
QCEDA: UsingQuantum Computers for EDA
Matthias Jung

m.jung@uni-wuerzburg.de
Fraunhofer IESE / JMU Würzburg

Kaiserslautern / Würzburg, Germany

Sven O. Krumke
sven.krumke@math.rptu.de

RPTU Kaiserslautern
Kaiserslautern, Germany

Christof Schroth
christof.schroth@iese.fraunhofer.de

Fraunhofer IESE
Kaiserslautern, Germany

Elisabeth Lobe
Elisabeth.Lobe@dlr.de

DLR
Braunschweig, Germany

Wolfgang Mauerer
wolfgang.mauerer@othr.de

OTH Regensburg
Regensburg, Germany

ABSTRACT
The field of Electronic Design Automation (EDA) is crucial for mi-
croelectronics, but the increasing complexity of Integrated Circuits
(ICs) poses challenges for conventional EDA: Corresponding prob-
lems are often NP-hard and are therefore in general solved by
heuristics, not guaranteeing optimal solutions. Quantum comput-
ers may offer better solutions due to their potential for optimization
through entanglement, superposition, and interference. Most of
the works in the area of EDA and quantum computers focus on
how to use EDA for building quantum circuits. However, almost
no research focuses on exploiting quantum computers for solving
EDA problems. Therefore, this paper investigates the feasibility and
potential of quantum computing for a typical EDA optimization
problem broken down to the Min-𝑘-Union problem. The problem is
mathematically transformed into a Quadratic Unconstrained Binary
Optimization (QUBO) problem, which was successfully solved on
an IBM quantum computer and a D-Wave quantum annealer.

1 INTRODUCTION
As one of the most important areas of microelectronics, Electronic
Design Automation (EDA) has a long history, dating back to the
mid-1960s. Nevertheless, EDA methods are still being intensively
developed with the inclusion of the latest algorithms and tech-
nologies. In recent years, with the development of semiconductor
technology, the complexity of Integrated Circuits (IC) has increased
exponentially, posing challenges to the scalability and reliability
of circuit design. Therefore, EDA algorithms and software need to
be more effective and efficient to handle an extremely large search
space with low runtime. However, a large number of the problems
in EDA, such as placement and wiring or scheduling, are NP-hard.
Therefore, there is no algorithm for conventional computers that
can solve these problems efficiently, i.e., in polynomial time de-
pending on the problem size. Rather, the processing time grows
exponentially. This means in the worst case that, for large but still
reasonable problem sizes, a classical computer might have to com-
pute millions of years to find an optimal solution, and that this
situation cannot be relaxed by simply improving the performance
of classical computers. Thus, in practice, these problems can only
be solved with the help of approximation algorithms or heuristics,
which find feasible solutions but in general do not provide the
mathematically optimal result. Quantum computers can take ad-
vantage of entanglement, superposition, and interference to speed
up optimization algorithms through massive parallelism. Thus, for

the EDA problems, there is the potential to achieve a significant
speedup compared to a classical computer.

Most of the works in the area of EDA and quantum computers
focus on how to use EDA for building quantum circuits. However, to
the best of our knowledge, almost no research focuses on exploiting
quantum computers for EDA problems. A typical EDA optimization
problem is presented by the authors of [14, 26]. The objective is to
discover an optimal address mapping of a specific application for
a Dynamic Random Access Memory (DRAM), which is composed
of banks, rows, and columns. This mapping is typically achieved
through a hardware scrambler in the memory controller. The aim of
the EDA problem is to determine an optimal configuration for this
hardware scrambler, reducing the number of row misses, thereby
increasing bandwidth and reducing latency. It has been shown
by [14, 26] that this problem is NP-hard and that the core of the
problem can be reduced to the so-called Min-𝑘-Union problem.

In this paper we investigate the feasibility and discuss potential
of quantum computing for this specific EDA optimization problem.
In order to speedup the calculation, the goal of this paper is to for-
mulate the Min-𝑘-Union problem for the quantum computer. While
we find that currently available quantum computer prototypes do
not scale to realistically sized problem instances, we quantitatively
estimate required machine sizes, and verify general feasibility of
our approach on an IBM quantum computer and a D-Wave quan-
tum annealer, and discuss paths towards quantum advantage on
EDA.

In summary this paper makes the following contributions:

• We show, for the best of our knowledge, for the first time,
how an very specific EDA problem can be formulated to be
executed on a quantum computer.

• In order to achieve that, we present, for the first time, a
Quadratic Unconstrained Binary Optimization (QUBO) for-
mulation of the Min-𝑘-Union problem.

• We execute this EDA problem on real quantum computers
and prove the feasibility of this approach.

• We show how this problems scales for real world problem
instances and point out limitations for the future.

The paper is structured as follows: Section 2 discusses the related
work. The mathematical description and the transformation for
the quantum computers of the Min-𝑘-Union problem is discussed
in Section 3. The results on the execution on two real quantum
machines is presented in Section 4. Finally, the paper is concluded
in Section 5.
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2 RELATEDWORK
Most of the works in the area of EDA and quantum computers
focus on how to use EDA for building quantum circuits [33]. For
instance, the authors of [42] present a logic synthesis for reversible
circuits. Hillmich et al. present new approaches for quantum cir-
cuit simulations based on decision diagrams [13]. The synthesis
and mapping of quantum circuits to specific hardware is presented
in [28, 32, 33, 41]. There exists also some work in the field of quan-
tum circuit verification [5, 6]. However, to the best of our knowledge,
so far, there exists no work with focus on exploiting quantum com-
puters for specific EDA problems, although the potential for the
other direction of this symbolic relationship of quantum comput-
ing and EDA has been highlighted by Raghunathan and Stok [29].
In [34] the authors analyze a quantum annealing approach to solve
SAT problems. Like a lot of combinatorial optimization problems,
the Min-𝑘-Union problem could also be transferred to SAT and
then further processed with the existing approaches. This trans-
formation however introduces overhead in terms of variables and
quadratic terms, which is why direct approaches are preferable.

Quantum computing in general and quantum optimization in
particular have seen a large body of work come into existence dur-
ing the last years, yet many aspects are not yet fully understood. In
particular, any quantum processing units (QPUs) that are available
either commercially or in research labs today suffer from consid-
erable imperfections and resource constraints, and are therefore
termed noisy, intermediate-scale quantum (NISQ) machines. This
influences both, the choice of the optimization algorithm and the
approach to evaluation.

Variational quantum algorithms, that are particularly tailored to
the capabilities NISQ-era machines, include the QAOA family of
algorithms (see, e.g., Refs. [1, 37]). These algorithms aim at solving
optimization problems and are hypothesized to achieve computa-
tional gains over classical approaches, albeit a practical advantage
has not yet been observed to the best of our knowledge in any field.
Nonetheless, it has been shown that it is impossible for any generic
classical algorithm to efficiently sample the output distribution
of QAOA algorithms, even in very restricted scenarios (i.e., with
the level parameter 𝑝 = 1, which we elaborate in Section 3.1), at
least when generally accepted complexity-theoretic assumptions
are true [10]. While this indicates quantum advantage in a cer-
tain sense, further experimental progress is required to explore
the capabilities of the approach in relevant scenarios, in particu-
lar when executed on noisy devices. Leymann et al. [19] discuss
the (considerable) impact of imperfections in NISQ machines on
quantum algorithms; Greiwe et al. [11] show illustratively the per-
formance degradation of typical quantum algorithms under the
influence of noise. How to benchmark quantum algorithms is con-
sidered, amongst others, by Becker et al. [15], Tomesh et al. [35]
and Resch et al. [30].

3 FORMULATION FOR QUANTUM-BASED
OPTIMIZATION

In this section, we present the details of our quantum formulation
of the EDA problem. Given that QC is a relatively new paradigm,
it behooves to first recall some fundamentals on how QPUs oper-
ate algorithmically, as this differs substantially from the patterns

known from classical computing. We also discuss the primitives
available for our formulation and provide a rationale for our choice
of empirical evaluation approach.

3.1 Quantum Optimization
Multiple quantum approaches allow us to solve our subject problem;
two are particularly common for currently available machines:

(1) TheQuantumApproximate Optimization Algorithm (QAOA) [9]
is an iterative, hybrid quantum-classical algorithm for gate-based
QPUs that can be used to seekminimal solutions to QUBO problems.
Roughly speaking, QAOA applies a set of parameterized quantum
operations including an evaluation of the target function to an
initial state, samples the resulting probability distribution of pos-
sible outcomes caused by quantum superposition, and then uses
classical optimization to update parameters for the quantum op-
erations that lead to improved measurement results in the next
iteration. Additionally, the core quantum part of the algorithm can
be performed 𝑝 times in each iteration, correspondingly increasing
the number of parameters. For perfect QPUs, it can be shown that
results improve with increasing 𝑝 and thus increased computational
effort, whereas NISQ machines will experience a trade-off between
a more expressive computation and increasing amounts of noise
with increasing 𝑝 .

Possibilities to improve the performance of QAOA on NISQ
machines are plentiful: Noise mitigation techniques (e. g., [18, 36]);
choosing good initial parameters (often referred to aswarm-starting)
by classical (e. g., [8]) and machine learning approaches (e. g., [16]);
by reducing classical optimization to lower-dimensional, nearly
equivalent spaces (see, e. g., Ref. [40]). Note that recent insights on
variational quantum circuits in general and QAOA in particular
(for instance, using large Fourier series [17]) give criteria for the
feasibility of classically approximating quantum variational algo-
rithms, which limit the potential of quantum approaches. Likewise,
the detrimental impact of noise on QAOA has been characterised
experimentally (e. g., [12], based on a sound theoretical understand-
ing (e. g., [20, 39]), which further limits the merit of evaluations on
current-generation hardware.

(2) Quantum annealing1 (respectively adiabatic quantum com-
putation [2]) is – depending on the point of view – a particular
transformation executed on a quantum computer using global oper-
ations [38], or is performed by a special class of machines purpose-
built [22] to solve, respectively, approximate [31] QUBO problems.
The scheme operates similar to classical annealing procedures, yet
it can benefit from quantum effects to speed up the underlying
optimization problem [23]. For the physical and algorithmic details
of these base patterns, and other algorithmic possibilities, we refer
to the available introductory texts on quantum computing [27], or
recent reviews [4].

We emphasize that the focus of our paper is to introduce the
required reformulation of the EDA problem, which can be used as
starting point for all aforementioned approaches. Since there is no
unified theoretical understanding behind all variants of quantum

1Quantum annealing is a restricted variant of the more general adiabatic evolution of a
quantum system. In turn, QAOA can be seen as a finite approximation to an adiabatic
evolution, which is recovered in the limit 𝑝 → ∞. Consequently, most of the remarks
on the need for empirical evaluation of the performance of NISQ machines on our
subject problem apply in equal measure to both approaches.
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optimization discussed above, it is challenging to predict which vari-
ant is best suited to a given combination of machine and problem,
and an comprehensive empirical evaluation is mandated. However,
for realistic settings, this necessitates a comparison with classi-
cal heuristics and probabilistic approaches, especially regarding
to their average-case performance. The complexity of this task is
universally appreciated, independent of quantum computing, and
considered at textbook level (see, e. g., [3]). Furthermore, quantum
performance evaluation itself is highly non-trivial [24]. Since NISQ
machines fail to provide the required qubit resources for realistic
instances of our problem by a wide margin (cf. Tab. 2), we deliber-
ately refrain from conducting an empirical performance evaluation
beyond the scale of toy problems in this paper. Finally, note that it
would be possible to derive runtime bounds for a given task for the
mechanism underlying QAOA and annealing, which unfortunately
requires knowledge of the so-called minimal spectral gap, which is
as hard to compute as solving the problem itself.

3.2 Problem Extraction
DRAMs consist of memory cells organized into memory arrays com-
posed of columns, rows, and banks. The amalgamation of primary
and secondary sense amplifiers within a bank’s memory arrays is
commonly termed a row buffer. Typically, the row buffer possesses
a capacity ranging from 1KB to 8KB, which is known as the DRAM
page size. It operates as a compact cache, storing the most recently
accessed row within the bank. The latency of a memory access
to a bank is heavily influenced by the state of this row buffer. A
memory access targeting the same row as the one currently cached
in the buffer (referred to as a row hit) results in minimal latency
and energy consumption. Conversely, if a memory access targets a
different row than the one stored in the buffer (referred to as a row
miss), it leads to heightened latency and energy consumption. Mean-
while, the concurrent access of activated rows in distinct banks
without penalty, known as Bank Parallelism, can be harnessed to
enhance overall performance. Thus, the achieved DRAM bandwidth
and latency strongly depends on the access patterns of the appli-
cations. Therefore, memory controllers have configurable address
scramblers, which permute the address bits by means of simple
lookup tables or a network of multiplexers, in order to maximize
the sustainable DRAM bandwidth.

The EDA problem in focus is to find an optimal configuration
for the scrambler such that row misses are minimized and the bank
parallelism is maximised. The work presented in [26] demonstrated
that a multi-bank DRAM can be effectively simplified into a single-
bank DRAM, given the independent operation of all DRAM banks.
Consequently, we will exclusively focus on DRAMs with a single
bank for the remainder of this paper. It has been shown by [14, 26]
that this problem is NP-hard and that the core of the problem can
be reduced to the so-called Min-𝑘-Union problem. As the solution
to this problem holds the highest time-criticality, our primary focus
lies in accelerating its resolution.

Roughly summarizing the deductions of [26], the problem can
be extracted as follows: We are given a memory address sequence
for an arbitrary application. These addresses should be mapped to
a DRAM memory, where the goal is to find an assignment of the
address bits to new row and column bits – and in the general case

also to bank bits – such that the number of row misses is minimized.
A row miss appears wherever we have at least one bit flip from
one address to the following in the assigned row bits. Due to the
resulting overhead, this should happen as few as possible. Therefore,
each column of the stacked addresses defines a set containing the
row numbers where a bit change appears and the goal is to select a
specified number of these sets where we have the least row misses,
i.e., the least number of elements.

The resulting problem is the Min-𝑘-Union problem, which is
defined mathematically as this: Given a finite ground set 𝑉 , a col-
lection S ⊆ 2𝑉 of subsets of the ground set (where 2𝑉 denotes
the power set of 𝑉 ) and 𝑘 ∈ N, the goal is to choose exactly 𝑘 sets
𝑀1, . . . , 𝑀𝑘 ∈ S such that the cardinality of the union𝑇 =

⋃𝑘
𝑖=1𝑀𝑖

of the chosen sets is as small as possible. As shown in Theorem 1
of [26], finding an optimal permutation, i.e., an optimal assignment
from address bits to row bits, is equivalent in solving an instance
of the Min-𝑘-Union problem where 𝑘 denotes the number of row
bits that have to be assigned. The deduction to this problem will
also become more clear with the concrete example explained in
Section 4.1.

3.3 QUBO Formulation
The Min-𝑘-Union problem is known to be NP-hard to solve and
even NP-hard to approximate [7]. Thus, it seems unlikely that one
is able to find an algorithm which solves all instances efficiently in
polynomial time (since this would imply that the complexity classes
P and NP coincide). Moreover, essentially all known formulations
of the Min-𝑘-Union problem as linear integer programs suffer from
the weakness that the corresponding linear relaxation is rather
weak, meaning that integer linear programming solvers tend to
explore many nodes in the branch-and-bound tree which in turn
means a rather inefficient solution procedure.

Thus, the approach taken in this paper is different: Instead of
using a linear formulation for the Min-𝑘-Union problem, we use a
quadratic formulation, which is suitable for quantum computing. As
mentioned before, one type of optimization problems which have
proven to be appropriate in this respect areQuadratic Unconstrained
Binary Optimization problems (QUBOs). A QUBO is an optimization
problem of the form

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑞𝑖 𝑗𝑥𝑖𝑥 𝑗 = 𝑥𝑇𝑄𝑥 = 𝐻 (𝑥)

s.t. 𝑥 ∈ {0, 1}𝑛,

where𝑄 = (𝑞𝑖 𝑗 )𝑖, 𝑗=1,...,𝑛 is a given matrix. In the following, we will
show how to transform the Min-𝑘-Union problem to a QUBO.

In order to formulate the Min-𝑘-Union problem as a QUBO, we
define binary variables with the following meaning: For𝑀 ∈ S we
set the binary variable

𝑥𝑀 =

{
1, if𝑀 ∈ S is chosen,
0, otherwise.
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We also have binary variables 𝑦𝑣 ∈ {0, 1} with the following mean-
ing:

𝑦𝑣 =


1, if 𝑣 is contained the union

of the chosen 𝑘 sets,
0, otherwise.

We now construct the objective 𝐻 of the QUBO, which is is com-
posed of three parts, i.e., 𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝐻𝐶 , each of which is
non-negative, and which we describe now.

We first have

𝐻𝐴 (𝑥) := 𝐴

(
𝑘 −

∑︁
𝑀∈S

𝑥𝑀

)2
≥ 0, (1)

where𝐴 > 0 is a constant to be chosen later. Obviously𝐻𝐴 (𝑥) = 0 if
and only if the selection of sets described by𝑥 contains exactly𝑘 sets.
The term𝐻𝐴 is intended as a “penalty term” and we will show at the
end of this section how to determine the penalty parameter 𝐴 > 0,
such that any optimal solution 𝑥∗ of the QUBO fulfils 𝐻𝐴 (𝑥∗) = 0,
i.e., forms a feasible solution of the original problem.

In order to properly count the number of elements in the union⋃
𝑀∈S:𝑥𝑀=1𝑀 of the chosen sets, we need to ensure the activation

of an element 𝑣 once a set is activated in which contains the element.
This can be done with the inequality constraint 𝑦𝑣 ≥ 𝑥𝑀 for each
𝑣 ∈ 𝑉 and each 𝑀 ∈ S with 𝑣 ∈ 𝑆 . For the QUBO reformulation,
consider the term 𝑡𝑀,𝑣 = (1 − 𝑦𝑣)𝑥𝑀 ≥ 0 for 𝑀 ∈ S and 𝑣 ∈ 𝑀 . If
𝑥𝑀 = 1, then the only way to achieve 𝑡𝑀,𝑣 = 0 is to set 𝑦𝑣 = 1. If in
turn 𝑥𝑀 = 0, then 𝑡𝑣,𝑀 = 0 no matter what the value of 𝑦𝑣 is. These
considerations lead us to our new part 𝐻𝐵 , where 𝐵 > 0 is again a
suitable penalty parameter to be determined later:

𝐻𝐵 (𝑥,𝑦) := 𝐵
∑︁
𝑣∈𝑉

∑︁
𝑀∈S:𝑣∈𝑀

(1 − 𝑦𝑣) 𝑥𝑀 . (2)

The third term 𝐻𝐶 is the actual objective function of the Min-𝑘-
Union problem:

𝐻𝐶 (𝑦) := 𝐶
∑︁
𝑣∈𝑉

𝑦𝑣 . (3)

We now address the choice of the constants 𝐴, 𝐵 and 𝐶 in the
above formulation. Recall that 𝐻𝐴 ≥ 𝐴 if our choice of sets does
not contain exactly 𝑘 sets. If we have set 𝑥𝑀 = 1 and 𝑦𝑣 = 0 for
some element 𝑣 ∈ 𝑀 , then 𝐻𝐵 ≥ 𝐵. Furthermore, we always have
0 ≤ 𝐻𝐶 ≤ 𝐶 |𝑉 |. Thus, if we choose𝐴 = 𝐵 > 𝐶 |𝑉 |, then any solution
that minimizes 𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝐻𝐶 will have 𝐻𝐴 = 𝐻𝐵 = 0 and
thus form a feasible solution to the Min-𝑘-Union problem, where
𝐻𝐶 correctly counts the number of chosen elements. In particular
𝐶 = 1, 𝐴 = 𝐵 = |𝑉 | + 1 satisfy this condition.

This means, in the end, the formulation given above integrates
all constraints of the Min-𝑘-Union problem via (1) and (2) into
the objective in an exact formulation: Any optimal solution of
the QUBO is in fact an optimal solution for the given instance of
the Min-𝑘-Union problem and one does not need to vary penalty
parameters. The QUBO then is an unconstrained problem which can
be given to a quantum computer without any further manipulations.

Furthermore, this QUBO formulation has a number of advan-
tages. First, it uses only a number of variables, which is linear in
the number of elements and sets. Due to their structure, the con-
straints of the original Min-𝑘-Union problem formulation do not

Table 1: Sequence of Memory Addresses with Highlighted
Bit-Toggling

a 𝑎𝑖,0 𝑎𝑖,1 𝑎𝑖,2 𝑎𝑖,3 𝑎𝑖,4
𝑎0 1 0 0 0 1
𝑎1 000 0 0 111 1
𝑎2 0 0 111 1 000
𝑎3 0 111 1 000 111
𝑎4 0 1 1 111 1
𝑎5 0 1 1 000 1
𝑎6 111 1 000 0 000
𝑎7 1 1 0 0 111
𝑎8 1 000 111 0 1

introduce any additional variables in the QUBO formulation. This
is important since the number of variables translates directly into
the number of quantum bits needed. Additionally, the coefficients
of the resulting QUBO, i.e., the values 𝑞𝑖, 𝑗 , have a simple structure;
they are integer and only dependent on the parameter 𝑘 and the
constants𝐴, 𝐵 and𝐶 . This might support finding the solution using
NISQ devices.

4 CASE STUDY
To demonstrate the feasibility of our approach, we transform the
example of [26] into a QUBO problem, employing the formalism
presented in Section 3. First, we describe the artificial example.
Second, we describe the execution on the IBM quantum computer
and the D-Wave quantum annealer, and third, we discuss the results
with respect to scalability of the approach.

4.1 Example Problem
Table 1 shows the memory address sequence 𝑎 for an artificial
application. The addresses of this application shall be mapped in an
artificial DRAM with 8 rows (3 row address bits) and 4 columns per
row (2 column address bits). The goal is to find a selection of the
address bits to serve as the row bits, such that the number of row
misses is minimized. As mentioned before, the reduction to a single
bank is suitable and we therefore assign no bank address bits here.

The bold numbers in Table 1 represent the address bits that
toggle between consecutive accesses. This toggling behavior is
observed column-wise. Consequently, for each column 𝑎∗, 𝑗 , 𝑗 ∈
0, . . . , 4, we define a set𝑀𝑗 , which contains row indices 𝑖 ∈ 0, . . . , 8
corresponding to bit changes from 𝑎𝑖, 𝑗−1 to 𝑎𝑖, 𝑗 , i.e., the highlighted
numbers in the table. In this specific case, we have 𝑀0 = {1, 6},
𝑀1 = {3, 8}, 𝑀2 = {2, 6, 8}, 𝑀3 = {1, 3, 4, 5}, and 𝑀4 = {2, 3, 6, 7}.
The size of set 𝑀𝑗 reflects the number of bit changes for the 𝑗-th
address bit.

Figure 1a shows the sets which are formed. Since our artificial
DRAMhas 8 rows, wewant to choose 3 of these sets. A valid optimal
solution of this small artificial example is easy to find: consider the
union of the sets 𝑀0, 𝑀1 and 𝑀2 given by 𝑇 := 𝑀0 ∪ 𝑀1 ∪ 𝑀2 =

{1, 2, 3, 6, 8}, as shown in Figure 1b. The elements of 𝑇 are exactly
the positions of bit changes happening combined in columns 0, 1
and 2 and the size |𝑇 | = 5 equals the minimal number of row misses.
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(a) Example Problem

6    2    8
1    3    4    5

      7

(b) Solution-A

6    2    8
1    3    4    5

      7

(c) Solution-B

Figure 1: Hypergraphs and Solutions for Example Problem
Corresponding to Table 1

4.2 Execution on IBM Quantum Computer
In this study, we have utilized Qiskit, an open-source python based
SDK developed by IBM. Qiskit allows users to work with quantum
computers at the circuit, pulse, and algorithm level. We formulated
the example above as QUBO with Qiskit and executed it on the
ibmq_ehningen quantum computer, which is one of the IBM Quan-
tum Canary Processors. Qiskit compiles the formulation in python
in an according quantum circuit consisting of quantum gates. To
ascertain reproducibility of our results [21], we will upload our code
on Github once the publication is accepted. The ibmq_ehningen
quantum computer has a total number of 27 qubits, where for our
example only 13 qubits are required (8 nodes and 5 sets). It has a
coherence time around 150 us.

The solution that the ibmq_ehningen quantum computer found
is shown in Figure 1c. In contrary to our example solution in Fig-
ure 1b, the quantum computer decided to pick the sets 𝑀1, 𝑀2
and𝑀4. However, this is a valid optimal solution as well, because
the number of row misses (the number of Elements in the set
𝑇 = 𝑀1 ∪ 𝑀2 ∪ 𝑀4) is also 5. This proves that the execution of
the EDA problem is feasible on a real quantum computer.

4.3 Execution on D-Wave Quantum Annealer
Over D-Wave’s cloud platform Leap2, using the trial access, and
their python library dwave-ocean-sdk3, one can easily send prob-
lems to the connected quantum annealers of the current Advan-
tage generation with about 5000 qubits. Using the internally imple-
mented embedding and de-embedding strategy, we were able to
submit the above test instance in our QUBO formulation directly.
The size of the annealing sample was set to 100 and besides that we
used the default solver parameters, such as 20 𝜇𝑠 annealing time.
The full sample set for a single run is shown in Figure 2. The differ-
ent parts of the bars indicate different solutions yielding the same

2https://cloud.dwavesys.com/leap/
3https://github.com/dwavesystems/dwave-ocean-sdk
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Figure 2: Histogram of solutions from D-Wave run

Table 2: Required Number of Qubits, Benchmarks from [25]

Benchmark Elements Sets Qubits
filter7 524288 19 524307
rot6 65536 16 65552
rot3d7 2097152 21 2097173
NN8 356400 22 356422

objective value. We obtained both optimal solutions at once, where
Solution A was found in 6 of the 100 cases and Solution B in 5 cases.
The other cases are sub-optimal solutions with varying objective
values. Note that the values differ slightly in subsequent runs, due
to the heuristic nature of the machines. The implementation of the
corresponding test script was supported by the tool quark4.

4.4 Discussion
Having demonstrated the feasibility of executing the formulation
on two quantum machines, the question that arises is how well
the formulation scales for real-world applications that store their
data in real DRAM-Chips like DDR5 oder LPDDR5. As previously
mentioned, the number of required qubits depends on the sum of
elements and sets, thus scaling linearly. Table 2 illustrates the nec-
essary number of qubits for various real-world benchmark applica-
tions [25]. The primary factor influencing the qubit requirement is
the number of elements. Since the number of elements corresponds
to the number of unique DRAM addresses present in a benchmark,
it serves as a reasonable approximation for the required number
of qubits. Let us highlight that the problem size only grows lin-
early with the number of elements and sets, compared to other
approaches that exhibit non-linear growth in problem size. Given
this favorable property, we believe that solving the EDA problem
using quantum computers or quantum accelerators in the future
holds promise.

Of course, the scope of our empirical feasibility evaluation re-
mains far from touching practical utility. While today’s quantum
computers lack a sufficient number of qubits to solve real-world
instances, we are currently witnessing exponential growth in qubit
availability, backed by ambitious roadmaps of commercial vendors.
Additionally, quantum-inspired computational accelerators like Fu-
jitsu’s digital annealer will allow us, pursuing a slightly different
route, to explore considerably larger instances in future work. We
therefore believe our approach to contribute an important mile-
stone towards using quantum computers for EDA workloads, as
4https://gitlab.com/quantum-computing-software/

https://cloud.dwavesys.com/leap/
https://github.com/dwavesystems/dwave-ocean-sdk
https://gitlab.com/quantum-computing-software/
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it establishes a solid foundation for entirely new viewpoints that
have not been considered before by the community for addressing
an important and crucial problem in EDA.

5 CONCLUSION AND FUTUREWORK
The field of EDA has to solve complex problems for IC design, often
relying on heuristics. Quantum computers offer potential solutions
through their optimization capabilities, yet research on leveraging
them for EDA problems is limited. This paper explores the feasibility
and potential of quantum computing for a typical EDA optimiza-
tion problem, successfully executed on an IBM quantum computer
and D-Wave’s quantum annealing machines. Despite current qubit
limitations, the presumably ongoing exponential growth in qubit
availability suggests that quantum computing holds promise for
EDA challenges. With problem size scaling linearly, quantum opti-
mization techniques could provide effective solutions in the future.

Moving forward, our future endeavors encompass conducting
additional analyses of this specific EDA problem, involving multiple
executions on a quantum computer. Additionally, we aim to explore
and analyze various other EDA problems like scheduling, placement
and routing.
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