_index.values() guarantees that
// each block is scanned in column-order, improving cache
// hit ratios
for lineitem in lineitem_index.values() {

// Reinterpret tuple slots (if necessary)
let lineitem = if fix_index_slots {

Self::fix_index_slot(*lineitem)
} else {

*lineitem
};

// Compute the selection predicate
let table = &self.lineitem_table;
let l_shipdate = table.read_date(lineitem, Self::L_SHIPDATE);
let l_discount = table.read_f64(lineitem, Self::L_DISCOUNT);
let l_quantity = table.read_i32(lineitem, Self::L_QUANTITY);

let is_selected = l_shipdate >= start_date.unix_timestamp()
&& l_shipdate < end_date.unix_timestamp()
&& l_discount >= discount - 0.01
&& discount <= discount + 0.01
&& l_quantity < quantity;

if !is_selected {
continue;

}

// Aggregate the query result
let l_extendedprice = self

.lineitem_table

.read_i32(lineitem, Self::L_EXTENDEDPRICE);

_result += l_extendedprice as f64 * l_discount;
}

}

A.2. TPC-H 87

OLTP

We implement nine custom OLTP transactions. The queries, as listed in fig-
ure A.1 were originally proposed in an ArXiv preprint of the AnKer publica-
tion [114]. Question marks in the SQL queries represent query parameters.

Q
1

UPDATE lineitem
SET l_returnflag =?

WHERE l_orderkey =?
AND l_linenumber =?;

Q
2

UPDATE lineitem
SET l_linestatus =?,

l_discount =?
WHERE l_orderkey =?

AND l_linenumber =?;

Q
3

UPDATE lineitem
SET l_extendedprice =?,

l_shipdate =?
WHERE l_orderkey =?

AND l_linenumber =?;

Q
4

UPDATE orders
SET o_orderpriority =?,

o_orderstatus =?
WHERE o_orderkey =?;

Q
5 UPDATE orders

SET o_orderpriority =?
WHERE o_orderkey =?;

Q
6 UPDATE orders

SET o_totalprice =?
WHERE o_orderkey =?;

Q
7

UPDATE lineitem
SET l_extendprice =?

WHERE l_orderkey =?
AND l_linenumber =?;

UPDATE orders
SET o_orderstatus =?

WHERE o_orderkey =?;

Q
8

UPDATE part
SET p_brand =?,

p_retailprice =?
WHERE p_partkey =?;

Q
9

UPDATE lineitem
SET l_returnflag =?

WHERE l_orderkey =?
AND l_linenumber =?;

UPDATE orders
SET o_totalprice =?

WHERE o_orderkey =?;
UPDATE part

SET p_retailprice =?
WHERE p_partkey =?;

FIGURE A.1: OLTP Queries used in our TPC-H experiments.

The implementation of these queries is very similar to the OLAP queries
above. Following Sharma et al., we select all parameters from existing rows
in the respective tables. In essence, each query copies information form
some rows into other rows, thereby simulating the expected workload in an
OLTP application to a reasonable degree. Note that OLTP queries can always
use tuple slots from indices directly (they always operate on the origin) and
therefore do not need a fix_index_slots parameter. Listing A.10 shows the
implementation of Q7 as an example.

LISTING A.10: OLTP transaction Q7.

fn oltp_q7(&mut self) {
// Acquire read lock on the "lineitem" and "orders" primary indices
let lineitem_index = self.lineitem_index.read().unwrap();
let orders_index = self.orders_index.read().unwrap();

// Select "lineitem" and "orders" rows from which the SET parameters
// are selected
let src_order_key = self.sample_key(self.orders_table.len());
let src_line_number = self.sample_key(Self::LINEITEMS_PER_ORDER);

88 Appendix A. Implementation Details

let src_order = orders_index[&src_order_key];
self.orders_table.select(src_order, self.orders_row);

let src_lineitem = lineitem_index[&(src_order_key, src_line_number)];
self.lineitem_table.select(src_lineitem, self.lineitem_row);

// Select "lineitem" and "orders" rows that are being updated
// (i.e. the WHERE parameters)
let dst_order_key = self.sample_key(self.orders_table.len());
let dst_line_number = self.sample_key(Self::LINEITEMS_PER_ORDER);

let dst_order = orders_index[&dst_order_key];
let dst_lineitem = lineitem_index[&(dst_order_key, dst_line_number)];

// Perform the update
self.lineitem_table

.update_field(dst_lineitem, self.lineitem_row, Self::L_EXTENDEDPRICE);
self.orders_table

.update_field(dst_order, self.orders_row, Self::O_ORDERSTATUS);
}

89

Bibliography

[1] Colin Adams et al. “Monarch: Google’s Planet-Scale In-Memory Time
Series Database”. In: Proc. VLDB Endow. 13.12 (2020), pp. 3181–3194.
DOI: 10 . 14778 / 3181 - 3194. URL: http : / / www . vldb . org / pvldb /
vol13/p3181-adams.pdf.

[2] Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. “Data page
layouts for relational databases on deep memory hierarchies”. In: VLDB
J. 11.3 (2002), pp. 198–215. DOI: 10.1007/s00778-002-0074-9. URL:
https://doi.org/10.1007/s00778-002-0074-9.

[3] G. Antoshenkov. “Byte-aligned bitmap compression”. In: (1995), pp. 476–.
DOI: 10.1109/DCC.1995.515586.

[4] Raja Appuswamy et al. “Analyzing the Impact of System Architec-
ture on the Scalability of OLTP Engines for High-Contention Work-
loads”. In: Proc. VLDB Endow. 11.2 (2017), pp. 121–134. DOI: 10.14778/
3149193.3149194. URL: http://www.vldb.org/pvldb/vol11/p121-
appuswamy.pdf.

[5] Arvind Arasu et al. “Linear Road: A Stream Data Management Bench-
mark”. In: (e)Proceedings of the Thirtieth International Conference on Very
Large Data Bases, VLDB 2004, Toronto, Canada, August 31 - September
3 2004. Ed. by Mario A. Nascimento et al. Morgan Kaufmann, 2004,
pp. 480–491. DOI: 10.1016/B978-012088469-8.50044-9. URL: http:
//www.vldb.org/conf/2004/RS12P1.PDF.

[6] Timothy G. Armstrong et al. “LinkBench: a database benchmark based
on the Facebook social graph”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013. Ed. by Kenneth A. Ross, Divesh Sri-
vastava, and Dimitris Papadias. ACM, 2013, pp. 1185–1196. DOI: 10.
1145/2463676.2465296. URL: https://doi.org/10.1145/2463676.
2465296.

[7] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. “Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads”. In:
Proceedings of the 2016 International Conference on Management of Data,

https://doi.org/10.14778/3181-3194
http://www.vldb.org/pvldb/vol13/p3181-adams.pdf
http://www.vldb.org/pvldb/vol13/p3181-adams.pdf
https://doi.org/10.1007/s00778-002-0074-9
https://doi.org/10.1007/s00778-002-0074-9
https://doi.org/10.1109/DCC.1995.515586
https://doi.org/10.14778/3149193.3149194
https://doi.org/10.14778/3149193.3149194
http://www.vldb.org/pvldb/vol11/p121-appuswamy.pdf
http://www.vldb.org/pvldb/vol11/p121-appuswamy.pdf
https://doi.org/10.1016/B978-012088469-8.50044-9
http://www.vldb.org/conf/2004/RS12P1.PDF
http://www.vldb.org/conf/2004/RS12P1.PDF
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296

90 Bibliography

SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016. Ed. by Fatma Özcan, Georgia Koutrika, and Sam Madden. ACM,
2016, pp. 583–598. DOI: 10.1145/2882903.2915231. URL: https://
doi.org/10.1145/2882903.2915231.

[8] Morton M. Astrahan et al. “System R: Relational Approach to Database
Management”. In: ACM Trans. Database Syst. 1.2 (1976), pp. 97–137.
DOI: 10.1145/320455.320457. URL: https://doi.org/10.1145/
320455.320457.

[9] JanusGraph Authors. JanusGraph. 2022. URL: https://janusgraph.
org/ (visited on 08/14/2022).

[10] Charles W. Bachman. “The Origin of the Integrated Data Store (IDS):
The First Direct-Access DBMS”. In: IEEE Ann. Hist. Comput. 31.4 (2009),
pp. 42–54. DOI: 10.1109/MAHC.2009.110. URL: https://doi.org/10.
1109/MAHC.2009.110.

[11] Jerry Baulier et al. “DataBlitz Storage Manager: Main Memory Database
Performance for Critical Applications”. In: SIGMOD 1999, Proceedings
ACM SIGMOD International Conference on Management of Data, June
1-3, 1999, Philadelphia, Pennsylvania, USA. Ed. by Alex Delis, Christos
Faloutsos, and Shahram Ghandeharizadeh. ACM Press, 1999, pp. 519–
520. DOI: 10.1145/304182.304239. URL: https://doi.org/10.1145/
304182.304239.

[12] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. “Dictionary-
based order-preserving string compression for main memory column
stores”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009. Ed. by Ugur Çetintemel et al. ACM, 2009, pp. 283–
296. DOI: 10.1145/1559845.1559877. URL: https://doi.org/10.
1145/1559845.1559877.

[13] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Al-
lowable Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426. DOI: 10.
1145/362686.362692. URL: https://doi.org/10.1145/362686.
362692.

[14] Jan Böttcher et al. “Scalable Garbage Collection for In-Memory MVCC
Systems”. In: Proc. VLDB Endow. 13.2 (2019), pp. 128–141. DOI: 10.
14778/3364324.3364328. URL: http://www.vldb.org/pvldb/vol13/
p128-bottcher.pdf.

https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/320455.320457
https://doi.org/10.1145/320455.320457
https://janusgraph.org/
https://janusgraph.org/
https://doi.org/10.1109/MAHC.2009.110
https://doi.org/10.1109/MAHC.2009.110
https://doi.org/10.1109/MAHC.2009.110
https://doi.org/10.1145/304182.304239
https://doi.org/10.1145/304182.304239
https://doi.org/10.1145/304182.304239
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.14778/3364324.3364328
https://doi.org/10.14778/3364324.3364328
http://www.vldb.org/pvldb/vol13/p128-bottcher.pdf
http://www.vldb.org/pvldb/vol13/p128-bottcher.pdf

Bibliography 91

[15] Donald D. Chamberlin et al. “A History and Evaluation of System R”.
In: Commun. ACM 24.10 (1981), pp. 632–646. DOI: 10.1145/358769.
358784. URL: https://doi.org/10.1145/358769.358784.

[16] Fay Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data (Awarded Best Paper!)” In: 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), November 6-8, Seattle,
WA, USA. Ed. by Brian N. Bershad and Jeffrey C. Mogul. USENIX As-
sociation, 2006, pp. 205–218. URL: http://www.usenix.org/events/
osdi06/tech/chang.html.

[17] Jack Chen et al. “The MemSQL Query Optimizer: A modern opti-
mizer for real-time analytics in a distributed database”. In: Proc. VLDB
Endow. 9.13 (2016), pp. 1401–1412. DOI: 10.14778/3007263.3007277.
URL: http://www.vldb.org/pvldb/vol9/p1401-chen.pdf.

[18] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970), pp. 377–387. DOI: 10.1145/362384.
362685. URL: http://doi.acm.org/10.1145/362384.362685.

[19] E. F. Codd. “Derivability, Redundancy and Consistency of Relations
Stored in Large Data Banks”. In: Research Report / RJ / IBM / San Jose,
California RJ599 (1969).

[20] E. F. Codd. “Further Normalization of the Data Base Relational Model”.
In: Research Report / RJ / IBM / San Jose, California RJ909 (1971).

[21] E. F. Codd. “Recent Investigations in Relational Data Base Systems”.
In: Information Processing, Proceedings of the 6th IFIP Congress 1974, Stock-
holm, Sweden, August 5-10, 1974. Ed. by Jack L. Rosenfeld. North-Holland,
1974, pp. 1017–1021.

[22] Richard L. Cole et al. “The mixed workload CH-benCHmark”. In: Pro-
ceedings of the Fourth International Workshop on Testing Database Systems,
DBTest 2011, Athens, Greece, June 13, 2011. Ed. by Goetz Graefe and
Kenneth Salem. ACM, 2011, p. 8. DOI: 10.1145/1988842.1988850.
URL: https://doi.org/10.1145/1988842.1988850.

[23] The Linux kernel development community. Kernel Samepage Merging.
URL: https://www.kernel.org/doc/html/latest/admin-guide/mm/
ksm.html (visited on 08/10/2022).

[24] Brian F. Cooper et al. “Benchmarking cloud serving systems with YCSB”.
In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11, 2010. Ed. by Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum. ACM, 2010,

https://doi.org/10.1145/358769.358784
https://doi.org/10.1145/358769.358784
https://doi.org/10.1145/358769.358784
http://www.usenix.org/events/osdi06/tech/chang.html
http://www.usenix.org/events/osdi06/tech/chang.html
https://doi.org/10.14778/3007263.3007277
http://www.vldb.org/pvldb/vol9/p1401-chen.pdf
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1988842.1988850
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html

92 Bibliography

pp. 143–154. DOI: 10.1145/1807128.1807152. URL: https://doi.
org/10.1145/1807128.1807152.

[25] George P. Copeland and Setrag Khoshafian. “A Decomposition Stor-
age Model”. In: Proceedings of the 1985 ACM SIGMOD International
Conference on Management of Data, Austin, Texas, USA, May 28-31, 1985.
Ed. by Shamkant B. Navathe. ACM Press, 1985, pp. 268–279. DOI: 10.
1145/318898.318923. URL: https://doi.org/10.1145/318898.
318923.

[26] James C. Corbett et al. “Spanner: Google’s Globally Distributed Database”.
In: ACM Trans. Comput. Syst. 31.3 (2013), p. 8. DOI: 10.1145/2491245.
URL: https://doi.org/10.1145/2491245.

[27] Thomas H. Cormen et al. Introduction to Algorithms, 3rd Edition. MIT
Press, 2009. ISBN: 978-0-262-03384-8. URL: http : / / mitpress . mit .
edu/books/introduction-algorithms.

[28] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer
Manuals. URL: https : / / www . intel . com / content / www / us / en /
developer/articles/technical/intel-sdm.html (visited on 08/10/2022).

[29] Andrew Crotty, Viktor Leis, and Andrew Pavlo. “Are You Sure You
Want to Use MMAP in Your Database Management System?” In: 12th
Conference on Innovative Data Systems Research, CIDR 2022, Chaminade,
CA, USA, January 9-12, 2022. www.cidrdb.org, 2022. URL: https://
www.cidrdb.org/cidr2022/papers/p13-crotty.pdf.

[30] Benoît Dageville et al. “The Snowflake Elastic Data Warehouse”. In:
Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016. Ed. by Fatma Özcan, Georgia Koutrika, and Sam Madden. ACM,
2016, pp. 215–226. DOI: 10.1145/2882903.2903741. URL: https://
doi.org/10.1145/2882903.2903741.

[31] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Commun.
ACM 56.2 (2013), pp. 74–80. DOI: 10.1145/2408776.2408794. URL:
https://doi.org/10.1145/2408776.2408794.

[32] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004. Ed. by Eric A. Brewer and Peter Chen. USENIX As-
sociation, 2004, pp. 137–150. URL: http://www.usenix.org/events/
osdi04/tech/dean.html.

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/318898.318923
https://doi.org/10.1145/318898.318923
https://doi.org/10.1145/318898.318923
https://doi.org/10.1145/318898.318923
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf
https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html

Bibliography 93

[33] Barry A. Devlin and Paul T. Murphy. “An Architecture for a Business
and Information System”. In: IBM Syst. J. 27.1 (1988), pp. 60–80. DOI:
10.1147/sj.271.0060. URL: https://doi.org/10.1147/sj.271.
0060.

[34] David J. DeWitt et al. “Implementation Techniques for Main Mem-
ory Database Systems”. In: SIGMOD’84, Proceedings of Annual Meet-
ing, Boston, Massachusetts, USA, June 18-21, 1984. Ed. by Beatrice Yor-
mark. ACM Press, 1984, pp. 1–8. DOI: 10.1145/602259.602261. URL:
https://doi.org/10.1145/602259.602261.

[35] Cristian Diaconu et al. “Hekaton: SQL server’s memory-optimized
OLTP engine”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013. Ed. by Kenneth A. Ross, Divesh Srivastava, and Dim-
itris Papadias. ACM, 2013, pp. 1243–1254. DOI: 10.1145/2463676.
2463710. URL: https://doi.org/10.1145/2463676.2463710.

[36] Siying Dong et al. “RocksDB: Evolution of Development Priorities in
a Key-value Store Serving Large-scale Applications”. In: ACM Trans.
Storage 17.4 (2021), 26:1–26:32. DOI: 10.1145/3483840. URL: https:
//doi.org/10.1145/3483840.

[37] eBPF. eBPF. 2022. URL: https://ebpf.io (visited on 08/13/2022).
[38] Franz Faerber et al. “Main Memory Database Systems”. In: Found.

Trends Databases 8.1-2 (2017), pp. 1–130. DOI: 10.1561/1900000058.
URL: https://doi.org/10.1561/1900000058.

[39] Ronald Fagin. “Multivalued Dependencies and a New Normal Form
for Relational Databases”. In: ACM Trans. Database Syst. 2.3 (1977),
pp. 262–278. DOI: 10.1145/320557.320571. URL: https://doi.org/
10.1145/320557.320571.

[40] Franz Färber et al. “SAP HANA database: data management for mod-
ern business applications”. In: SIGMOD Rec. 40.4 (2011), pp. 45–51.
DOI: 10.1145/2094114.2094126. URL: https://doi.org/10.1145/
2094114.2094126.

[41] Franz Färber et al. “The SAP HANA Database – An Architecture Overview”.
In: IEEE Data Eng. Bull. 35.1 (2012), pp. 28–33. URL: http://sites.
computer.org/debull/A12mar/hana.pdf.

[42] The Apache Software Foundation. Apache CouchDB. 2022. URL: https:
//couchdb.apache.org/ (visited on 08/14/2022).

[43] The Apache Software Foundation. Apache HBase. 2022. URL: https:
//hbase.apache.org/ (visited on 08/14/2022).

https://doi.org/10.1147/sj.271.0060
https://doi.org/10.1147/sj.271.0060
https://doi.org/10.1147/sj.271.0060
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://ebpf.io
https://doi.org/10.1561/1900000058
https://doi.org/10.1561/1900000058
https://doi.org/10.1145/320557.320571
https://doi.org/10.1145/320557.320571
https://doi.org/10.1145/320557.320571
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
http://sites.computer.org/debull/A12mar/hana.pdf
http://sites.computer.org/debull/A12mar/hana.pdf
https://couchdb.apache.org/
https://couchdb.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/

94 Bibliography

[44] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
systems - the complete book (2. ed.) Pearson Education, 2009. ISBN: 978-
0-13-187325-4.

[45] Seth Gilbert and Nancy A. Lynch. “Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services”. In:
SIGACT News 33.2 (2002), pp. 51–59. DOI: 10.1145/564585.564601.
URL: https://doi.org/10.1145/564585.564601.

[46] Google. LevelDB. URL: https://github.com/google/leveldb (visited
on 08/10/2022).

[47] Mel Gorman. Understanding the Linux Virtual Memory Manager. USA:
Prentice Hall PTR, 2004. ISBN: 0131453483.

[48] Jim Gray. “The Transaction Concept: Virtues and Limitations (Invited
Paper)”. In: Very Large Data Bases, 7th International Conference, Septem-
ber 9-11, 1981, Cannes, France, Proceedings. IEEE Computer Society, 1981,
pp. 144–154.

[49] Jim Gray et al. “Granularity of Locks and Degrees of Consistency in
a Shared Data Base”. In: Modelling in Data Base Management Systems,
Proceeding of the IFIP Working Conference on Modelling in Data Base Man-
agement Systems, Freudenstadt, Germany, January 5-8, 1976. Ed. by G. M.
Nijssen. North-Holland, 1976, pp. 365–394.

[50] The Open Group. The Open Group Base Specifications Issue 7, 2018 edi-
tion. 2018. URL: https://pubs.opengroup.org/onlinepubs/9699919799.
2018edition/ (visited on 08/11/2022).

[51] The PostgreSQL Global Development Group. PostgreSQL: The World’s
Most Advanced Open Source Relational Database. URL: https://www.
postgresql.org/ (visited on 08/10/2022).

[52] Anurag Gupta et al. “Amazon Redshift and the Case for Simpler Data
Warehouses”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary
G. Ives. ACM, 2015, pp. 1917–1923. DOI: 10.1145/2723372.2742795.
URL: https://doi.org/10.1145/2723372.2742795.

[53] Theo Härder and Andreas Reuter. “Principles of Transaction-Oriented
Database Recovery”. In: ACM Comput. Surv. 15.4 (1983), pp. 287–317.
DOI: 10.1145/289.291. URL: https://doi.org/10.1145/289.291.

[54] IBM. Db2 Database. URL: https : / / www . ibm . com / products / db2 -
database (visited on 08/10/2022).

https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://github.com/google/leveldb
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database

Bibliography 95

[55] IBM. IBM Information Management System. URL: https://www.ibm.
com/products/ims (visited on 08/09/2022).

[56] Stratos Idreos et al. “MonetDB: Two Decades of Research in Column-
oriented Database Architectures”. In: IEEE Data Eng. Bull. 35.1 (2012),
pp. 40–45. URL: http : / / sites . computer . org / debull / A12mar /
monetdb.pdf.

[57] Influx Data Inc. InfluxDB: Open Source Timeseries Databasee. 2022. URL:
https://www.influxdata.com/ (visited on 08/14/2022).

[58] Evan Jones. fork() without exec() is dangerous in large programs. Aug. 16,
2016. URL: https://www.evanjones.ca/fork-is-dangerous.html
(visited on 08/13/2022).

[59] J. R. Jordan, J. Banerjee, and R. B. Batman. “Precision Locks”. In: Pro-
ceedings of the 1981 ACM SIGMOD International Conference on Manage-
ment of Data, Ann Arbor, Michigan, USA, April 29 - May 1, 1981. Ed.
by Y. Edmund Lien. ACM Press, 1981, pp. 143–147. DOI: 10.1145/
582318.582340. URL: https://doi.org/10.1145/582318.582340.

[60] Edward G. Coffman Jr., M. J. Elphick, and Arie Shoshani. “Deadlock
Problems in Computer Systems”. In: Rechnerstrukturen und Betrieb-
sprogrammierung, Erlangen, 1970, Proceedings. Ed. by Wolfgang Händler
and Peter Paul Spies. Vol. 13. Lecture Notes in Computer Science.
Springer, 1970, pp. 311–325. DOI: 10.1007/3-540-06815-5_147.
URL: https://doi.org/10.1007/3-540-06815-5_147.

[61] Frederick P. Brooks Jr. “The IBM Operating System/360”. In: Software
Pioneers. Ed. by Manfred Broy and Ernst Denert. Springer Berlin Hei-
delberg, 2002, pp. 170–178. DOI: 10.1007/978-3-642-59412-0_11.
URL: https://doi.org/10.1007/978-3-642-59412-0_11.

[62] Ilkka Karasalo and Per Svensson. “The Design of Cantor - A New Sys-
tem for Data Analysis”. In: Proceedings of the Third International Work-
shop on Statistical and Scientific Database Management, July 22-24, 1986,
Grand Duchy of Luxembourg, Luxembourg. Ed. by Roger E. Cubitt, Brian
Cooper, and Gultekin Özsoyoglu. EUROSTAT, 1986, pp. 224–244.

[63] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots”.
In: Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany. Ed. by Serge Abite-
boul et al. IEEE Computer Society, 2011, pp. 195–206. DOI: 10.1109/
ICDE.2011.5767867. URL: https://doi.org/10.1109/ICDE.2011.
5767867.

https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://www.influxdata.com/
https://www.evanjones.ca/fork-is-dangerous.html
https://doi.org/10.1145/582318.582340
https://doi.org/10.1145/582318.582340
https://doi.org/10.1145/582318.582340
https://doi.org/10.1007/3-540-06815-5_147
https://doi.org/10.1007/3-540-06815-5_147
https://doi.org/10.1007/978-3-642-59412-0_11
https://doi.org/10.1007/978-3-642-59412-0_11
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867

96 Bibliography

[64] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX
System Programming Handbook. 1st. USA: No Starch Press, 2010. ISBN:
1593272200.

[65] Setrag Khoshafian et al. “A Query Processing Strategy for the Decom-
posed Storage Model”. In: Proceedings of the Third International Con-
ference on Data Engineering, February 3-5, 1987, Los Angeles, California,
USA. IEEE Computer Society, 1987, pp. 636–643. DOI: 10.1109/ICDE.
1987.7272433. URL: https://doi.org/10.1109/ICDE.1987.7272433.

[66] Tom Kilburn et al. “One-Level Storage System”. In: IRE Trans. Electron.
Comput. 11.2 (1962), pp. 223–235. DOI: 10.1109/TEC.1962.5219356.
URL: https://doi.org/10.1109/TEC.1962.5219356.

[67] Steve Klabnik and Carol Nichols. The Rust Programming Language. USA:
No Starch Press, 2018. ISBN: 1593278284.

[68] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly, 2016. ISBN:
978-1-4493-7332-0. URL: http://shop.oreilly.com/product/0636920032175.
do.

[69] C. J. Kuehner and Brian Randell. “Demand paging in perspective”.
In: American Federation of Information Processing Societies: Proceedings of
the AFIPS ’68 Fall Joint Computer Conference, December 9-11, 1968, San
Francisco, California, USA - Part II. Vol. 33. AFIPS Conference Proceed-
ings. AFIPS / ACM / Thomson Book Company, Washington D.C.,
1968, pp. 1011–1018. DOI: 10.1145/1476706.1476720. URL: https:
//doi.org/10.1145/1476706.1476720.

[70] H. T. Kung and John T. Robinson. “On Optimistic Methods for Con-
currency Control”. In: Fifth International Conference on Very Large Data
Bases, October 3-5, 1979, Rio de Janeiro, Brazil, Proceedings. Ed. by Anto-
nio L. Furtado and Howard L. Morgan. IEEE Computer Society, 1979,
p. 351.

[71] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized
structured storage system”. In: ACM SIGOPS Oper. Syst. Rev. 44.2 (2010),
pp. 35–40. DOI: 10.1145/1773912.1773922. URL: https://doi.org/
10.1145/1773912.1773922.

[72] Andrew Lamb et al. “The Vertica Analytic Database: C-Store 7 Years
Later”. In: Proc. VLDB Endow. 5.12 (2012), pp. 1790–1801. DOI: 10 .
14778/2367502.2367518. URL: http://vldb.org/pvldb/vol5/p1790\
_andrewlamb_vldb2012.pdf.

https://doi.org/10.1109/ICDE.1987.7272433
https://doi.org/10.1109/ICDE.1987.7272433
https://doi.org/10.1109/ICDE.1987.7272433
https://doi.org/10.1109/TEC.1962.5219356
https://doi.org/10.1109/TEC.1962.5219356
http://shop.oreilly.com/product/0636920032175.do
http://shop.oreilly.com/product/0636920032175.do
https://doi.org/10.1145/1476706.1476720
https://doi.org/10.1145/1476706.1476720
https://doi.org/10.1145/1476706.1476720
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
http://vldb.org/pvldb/vol5/p1790_andrewlamb_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1790_andrewlamb_vldb2012.pdf

Bibliography 97

[73] Tianyu Li et al. “Mainlining Databases: Supporting Fast Transactional
Workloads on Universal Columnar Data File Formats”. In: Proc. VLDB
Endow. 14.4 (2020), pp. 534–546. DOI: 10.14778/3436905.3436913.
URL: http://www.vldb.org/pvldb/vol14/p534-li.pdf.

[74] Redis Ltd. Redis. 2022. URL: https://redis.io/ (visited on 08/09/2022).
[75] Lin Ma. Intro to Databases: Concurrency Control Theory. University Lec-

ture. 2020. URL: https://15445.courses.cs.cmu.edu/fall2021/
slides/15-concurrencycontrol.pdf.

[76] Roger MacNicol and Blaine French. “Sybase IQ Multiplex - Designed
For Analytics”. In: (e)Proceedings of the Thirtieth International Confer-
ence on Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31
- September 3 2004. Ed. by Mario A. Nascimento et al. Morgan Kauf-
mann, 2004, pp. 1227–1230. DOI: 10.1016/B978-012088469-8.50111-
X. URL: http://www.vldb.org/conf/2004/IND8P3.PDF.

[77] Wolfgang Mauerer. Professional Linux Kernel Architecture. GBR: Wrox
Press Ltd., 2008. ISBN: 0470343435.

[78] William C. McGee. “The Information Management System (IMS) Pro-
gram Product”. In: IEEE Ann. Hist. Comput. 31.4 (2009), pp. 66–75. DOI:
10.1109/MAHC.2009.126. URL: https://doi.org/10.1109/MAHC.
2009.126.

[79] Sergey Melnik et al. “Dremel: Interactive Analysis of Web-Scale Datasets”.
In: Proc. VLDB Endow. 3.1 (2010), pp. 330–339. DOI: 10.14778/1920841.
1920886. URL: http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/
R29.pdf.

[80] Qingzhong Meng et al. “SwingDB: An Embedded In-memory DBMS
Enabling Instant Snapshot Sharing”. In: Data Management on New Hard-
ware - 7th International Workshop on Accelerating Data Analysis and Data
Management Systems Using Modern Processor and Storage Architectures,
ADMS 2016 and 4th International Workshop on In-Memory Data Manage-
ment and Analytics, IMDM 2016, New Delhi, India, September 1, 2016,
Revised Selected Papers. Ed. by Spyros Blanas et al. Vol. 10195. Lec-
ture Notes in Computer Science. Springer, 2016, pp. 134–149. DOI: 10.
1007/978-3-319-56111-0_8. URL: https://doi.org/10.1007/978-
3-319-56111-0_8.

[81] Microsoft. Database Snapshots (SQL Server). 2021. URL: https://docs.
microsoft . com / en - us / sql / relational - databases / databases /
database-snapshots-sql-server?view=sql-server-ver16 (visited
on 08/09/2022).

https://doi.org/10.14778/3436905.3436913
http://www.vldb.org/pvldb/vol14/p534-li.pdf
https://redis.io/
https://15445.courses.cs.cmu.edu/fall2021/slides/15-concurrencycontrol.pdf
https://15445.courses.cs.cmu.edu/fall2021/slides/15-concurrencycontrol.pdf
https://doi.org/10.1016/B978-012088469-8.50111-X
https://doi.org/10.1016/B978-012088469-8.50111-X
http://www.vldb.org/conf/2004/IND8P3.PDF
https://doi.org/10.1109/MAHC.2009.126
https://doi.org/10.1109/MAHC.2009.126
https://doi.org/10.1109/MAHC.2009.126
https://doi.org/10.14778/1920841.1920886
https://doi.org/10.14778/1920841.1920886
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R29.pdf
https://doi.org/10.1007/978-3-319-56111-0_8
https://doi.org/10.1007/978-3-319-56111-0_8
https://doi.org/10.1007/978-3-319-56111-0_8
https://doi.org/10.1007/978-3-319-56111-0_8
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16

98 Bibliography

[82] Microsoft. SQL Server 2019. URL: https://www.microsoft.com/en-
us/sql-server/sql-server-2019 (visited on 08/10/2022).

[83] Mario Mintel. “Design Space Exploration and Implementation of Effi-
cient Memory Snapshots”. MA thesis. Regensburg University of Ap-
plied Sciences, 2022.

[84] C. Mohan et al. “ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging”. In: ACM Trans. Database Syst. 17.1 (1992), pp. 94–162. DOI:
10.1145/128765.128770. URL: https://doi.org/10.1145/128765.
128770.

[85] Inc MongoDB. MongoDB: The Developer Data Platform. URL: https :
//mongodb.com (visited on 08/10/2022).

[86] Inc MongoDB. WiredTiger. URL: http://source.wiredtiger.com/
(visited on 08/10/2022).

[87] Ingo Müller, Cornelius Ratsch, and Franz Färber. “Adaptive String
Dictionary Compression in In-Memory Column-Store Database Sys-
tems”. In: Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014. Ed.
by Sihem Amer-Yahia et al. OpenProceedings.org, 2014, pp. 283–294.
DOI: 10.5441/002/edbt.2014.27. URL: https://doi.org/10.5441/
002/edbt.2014.27.

[88] Senthil Nathan et al. “Blockchain Meets Database: Design and Imple-
mentation of a Blockchain Relational Database”. In: Proc. VLDB En-
dow. 12.11 (2019), pp. 1539–1552. DOI: 10.14778/3342263.3342632.
URL: http://www.vldb.org/pvldb/vol12/p1539-nathan.pdf.

[89] Inc. Neo4j. Neo4j Graph Data Platform. 2022. URL: https://neo4j.com/
(visited on 08/14/2022).

[90] Nicolas Nethercote. The Rust Performance Book. URL: https://nnethercote.
github.io/perf-book/title-page.html (visited on 08/16/2022).

[91] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast Seri-
alizable Multi-Version Concurrency Control for Main-Memory Database
Systems”. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary
G. Ives. ACM, 2015, pp. 677–689. DOI: 10.1145/2723372.2749436.
URL: https://doi.org/10.1145/2723372.2749436.

https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://mongodb.com
https://mongodb.com
http://source.wiredtiger.com/
https://doi.org/10.5441/002/edbt.2014.27
https://doi.org/10.5441/002/edbt.2014.27
https://doi.org/10.5441/002/edbt.2014.27
https://doi.org/10.14778/3342263.3342632
http://www.vldb.org/pvldb/vol12/p1539-nathan.pdf
https://neo4j.com/
https://nnethercote.github.io/perf-book/title-page.html
https://nnethercote.github.io/perf-book/title-page.html
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436

Bibliography 99

[92] Rajesh Nishtala et al. “Scaling Memcache at Facebook”. In: Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013. Ed. by Nick
Feamster and Jeffrey C. Mogul. USENIX Association, 2013, pp. 385–
398. URL: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/nishtala.

[93] Oracle. Database 19c and 21c. URL: https://www.oracle.com/database/
technologies/ (visited on 08/10/2022).

[94] Andrew Pavlo. Advanced Database Systems: Storage Models & Data Lay-
out. University Lecture. 2020. URL: https://15721.courses.cs.cmu.
edu/spring2020/slides/08-storage.pdf.

[95] Andrew Pavlo and Matthew Aslett. “What’s Really New with NewSQL?”
In: SIGMOD Rec. 45.2 (2016), pp. 45–55. DOI: 10 . 1145 / 3003665 .
3003674. URL: https://doi.org/10.1145/3003665.3003674.

[96] Andrew Pavlo et al. “Self-Driving Database Management Systems”.
In: 8th Biennial Conference on Innovative Data Systems Research, CIDR
2017, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org,
2017. URL: http : / / cidrdb . org / cidr2017 / papers / p42 - pavlo -
cidr17.pdf.

[97] Tuomas Pelkonen et al. “Gorilla: A Fast, Scalable, In-Memory Time
Series Database”. In: Proc. VLDB Endow. 8.12 (2015), pp. 1816–1827.
DOI: 10 . 14778 / 2824032 . 2824078. URL: http : / / www . vldb . org /
pvldb/vol8/p1816-teller.pdf.

[98] Yanqing Peng et al. “FalconDB: Blockchain-based Collaborative Database”.
In: Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020. Ed. by David Maier et al. ACM, 2020, pp. 637–652.
DOI: 10.1145/3318464.3380594. URL: https://doi.org/10.1145/
3318464.3380594.

[99] A. Petrov. Database Internals: A Deep Dive into How Distributed Data
Systems Work. O’Reilly Media, 2019. ISBN: 9781492040316. URL: https:
//books.google.de/books?id=-l2vDwAAQBAJ.

[100] Jaroslav Pokorný. “Graph Databases: Their Power and Limitations”.
In: Computer Information Systems and Industrial Management - 14th IFIP
TC 8 International Conference, CISIM 2015, Warsaw, Poland, September
24-26, 2015. Proceedings. Ed. by Khalid Saeed and Wladyslaw Home-
nda. Vol. 9339. Lecture Notes in Computer Science. Springer, 2015,

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.oracle.com/database/technologies/
https://www.oracle.com/database/technologies/
https://15721.courses.cs.cmu.edu/spring2020/slides/08-storage.pdf
https://15721.courses.cs.cmu.edu/spring2020/slides/08-storage.pdf
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
https://doi.org/10.14778/2824032.2824078
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3318464.3380594
https://books.google.de/books?id=-l2vDwAAQBAJ
https://books.google.de/books?id=-l2vDwAAQBAJ

100 Bibliography

pp. 58–69. DOI: 10 . 1007 / 978 - 3 - 319 - 24369 - 6 \ _5. URL: https :
//doi.org/10.1007/978-3-319-24369-6_5.

[101] The Linux man-pages project. clock_gettime(3) — Linux manual page.
Aug. 27, 2021. URL: https://man7.org/linux/man-pages/man3/
clock_gettime.3.html (visited on 08/14/2022).

[102] The Linux man-pages project. fork(2) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man2/fork.2.html
(visited on 08/11/2022).

[103] The Linux man-pages project. fork(2) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man3/exec.3.html
(visited on 08/11/2022).

[104] The Linux man-pages project. mallopt(3) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man3/mallopt.3.
html (visited on 08/11/2022).

[105] The Linux man-pages project. mmap(2) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man2/mmap.2.html
(visited on 08/11/2022).

[106] The Linux man-pages project. mremap(2) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man2/mremap.2.
html (visited on 08/11/2022).

[107] The Linux man-pages project. mremap(3) — Linux manual page. Aug. 27,
2021. URL: https://man7.org/linux/man-pages/man3/malloc.3.
html (visited on 08/11/2022).

[108] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. “A Case for
Fractured Mirrors”. In: Proceedings of 28th International Conference on
Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Mor-
gan Kaufmann, 2002, pp. 430–441. DOI: 10.1016/B978-155860869-
6/50045-7. URL: http://www.vldb.org/conf/2002/S12P03.pdf.

[109] David P. Reed. “Naming and synchronization in a decentralized com-
puter system”. PhD thesis. Massachusetts Institute of Technology, 1978.
URL: https://hdl.handle.net/1721.1/16279.

[110] Mark A. Roth and Scott J. Van Horn. “Database Compression”. In:
SIGMOD Rec. 22.3 (1993), pp. 31–39. DOI: 10.1145/163090.163096.
URL: https://doi.org/10.1145/163090.163096.

[111] Columbus Salley and E. F. Codd. “Providing OLAP to User-Analysts:
An IT Mandate”. In: 1998.

[112] SAP. SAP IQ. URL: https://www.sap.com/products/technology-
platform/sybase-iq-big-data-management.html (visited on 08/10/2022).

https://doi.org/10.1007/978-3-319-24369-6_5
https://doi.org/10.1007/978-3-319-24369-6_5
https://doi.org/10.1007/978-3-319-24369-6_5
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man3/clock_gettime.3.html
https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man3/exec.3.html
https://man7.org/linux/man-pages/man3/mallopt.3.html
https://man7.org/linux/man-pages/man3/mallopt.3.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mremap.2.html
https://man7.org/linux/man-pages/man2/mremap.2.html
https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man3/malloc.3.html
https://doi.org/10.1016/B978-155860869-6/50045-7
https://doi.org/10.1016/B978-155860869-6/50045-7
http://www.vldb.org/conf/2002/S12P03.pdf
https://hdl.handle.net/1721.1/16279
https://doi.org/10.1145/163090.163096
https://doi.org/10.1145/163090.163096
https://www.sap.com/products/technology-platform/sybase-iq-big-data-management.html
https://www.sap.com/products/technology-platform/sybase-iq-big-data-management.html

Bibliography 101

[113] Patricia G. Selinger et al. “Access Path Selection in a Relational Database
Management System”. In: Proceedings of the 1979 ACM SIGMOD Inter-
national Conference on Management of Data, Boston, Massachusetts, USA,
May 30 - June 1. Ed. by Philip A. Bernstein. ACM, 1979, pp. 23–34. DOI:
10.1145/582095.582099. URL: https://doi.org/10.1145/582095.
582099.

[114] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. “Accel-
erating Analytical Processing in MVCC using Fine-Granular High-
Frequency Virtual Snapshotting”. In: Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018, Hous-
ton, TX, USA, June 10-15, 2018. Ed. by Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein. ACM, 2018, pp. 245–258. DOI: 10.
1145/3183713.3196904. URL: https://doi.org/10.1145/3183713.
3196904.

[115] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts, Seventh Edition. McGraw-Hill Book Company, 2020. ISBN:
9780078022159. URL: https://www.db-book.com/db7/index.html.

[116] Swaminathan Sivasubramanian. “Amazon dynamoDB: a seamlessly
scalable non-relational database service”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012. Ed. by K. Selçuk Candan et
al. ACM, 2012, pp. 729–730. DOI: 10.1145/2213836.2213945. URL:
https://doi.org/10.1145/2213836.2213945.

[117] Jonathan M. Smith and Gerald Q. Maguire Jr. “Effects of Copy-on-
Write Memory Management on the Response Time of UNIX Fork Op-
erations”. In: Comput. Syst. 1.3 (1988), pp. 255–278. URL: http://www.
usenix.org/publications/compsystems/1988/sum_smith.pdf.

[118] Richard Edwin Stearns, Philip M. Lewis II, and Daniel J. Rosenkrantz.
“Concurrency Control for Database Systems”. In: 17th Annual Sym-
posium on Foundations of Computer Science, Houston, Texas, USA, 25-27
October 1976. IEEE Computer Society, 1976, pp. 19–32. DOI: 10.1109/
SFCS.1976.12. URL: https://doi.org/10.1109/SFCS.1976.12.

[119] Michael Stonebraker. New SQL: An Alternative to NoSQL and Old SQL
For New OLTP Apps. 2011. URL: https://cacm.acm.org/blogs/blog-
cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-
for-new-oltp-apps/fulltext (visited on 08/14/2022).

[120] Michael Stonebraker et al. “C-Store: A Column-oriented DBMS”. In:
Proceedings of the 31st International Conference on Very Large Data Bases,

https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904
https://doi.org/10.1145/3183713.3196904
https://www.db-book.com/db7/index.html
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2213836.2213945
http://www.usenix.org/publications/compsystems/1988/sum_smith.pdf
http://www.usenix.org/publications/compsystems/1988/sum_smith.pdf
https://doi.org/10.1109/SFCS.1976.12
https://doi.org/10.1109/SFCS.1976.12
https://doi.org/10.1109/SFCS.1976.12
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

102 Bibliography

Trondheim, Norway, August 30 - September 2, 2005. Ed. by Klemens Böhm
et al. ACM, 2005, pp. 553–564. URL: http://www.vldb.org/archives/
website/2005/program/paper/thu/p553-stonebraker.pdf.

[121] Michael Stonebraker et al. “The Design and Implementation of IN-
GRES”. In: ACM Trans. Database Syst. 1.3 (1976), pp. 189–222. DOI:
10.1145/320473.320476. URL: https://doi.org/10.1145/320473.
320476.

[122] Andrew S. Tanenbaum. Modern operating systems, 3rd Edition. Pearson
Prentice-Hall, 2009. ISBN: 0138134596. URL: https://www.worldcat.
org/oclc/254320777.

[123] The Rust Team. Rust Programming Language. URL: https://www.rust-
lang.org/ (visited on 08/15/2022).

[124] The Rust Team. The Rustonomicon. URL: https://doc.rust-lang.
org/nomicon/ (visited on 08/16/2022).

[125] Times-Ten Team. “In-Memory Data Management for Consumer Trans-
actions The Times-Ten Approach”. In: SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999,
Philadelphia, Pennsylvania, USA. Ed. by Alex Delis, Christos Faloutsos,
and Shahram Ghandeharizadeh. ACM Press, 1999, pp. 528–529. DOI:
10.1145/304182.304244. URL: https://doi.org/10.1145/304182.
304244.

[126] Robert H. Thomas. “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases”. In: ACM Trans. Database Syst.
4.2 (1979), pp. 180–209. DOI: 10.1145/320071.320076. URL: https:
//doi.org/10.1145/320071.320076.

[127] Inc. Timescale. Timescale: Time-series data simplified. 2022. URL: https:
//www.timescale.com/ (visited on 08/14/2022).

[128] TPC. TPC-C. URL: https://www.tpc.org/tpcc/ (visited on 08/17/2022).
[129] TPC. TPC-E. URL: https://www.tpc.org/tpce/ (visited on 08/17/2022).
[130] TPC. TPC-H. URL: https://www.tpc.org/tpch/ (visited on 08/09/2022).
[131] Yingjun Wu et al. “An Empirical Evaluation of In-Memory Multi-

Version Concurrency Control”. In: Proc. VLDB Endow. 10.7 (2017), pp. 781–
792. DOI: 10.14778/3067421.3067427. URL: http://www.vldb.org/
pvldb/vol10/p781-Wu.pdf.

[132] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. “Vector-
wise: A Vectorized Analytical DBMS”. In: IEEE 28th International Con-
ference on Data Engineering (ICDE 2012), Washington, DC, USA (Arling-
ton, Virginia), 1-5 April, 2012. Ed. by Anastasios Kementsietsidis and

http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
https://doi.org/10.1145/320473.320476
https://doi.org/10.1145/320473.320476
https://doi.org/10.1145/320473.320476
https://www.worldcat.org/oclc/254320777
https://www.worldcat.org/oclc/254320777
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://doi.org/10.1145/304182.304244
https://doi.org/10.1145/304182.304244
https://doi.org/10.1145/304182.304244
https://doi.org/10.1145/320071.320076
https://doi.org/10.1145/320071.320076
https://doi.org/10.1145/320071.320076
https://www.timescale.com/
https://www.timescale.com/
https://www.tpc.org/tpcc/
https://www.tpc.org/tpce/
https://www.tpc.org/tpch/
https://doi.org/10.14778/3067421.3067427
http://www.vldb.org/pvldb/vol10/p781-Wu.pdf
http://www.vldb.org/pvldb/vol10/p781-Wu.pdf

Bibliography 103

Marcos Antonio Vaz Salles. IEEE Computer Society, 2012, pp. 1349–
1350. DOI: 10.1109/ICDE.2012.148. URL: https://doi.org/10.1109/
ICDE.2012.148.

https://doi.org/10.1109/ICDE.2012.148
https://doi.org/10.1109/ICDE.2012.148
https://doi.org/10.1109/ICDE.2012.148

	Erklärung zur Masterarbeit
	Abstract
	Kurzfassung
	Introduction
	Historical Context and Current Trends
	Background
	Virtual Memory
	Data Organisation
	Concurrency Control
	Database Benchmarks

	Copy-on-Write Snapshots for Main-Memory Databases
	Characteristics
	Mechanisms
	ScooterDB

	Experiments
	Setup
	Measurements
	Discussion

	Conclusion
	Implementation Details
	ScooterDB
	TPC-H

	Bibliography

