Check for
Updates

Quantum Machine Learning: Foundation, New Techniques, and
Opportunities for Database Research

Tobias Winker Valter Uotila Maja Franz
Sven Groppe Zhengtong Yan Wolfgang Mauerer
University of Liibeck Jiaheng Lu Technical University of Applied
Lubeck, Germany University of Helsinki Science Regensburg

Helsinki, Finland

ABSTRACT

In the last few years, the field of quantum computing has experi-
enced remarkable progress. The prototypes of quantum computers
already exist and have been made available to users through cloud
services (e.g., IBM Q experience, Google quantum Al or Xanadu
quantum cloud). While fault-tolerant and large-scale quantum com-
puters are not available yet (and may not be for a long time, if
ever), the potential of this new technology is undeniable. Quantum
algorithms have the proven ability to either outperform classical
approaches for several tasks, or are impossible to be efficiently sim-
ulated by classical means under reasonable complexity-theoretic
assumptions. Even imperfect current-day technology is speculated
to exhibit computational advantages over classical systems. Recent
research is using quantum computers to solve machine learning
tasks. Meanwhile, the database community has already success-
fully applied various machine learning algorithms for data man-
agement tasks, so combining the fields seems to be a promising
endeavour. However, quantum machine learning is a new research
field for most database researchers. In this tutorial, we provide a
fundamental introduction to quantum computing and quantum
machine learning and show the potential benefits and applications
for database research. In addition, we demonstrate how to apply
quantum machine learning to the join order optimization problem
in databases.
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Figure 1: Timeline of quantum computing and quantum ma-
chine learning papers, and quantum computers (including
roadmaps). Figure is extended from [24].
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1 INTRODUCTION

Considering the timeline of available and future quantum com-
puters in relation to the number of supported qubits in Figure 1,
there seems to be an exponential growth trend in the number of
supported qubits. The roadmap of major players contains quantum
computers (QC) allowing to scale in 2023 (IBM), supporting 4000
qubits in 2025 (IBM) and 10000 qubits in 2029 (Google). Although
the number of qubits is known to be a problematic measure for
general QC capabilities (and other metrics such as quantum volume
[13] have been proposed), the prestigious race for the most qubits
is a driver of the current hype in quantum technologies promising
numerous quantum applications in practice within this decade.

A quite obvious correlation exists between the availability of
quantum computers supporting more qubits and the publication
performance of researchers in the areas of quantum computing
and quantum machine learning (see Figure 1). There seem to be
differences in the absolute numbers of published papers in the ad-
dressed areas for different scientific communities: In 2022, there
have been 6.8 times more papers published on nature.com (aiming
to publish journal articles in the areas of natural sciences) contain-
ing ’quantum computing’ and 4.7 times more papers containing
’quantum machine learning’ in the title than are included in the
dblp computer science bibliography (providing open bibliographic
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information on major computer science journals and proceedings).
When searching for ‘'machine learning’ in the title of papers pub-
lished, it seems to be the other way round: In 2022, DBLP contains
2.3 times more papers than nature.com. Looking at no specific range
of dates, then DBLP contains even 4.6 times more papers. With this
tutorial, we want to encourage computer scientists (especially those
with an interest in data management) to explore the possibilities of
quantum computing for their research area.

Many research contributions (as summarized in surveys [2, 12,
69]) propose and discuss, for nearly every major approach of ma-
chine learning, a corresponding quantum counterpart. There has
been a focus on investigating the benefits of applying quantum
machine learning over classical machine learning. For example,
applying quantum support vector machines [50] may achieve an
exponential speedup in comparison to their classical variants. It has
been shown that quantum machine learning methods may have
the desirable advantage to learn on fewer data points than classical
methods [10]. The properties of data sets with a potential quantum
advantage in learning tasks have been identified in [30].

Recent contributions solve database problems including join
order optimization [53, 55, 60, 63] and transaction scheduling [7,
8, 23] on quantum computers, but none of them applies quantum
machine learning so far.

Tutorial overview: In this tutorial, after starting with the moti-
vation describing the hype of quantum computing and quantum
machine learning, we will provide a dive into the basics of quantum
computing (see Section 2). Afterward, we will introduce quantum
machine learning by comparing it with classical machine learn-
ing (see Section 3). In a hands-on tutorial, we will show how to
apply quantum computing with a special focus on quantum ma-
chine learning for database tasks like join order optimization (see
Section 4). Finally, we will discuss quantum machine learning op-
portunities and future work for database research (see Section 5).

Related tutorials: Previous tutorials in SIGMOD [32, 34, 49, 62]
have already addressed the benefits of classical machine learning
to data management tasks like query optimization, learned indices,
workload prediction, cardinality and cost estimations, natural lan-
guage interfaces to data, automating exploratory data analysis and
data cleaning. In principle, all these studied approaches can be the
starting point for future work investigating how to apply and the
benefits of quantum machine learning approaches for data manage-
ment tasks. In order to provide a solid basis for this future work, we
will introduce the basics of quantum computing and quantum ma-
chine learning, and deliver a hands-on tutorial on applying quantum
machine learning to one of the most important data management
tasks—join order optimization.

Contributions: To the best of our knowledge, this is the first
tutorial to discuss quantum machine learning approaches for DB
research. This tutorial helps Al experts to get into quantum ma-
chine learning easily (by providing a comparison to classical ML),
newbies to discover the possibilities of quantum computing by inter-
acting with applications running on contemporary machines, and
researchers to develop new methods utilizing quantum computing.
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2 BASICS OF QUANTUM COMPUTING

For a database researcher applying machine learning, quantum com-
puting appears as a promising model of computation. We start the
tutorial by introducing the basic quantum computational concepts
and viewing quantum computing as an extension of probabilis-
tic computation to generalized notions of probability. The canoni-
cal introduction to quantum computing is Nielsen and Chuang’s
book [41], and the connection to probabilistic computing is based
on Aaronson’s approach [1] (also used in Ref. [33] and others).

Classical computation usually relies on bits @ and 1. Considering
probabilistic computation, the outcome of an algorithm is not a sin-
gle answer (@ or 1), but a probability distribution over the possible
answers. Let pp be the probability of observing bit 0, and p; the
probability of observing bit 1. Since we must obtain some outcome,
we have pg +p1 = 1.

To formalize this scheme, we define that bits @ and 1 are repre-
sented as vectors in the plane R?

0y :=[10]" 1y :=[01]". (1)

The braket notation |-) is commonly used in quantum computing to
represent quantum states, and we (ab)use this notation to represent
computational states. For single bits, a probability distribution over
the possible bit states corresponds to a linear combination in IR?

P =po 0} +p1[1)
A probabilistic computation step needs to map vectors p to vectors
that encode a valid probability distribution. Stochastic matrices S
(i.e., the sum over columns is one for each column) are known to be
the most general matrices to provide such a mapping. For instance, a

NOT operation takes the form ((1) é) a NOP (do nothing) operation

is given by ((1) (1)) and a probabilistic step that applies NOP or NOT

with 50% chance is given by (%

}g) A computational step is
given by the transformation p’ = Sp.

Quantum mechanics (QM) exhibits a computational structure
that is structurally similar to probabilistic computing. To “update”
probabilistic to quantum computing (which should be more pow-
erful than the former model), we need to translate the axioms of
quantum mechanics into a list of requirements:

(1) Computations (excluding measurements that observe the
current state of a computation) must be reversible.
(2) Vectors p comprise generalised probabilities over C.
(3) Mapping between vectors p follows the dynamics of QM.
By changing to complex numbers (criterion 2), the probabilistic
state vector [5, now written as general quantum state |¢), becomes

lp) = a|0) + B 1) ()
with |2+ f1? = 1, (3

where , € C. |¢) is called a qubit, and is the fundamental unit of
information in quantum computing.

Obviously, the complex coefficients & and §§ cannot be interpreted
as probabilities any more, but quantum mechanics postulates that
the probabilities of observing bit values 0 and 1, respectively, after
a measurement of state |@), are given by po = |a|? and p; = |B|%.
Essentially, this corresponds to switching from the 1-norm in the
probabilistic picture to the 2-norm in quantum computing!
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To ensure reversibility (criterion 1) and proper quantum mechan-
ical dynamics (criterion 3), the most general matrix that transforms
states as in Eq. (2) into other states, while obeying the normaliza-
tion criterion in Eq. (3), is given by unitary matrices. A matrix U is
unitary if its conjugate transpose matrix is its inverse [41].

The unitary matrices operating on qubits are called quantum
logic gates or simply gates. In classical computing, the correspond-
ing operations are logical operations such as AND and OR.

One of the most interesting and useful gates is the Hadamard
gate H, which is defined by the unitary matrix

A 111 1

A=l )
The Hadamard gate does not have a corresponding classical opera-
tion. Applying the Hadamard gate to the basis vectors

A 1
HI1) \/§(|0> 1))
shows that the gate maps the basis states |0) and |1) to superposition
states where the probability to measure 0 or 1 is 1/2.

Key differences between classical and quantum computing are
superposition, entanglement, interference, and the role of measure-
ments, which we all discuss in the tutorial.

Superposition states take the general form as given in Eq. (2);
for a single gbit. This implies that a measurement delivers results
0 and 1 with non-zero probability. While such an outcome could
also be obtained with classical probabilities, we will demonstrate
in the tutorial how superpositions allow us to leverage complex

A 1
H0) = E(|I0>+|1> 4)

generalized probabilities. The H gate creates a superposition state,
as the calculations (4) show, leading to a stochastic measurement
result. However, a second application HH (0) = 1/V2H(|0) +]1)) =
1/2(|0) + 1) +]0) — |1)) = |0) removes any stochasticity, which can
be attributed to interference caused by the generalized probability
of —=1/2 introduced when H is applied on |1).

Measurements are nonlinear operations. In the single qubit case,
measuring means that we read either 0 or 1 depending on the proba-
bility distribution defined by the amplitudes of the state vector. For
example, measuring the state in Eq. (2), we have 50% probability of
measuring 0 or 1. This is not unlike sampling from a probability dis-
tribution. However, after measurement, a quantum state collapses,1
leaving us with purely classical information.

Adiabatic quantum computing [4] is another quantum comput-
ing paradigm theoretically equivalent to universal circuit-based
quantum computing [3, 66]. Adiabatic quantum computing is closely
related to quantum annealing, which is implemented with quantum
annealers. Although the current quantum annealers are not able to
efficiently perform universal quantum computing [38], quantum
annealing is a promising quantum computing method with a lot of
industry-level applications [5, 6, 18, 20, 28, 40, 42, 43, 45-47, 51, 68].
We especially want to point out quantum annealing applications
on scheduling transactions [7, 8], and multiple query optimization
[60].

A single qubit quantum system has intuitive visualization with
the so-called Bloch sphere. Because the probabilities are defined as

! Actually, the interpretation of measurements in quantum mechanics is subject of an
intense ongoing physical and philosophical debate [52], but readers will forgive us if
we stick to the orthodox Copenhagen interpretation for the sake of this tutorial.
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Figure 2: Bloch sphere

the lengths of the complex-valued amplitudes, we note that only
the relative phase between the basis vectors |0) and |1) matters.
Formally, because |a|? + ||? = 1, we can write the qubit

o) = a]0) + B|1) = el (cos (6/2)[0) + % sin (9/2)|1>),

where y, 6, and ¢ are real-valued angles. A global phase ¥ cannot
be observed in a measurement for physical reasons. Thus we can
write a qubit using just two angles ¢ and . Now we can visualize
the qubit as a point on the surface of the Bloch sphere. See Figure 2.

One of the most important gate sets is the rotation operators,
which can be understood in the light of the Bloch sphere. They
are especially useful in quantum machine learning because of their
parametrization. For example, the rotation gate Ry (6) is defined by
the matrix

cos(0/2)  —isin(6/2)
—isin(0/2)  cos(6/2) |-

The other rotation gates are Ry (6) and R;(6) [41]. In the single
qubit case, Ry (0) (resp. Ry (6) and R, (0)) rotates the quantum state
by an angle 0 about the x (resp. y and z) axis of the Bloch sphere.
Figure 4 shows an example of their usage.

Ry (0) =

21

A single qubit is the fundamental unit of quantum computation, but
it is not useful alone. Quantum mechanical postulates define that we
can construct multi-qubit quantum systems with the tensor product.
Since qubits are elements of two-dimensional Hilbert space, the
tensor product is a well-defined operation. For example, if we take
the basis vectors of the single qubit quantum system, we obtain the
computational basis as tensor products

[0y ®[0)=00)=[1000]T; Joy®|1)=]0o1)=[0100]"
[1y®[0y=[10)=[0010]"; [1)®[1)=[11)=[0001]".

Multi-qubit quantum states

The dimension of the space grows exponentially as a function of n
where n is the number of qubits. This exponential growth is among
the reasons why QC is believed to perform better in certain tasks,
resp. why a classical simulation of the underlying physics is hard.

As we mentioned before, entanglement is one of the key differ-
ences between classical and quantum computing. Entanglement
means we cannot explain the entire system considering its pieces
separately. In other words, the whole system is more than just the
sum of its pieces. Entanglement appears in quantum computing
when we have two or more qubits. The most common quantum
logical gate to introduce entanglement between two qubits is the
so-called controlled-NOT (CNOT) gate. The action of CNOT on the
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computational basis is defined by
[00) > [00), [01) > [01), [10) > [11), |11) > |10).

We see that the CNOT operation flips the second bit if the first bit is
1. Thus, the first bit controls the value of the second bit. Generally,
the CNOT gate is defined by the unitary matrix
1000
CNOT = [gggg]
0010

Universal quantum computations are usually visualized with
circuit diagrams. See an example circuit in Figure 4.

There is a relatively small but standard set of quantum algorithms
that can exhibit speedups over the corresponding best classical algo-
rithms. The most famous algorithms are Shor’s factoring algorithm
[56], Grover’s search algorithm [25], Deutsch-Jozsa algorithm [14],
the quantum approximate optimization algorithm (QAOA) [17] and
the quantum algorithm for solving semidefinite programs [9].

3 QUANTUM MACHINE LEARNING

For ease of understanding, we first introduce classical machine
learning and extend it to quantum machine learning afterward.
In machine learning, we want to learn to solve a problem from
past experience instead of designing a new algorithm to solve the
problem. For this, we want to create a model, which can predict
the correct output for new input data based on past data. From the
mathematical view, a model is a function f(x, 8), which calculates
for a given input x the desired output y = f(x, 8) based on some
parameters 0. Additionally, we have to define a quality measure
Q(x, y) for the generated output y of an input x. The goal of machine
learning is to find the parameter vector ¢ that creates the best
predicted outputs arg max Q(x, f(x, 6)).
[4

Multiple ML approaches exist, like supervised learning and re-
inforcement learning. In supervised learning, we train the model
from given data points x; with desired outputs y;. Quality can be
measured by comparing the predicted outputs y = f(x;, §) with
the correct output y; from the data. In reinforcement learning, the
model controls the actions of an agent, which can interact with
an environment by performing actions and receiving rewards. In
contrast to supervised learning, we have no given data to learn
from. Instead, the agent learns by interacting with the environment.

3.1 Hybrid quantum-classical algorithms

Quantum machine learning is commonly implemented as a hybrid
quantum-classical algorithm [15], in which only a part of the calcu-
lation is performed on a quantum computer. A classical algorithm
uses a quantum circuit as a function, passing classical inputs and
receiving a classical result back. For quantum machine learning,
the quantum circuit replaces the classical model. While the model
is a quantum circuit, the optimization of the parameter vector 0
is done by a classical algorithm. For this, a variational quantum
circuit is used.

3.2 Variational quantum circuit

A variational quantum circuit (VQC), also called a parameterized
quantum circuit, are quantum circuits that depend on some pa-
rameters. VQCs are proven to be universal approximators [48] like

48

Tobias Winker et al.

Classical Algorithm
Input Parameters Output
x 7] Y
o — - -
Ue(x) U(0) Lo
o — - -

Quantum computer

Figure 3: A hybrid algorithm using a VQC

Ry (60) H Ry(01) H R.(62) —

% Rx(03) (H Ry(02) H Rz(65) |-
D Rx(86) H Ry(67) H Rz(6s) |-

D—{ Rx(09) H Ry(010) H Rz(611) -

Figure 4: Example for a possible layer structure of a VQC

neural networks [29]. They are used in hybrid algorithms, where a
classical algorithm optimizes the parameters over multiple runs to
achieve the desired output.

A VQC always consists of three parts. The first part is the en-
coding layer, which encodes the classical data into a quantum state
by applying a unitary operator U, (x) depending on the data. The
second part is the calculation layer, which transforms the quantum
state by applying a unitary operator U (6) depending on parameters
0. The final part is the measurement layer, which obtains classi-
cal data from the quantum state. The classical algorithm interacts
with the circuit by passing the input x as parameters to the encod-
ing layer, passing the parameters 6 to the calculation layers and
receiving an output from the measurement layer (Fig 3).

The calculation layer is a unitary operator U(6) that turns the
quantum state representing the input into a quantum state repre-
senting the output. While any unitary operator is possible, it is
common to use a combination of CNOT and rotation gates. The
CNOT gates entangle the qubits to assure that every input qubit
can affect every output qubit, and allows an advantage of a classical
model by using the entanglement effect. The rotation gates are used
as the parameterized operations.

A VQC commonly consists of repetitions of the same layer, which
contains an entanglement and a rotation layer (Fig 4). While the
layers use the same structure, they depend on different parame-
ters and thus have different effects. The contribution [57] contains
a comparison of the expressibility and entangling capabilities of
different structures.

To optimize the parameters of the VQC, any optimizer can be
used, but most often, a gradient descent optimizer is used. The
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gradients required for the optimization can be obtained by using
the parameter shift rule [39]. Another possibility is to optimize the
parameters using a genetic algorithm [11].

3.3 Encoding

To use quantum computing, we have to turn our classical data into
a quantum state. The encoding is a unitary operator Ug(x) that
depends on input data x and turns the initial state into a quantum
state representing our data. The choice of encoding influences the
number of required qubits and the circuit depth. We introduce the
three most common encoding methods [67] as follows.

(1) The simplest form is basis encoding, which encodes one
classical bit into one qubit. This can be achieved by applying the X
gate to a qubit if the corresponding classical bit is 1. This requires
only one gate circuit depth, but only allows the encoding of binary
data and requires many qubits. (2) Another encoding method is
angle encoding, which uses the rotation gate to encode one real
value into one qubit. This is done by using the input value as the
parameter of a rotation gate. As the rotation gate is a periodical
gate, the input has to be scaled to an interval smaller than 4.
This method allows a denser encoding than basis encoding and
still requires only one gate circuit depth. (3) A denser encoding is
possible using amplitude encoding, which encodes the values in
the amplitudes of the quantum state. This allows the encoding of
2" values into n qubits, with the limitation that the values have
to be a vector of length 1. While amplitude encoding allows the
densest encoding, it is also the most complex in circuit depth. The
choice of the encoding method is a trade-off between the number
of required qubits and the depth of the encoding circuit.

3.4 Decoding

To use a VQC in quantum machine learning, we have to obtain
classical data from the circuit. The simplest solution is to use the
output of the measurement. With n qubits, this provides a string of
n bits, which represents one of the 2" possible quantum states. This
result is not deterministic, and the probability to obtain a result
depends on the amplitude of the associated quantum state. The
circuit can be run multiple times to approximate the probabilities
of the different states. From these probabilities, we can choose the
most likely state as our output. Alternatively, we can also use these
probabilities as the outputs for our circuit, which provides us with
a normalized vector of real values in the interval [0, 1].

4 A DEMO ON QUANTUM MACHINE
LEARNING WITH DATABASE APPLICATION

In our hands-on part of the tutorial, we will also present an im-
plementation of a quantum machine learning application. Recent
work [19, 31, 58] provides promising initial results for quantum
machine learning in general synthetic environments. Likewise, ma-
chine learning has become a popular approach to solving various
problems that occur in data management systems, for instance, join
order optimization [37, 61], indexing [36] or database tuning [35].
Especially given that quantum speedups on noisy machines have
been shown on solid theoretical grounds [27], which is a feat not
achieved by most known NISQ algorithms, combining the two
approaches seems to be a natural match.
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Since the combination of quantum machine learning and data-
base problems is still in its very infancy, with an extremely small
amount of published papers, we focus on an initial setup of a quan-
tum machine learning algorithm for database tasks. To this end, we
will present a novel quantum-assisted machine learning technique
for join order optimization. The basic idea of our algorithm is to
learn a reward function that represents the join order quality with
a VQC as a machine learning model. This demonstration intends to
enable database researchers to understand the general principles
well enough to start exploring how to couple the ideas with their
domains of research.

The implementation will be in Python using the machine learn-
ing library PyTorch [44]. We will discuss implementation details
of the VQC definition (see Section 3.2) and data encoding (see Sec-
tion 3.3) for the join order problem. These quantum-based parts
use the quantum framework Qiskit [59]. In the end, we will train
a (simulated) quantum machine learning model and compare the
join order quality with existing optimizers.

5 OPPORTUNITIES AND FUTURE WORK FOR
DATABASE RESEARCH

5.1 State-of-the-art

There already exists some work about applying quantum comput-
ing to solve database tasks, including multiple query optimization
[16, 60], transaction scheduling [7, 8, 23], and join order optimiza-
tion [53, 55, 63]. Multiple Query Optimization (MQO) is an im-
portant NP-hard problem in databases. [60] first tackles the MQO
problem with the D-Wave adiabatic quantum annealer. Then [16]
use a different quantum computer to solve the MQO problem with
a hybrid classical-quantum algorithm on a gate-based quantum
computer. Although the problem size is limited due to the limita-
tions of current quantum devices, the experimental results of [60]
and [16] have already shown some advantages compared with the
classical solutions. Transaction scheduling problem aims to deter-
mine the optimal order of parallel execution of transactions for best
performance. In [7, 8, 23], the authors transform an instance of the
transaction schedule problem into a formula that is accepted by
quantum annealers. Experimental evaluation shows the runtime
on a quantum annealer outperforms the runtime of traditional al-
gorithms. Join order selection is an NP-hard problem in relational
databases. [53, 55] formulate the join order selection as a quadratic
unconstrained binary optimization (QUBO) problem and solved it
on two state-of-the-art approaches (gate-based quantum comput-
ing and quantum annealing). The DB-QPU co-design approach is
proposed to overcome the limitations of current quantum devices.
It should be noticed that most of the previous works of quantum
computing for databases are not about quantum machine learning.
How quantum machine learning could benefit classical machine
learning for databases is still an open problem.

5.2 Open Challenges

While some progress has already been made, the research on quan-
tum computing for databases has just begun, and there are many
opportunities and open problems for further exploration.
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5.2.1 From the database perspective. Machine learning techniques
have been proposed to optimize data management in recent years.
Theoretically, all the existing works that utilize classical machine
learning for databases, could be enhanced or replaced with their
quantum counterparts. For example, we could use quantum neural
networks for cardinality estimation and quantum reinforcement
learning for join order selection. Both the online and offline opti-
mization tasks could be solved with QML methods. Online tasks of
query optimization include cardinality estimation, cost estimation,
execution time prediction, resource utilization estimation, query
rewrite, join order selection, query scheduling, and transaction
scheduling. Offline optimization tasks include knob tuning, index
selection, materialized view recommendation, and data partition.

5.2.2  From the quantum perspective. From the perspective view of
quantum computing and quantum machine learning, some basic
problems also need to be further researched, such as: (1) What are
the advantages of using quantum machine learning for databases
compared to classical machine learning? Are the quantum machine
learning algorithms really suitable for replacing their classical coun-
terparts for databases? (2) How to combine classical and quantum
algorithms to achieve good speedups with few qubits? (3) How to
improve the scalability of QC algorithms in the near-term quantum
computers since the databases usually need to cope with large sizes
of queries? (4) How (and if) can payload data be included?

6 TUTORIAL ORGANIZATION

The tutorial is planned for 3 hours (180 minutes) and will have the
following structure:

L. Introduction and motivation (10’). We introduce the back-
ground and remarkable progress of quantum computing. We show
a correlation exists between the availability of larger quantum com-
puters and the publication performances of researchers in the areas
of quantum computing and quantum machine learning.

II. Basics of Quantum Computing (50’). We present the basics
of quantum computing techniques, including quantum bits, Bloch
sphere, multi-qubit states.

III. Quantum machine learning (50’). We introduce quantum
machine learning techniques, including hybrid quantum-classical
algorithms, variational quantum circuits, encoding, and decoding.
IV. Break and QA (20’) We allocate time to answer the questions
and encourage interaction with the audience.

V. Demo about join order optimization with the quantum
machine learning (30’) We design a demo to demonstrate how to
use quantum machine learning to perform join order optimization
with the framework Qiskit [59].

VI. Open problems and challenges for database research (20’).
We discuss the state-of-the-art and open challenges to applying
quantum machine learning for database research.

7 GOAL OF THIS TUTORIAL

Intended Audience. This tutorial is intended for a wide scope
of audience ranging from academic researchers and students to
industrial developers and practitioners that want to understand the
impact of quantum machine learning on databases. Basic knowledge
of linear algebra and the quantum mechanism is sufficient to follow
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the tutorial. Some background in machine learning and simulated
annealing algorithms would be useful.

Learning Outcomes. The main learning outcomes of this tuto-
rial are: (1) understanding the impact and remarkable progress of
quantum computing; (2) learning basics on quantum computing,
such as superposition, entanglement, Bloch sphere, and multi-qubit
quantum states; (3) learning the basics of quantum machine learn-
ing, including variational quantum circuits, encoding, and decoding
data. (4) identifying open problems and research challenges of quan-
tum machine learning for databases. Practitioners and students will
be able to quickly build an extensive understanding as well as grasp
the latest trends and state-of-the-art techniques in quantum ma-
chine learning. In addition, this tutorial will provide a hands-on
demonstration to guide both researchers and developers.
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