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Abstract As implementations of quantum computers grow in size and ma-
turity, the question of how to program this new class of machines is attracting
increasing attention in the software engineering domain. Yet, many questions
from how to design expressible quantum languages augmented with formal
semantics via implementing appropriate optimising compilers to abstracting
details of machine properties in software systems remain challenging. Per-
forming research at this intersection of quantum computing and software en-
gineering requires sufficient knowledge of the physical processes underlying
quantum computations, and how to model these. In this chapter, we review a
superoperator-based approach to quantum dynamics, as it can provide means
that are sufficiently abstract, yet concrete enough to be useful in quantum
software and systems engineering, and outline how it is uses in several im-
portant applications in the field.

Key words: Quantum Computing, Software Engineering, Quantum Soft-
ware Engineering, Density Operator, Superoperators, Formal Semantics

1 Introduction

The actual and hypothesised capabilities of performing computational tasks
based on the laws of quantum mechanics have made the implementation
of quantum computers a target of interest to physics and engineering. Yet,
producing software (and algorithms) for this class of machines has by far not
reached the level of productivity and ease of handling that computer science
has come to expect for classical machines following decades of development.
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This is likely because at the current level of abstraction, expressing algorithms
resides close to the underlying physical concepts. This necessitates strong
inter-domain knowledge for researchers working in the field.

Detailed knowledge of alternative methods of describing the dynamics of
quantum systems beyond applying unitary operators on finite-dimensional
quantum states might not be universally spread in the software engineer-
ing community. This implies that appreciation of the usefulness of such de-
scriptions for many open problems in quantum software engineering could
be further fostered. Consequently, we provide an exposition of one partic-
ularly important such formalism—linear superoperators acting on density
operators—in this chapter especially tailored towards software engineering
research. We include a discussion of the possible benefits in various applica-
tion areas in the domain.

Quantum circuits are the basis of many software engineering consider-
ations, albeit at a low level of abstraction. Any typical introduction to
quantum computing for computer scientists includes a discussion of circuits
for the foundational set of algorithms like the ones invented by Grover,
Shor, or Deutsch. In essence, a quantum state |ψ⟩ (we provide precise formal
definitions later) propagates through a quantum circuit in three phases—
initialisation, application of a sequence of quantum operations, and a meas-
urement delivering stochastic results—that constitute a quantum program.
The first two actions are described by so-called unitary operators U that
capture possibilities (and limitations) of quantum operations, and exhibit
peculiar properties that engineers are not accustomed to from classical pro-
gramming. Keeping in mind that measurements, which are realised by other
means than unitary transformations, are an important ingredient of quantum
algorithms, the core part of any such algorithm can nonetheless be expressed
as a unitary transformation of an appropriately initialised quantum state |ψ⟩
by |ψ⟩ 7→ U |ψ⟩ = |ψ′⟩.

However, quantum circuits (or any other equivalent representation of oper-
ations on quantum states) do, for most known algorithms, only capture part
of the overall computational sequence. Any required classical operations or
the implementation of control flow are usually described (and handled) separ-
ately from the manipulation of purely quantum mechanical states. Variational
algorithms that underlie many considerations of the current era of noisy,
intermediate-scale quantum (NISQ) machines rely inherently on interleaved
classical and quantum operations, and explicitly operate on quantum and
classical data. Consequently, it is helpful to consider a mathematical formal-
ism that can capture all these aspects in a unified description. Likewise, the
unavoidable effects of noise and imperfections that exercise probabilistic in-
fluence on a quantum state, and thus directly concern any real-world analysis
of algorithmic properties, must be taken into account. A good mathematical
framework for this purpose is the density operator formalism, which gener-
alises quantum states |ϕ⟩ into density operators ϱ that can describe both,
quantum and classical aspects of a computational state. Instead of unitary
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operators U that act on states and describe operations, superoperators Λ map
density operators to density operators (i.e., ϱ 7→ Λ(ϱ) = ϱ′), and therefore
generalise unitary quantum operations.1

In this chapter, we present an exposition of these concepts that targets the
needs of software engineers working on the relatively new field of quantum
software engineering, which necessitates to gain an understanding of quantum
programming languages and possible approaches to equip them with formal
semantics, or produce software with correctness by construction approaches.
While we aim at using enough mathematical formalism to arrive at a precise
and unambiguous presentation, we avoid the use of advanced mathematics,
especially category theory, that is commonplace in research work on quantum
programming language semantics, yet may act as an impediment to obtaining
a higher-level view of the issues from a software engineering perspective.

This chapter nonetheless relies on some amount of formalism, and the par-
ticular mathematical topics might not be present in every computer science
curriculum (and even if, it might have been a while since the reader had
to deal with these topics!). For those who are curious to hear the software
engineering essentials short and crisp: If you trust us that

• a density operator ϱ can, compared to ket representations |ψ⟩, describe
quantum states that suffer from imperfections and intricacies of the real
world;

• superoperators extend the role of quantum gates to this scenario;
• the Kraus representation allows us to describe such operators in a form

that is particularly convenient for computer science and software engin-
eering purposes,

then you can skip directly to Sec. 5 that shows some of the most important
software-centric applications for superoperators: Formal semantics for and
verification of quantum programs, communicating and distributed quantum
systems, and dealing with imperfections in real-world NISQ machines.

1.1 Challenges in Quantum Software

Following the recent review Garhwal, Ghorani, Ahmad 2021 and the text-
book Ying, Zhou, Li 2019, currently established programming languages fol-
low an either imperative (e.g., QCL Ömer 2002, Silq Bichsel et al. 2020,
or Q# K Svore et al. 2018) or functional (e.g., QPL Selinger 2004, Quip-
per Green et al. 2013, or LIQUiD Wecker, KM Svore 2014). While they differ
in their capabilities and degrees of abstraction, their quantum features centre
around generating quantum circuits that eventually apply lists of operators

1 The mathematical formalism of superoperators can handle more general operators than

density operators, and we will see later how that can benefit software engineering when

trace-decreasing operations come into play.
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on quantum states. The same observations can be made for commercial ap-
proaches (e.g., Cirq, Ocean, or Qiskit) to the quantum programming problem
where instructions on how to generate quantum circuits are embedded into
a host language, typically Python.

While software engineering research has established a multitude of meth-
ods, techniques and processes aimed at systematically constructing high-
quality software artefacts, some of the elementary developmental options like
debugging, tracing and some variants of testing are not directly applicable
in a meaningful way in the quantum domain. Given the resulting reduction
of engineering options, ascertaining the quality (or: correctness) of quantum
programs must focus more on other methods like formal verification. This,
in turn, requires means of properly formalising quantum programs. Start-
ing with the seminal work Selinger 2004, research on numerous approaches
of equipping quantum programming languages with formal semantics, based
on which verification efforts can take place, have been conducted. Yet, the
current state of the art is still lagging behind the classical level of maturity.

While it should not be required to educate all software engineers work-
ing on quantum computing on the bells and whistles of quantum physics, a
reasonable awareness of the underlying principles, methods and formalisms is
important for determining effective layers of abstraction. The situation is not
unlike at the advent of software engineering as a discipline: Then, the need
for using structured engineering approaches to construct software became ap-
parent, yet low-level details remained crucial—as embodied, for instance, by
research topics like the construction of efficient compilers for expressive high-
level languages that nonetheless catered towards the very distinct hardware
properties of then-current systems. We believe the superoperator-based view
of quantum computing is an apt starting point for deriving such sound, prac-
tical and useful abstractions using established methods of computer science
for quantum programming and quantum software engineering.

2 Mathematical Foundations

In this and the following section, we introduce the necessary formalities to
understand the superoperator-based view of quantum dynamics. We assume
knowledge of the standard computer science curriculum of linear algebra, but
try to give an otherwise self-contained exposition. All mathematical state-
ments and facts that we refer to without providing an explicit rationale or
proof sketch are part of the standard literature on quantum computing and
quantum information theory, for instance Nielsen, Chuang 2010; Vedral 2006;
Ekert, Hosgold 2022; Preskill 2015, to which we refer readers interested in a
more in-depth formal treatment or explicit proofs.

https://quantumai.google/cirq
https://ocean.dwavesys.com
https://qiskit.org
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2.1 The Need for Formalisation

A quantum program enacts a transformation of a state (in the sense of com-
puter science) comprised of quantum and classical input data to quantum and
classical output data. While it is not possible to perform intermediate meas-
urements on the quantum part of the state without influencing the state itself,
this state nonetheless exists uniquely during the whole computation: After
preparing required initial states based on classical input data, in each step
of performing the computational sequence, and before performing any meas-
urements. The later, finally, reduce (parts of) the quantum data to classical
information, usually in a stochastic way. A quantum program can, depending
on the input data, lead to many possible intermediate states, and likewise to
many possible different outputs, even when perfect machines are assumed
for execution. This is similar to stochastic algorithms that find ample use in
classical software, and mathematical frameworks that allow us to model such
scenarios have been established.

Consequently, we need to deal with three different entities: The state of
a system, a quantum program that acts on this state, and a transformation
between the quantum program (specified in whatever programming language)
and an appropriate collection of formal operations that represent the state
transformations, and most importantly allow us to reason about properties of
the quantum program with established and new methods. While the scenario
in general is very similar to the approaches used in programming language
semantics, a crucial difference is that the state is not open to direct inspection
by observers, and is described by different mathematical objects than for
classical computation. Also, the admissible transformations between states
differ radically from classical approaches.

From a physical standpoint, there are different ways of viewing this scen-
ario: A quantum program can be translated (and most of the contemporary
compilers follow this approach) into a sequence of gates that are applied to a
quantum state (together with a suitable formalisation of the classical state),
which can be expressed as the element of a Hilbert space. However, this form-
alism only applies to perfect underlying quantum computers that faithfully
execute each gate, and are able to prepare initial quantum states that exactly
represent the desired form without any stochastic uncertainties.

When machines are subject to noise and imperfections, gate operations,
state preparation, readout etc. are affected by uncontrolled influences that
introduce stochasticity into the quantum state; straightforward kets cannot
represent the arising statistical mixture of quantum states that requires an
additional characterisation of the associated classical distribution to be in-
cluded in their description. This is however possible in the density operator
formulation of quantum mechanics. As we have seen before, superoperat-
ors extend the role of perfect gates in the bra-ket picture. We believe this
formal representation is well suited to augmenting a quantum program with
formal semantics, as it can capture a wider range of phenomena that can-
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not be ignored at the current state of hardware development, and will with
some likelihood also be of interest in the long run. While the picture is solidly
established in physics-centric research, this does not universally hold for com-
puter science and software engineering. The aim of this chapter is to provide
an introduction to the formalism tailored to the particular needs of software
engineering researchers.

First, let us fix some notation conventions: A quantum register |R⟩ is
an element of a Hilbert space H. This space is, in the finite-dimensional
case relevant for quantum computing, a complex vector space with an in-
ner product, which implies the existence of an orthonormal standard basis
{|i⟩} (the infinite-dimensional case requires more care, but is only very rarely
relevant for the computer science aspects of quantum computing). Oper-
ations on quantum registers are carried out using unitary (linear) oper-
ators U (satisfying UU† = U†U = 1, where the dagger operation † de-
notes taking the adjoint of a linear operator). ⟨R| is the co-vector from
the dual space of H associated with |R⟩. The inner product between two
quantum registers is denoted by ⟨R1 | R2⟩; recall that it satisfies, despite the
somewhat different notation compared to inner products on vector spaces,
(a) conjugate symmetry ⟨x | y⟩ = ⟨y | x⟩, (b) linearity in the second argu-
ment ⟨x| (α |y1⟩ + β |y2⟩) = α ⟨x | y1⟩ + β ⟨y2⟩2, and (c) positive definiteness
⟨x | x⟩ > 0. Since quantum states are normalised, the latter condition effect-
ively reads ⟨x | x⟩ = 1.

2.2 Linear and Hilbert-Schmid Operators

The notion of linearity is well established in physics and computer science,
and linear maps find use in many domains. The concept of linearity can of
course be easily applied to operators; for the sake of completeness, let us
recall the exact definition of a linear operator on normed spaces, as it is the
formal backbone of our considerations:

Definition 1 (Linear operator) A linear operator T from a normed space
X to another normed space Y is a linear map from D(T ) ⊆ X (the domain
of T ) to Y with the following property for x, y ∈ D(T ), α, β ∈ K, where K
is an unspecified field:

T (αx+ βy) = αT (x) + βT (y). (1)

A particularly important class of operators in quantum computing (in-
cluding, most importantly, density and unitary operators) is bounded as by
the following definition:

2 The standard scalar product on vector spaces requires linearity in the first argument.
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Definition 2 (Bounded operator) An operator is called bounded if ∃C ≥
0, C ∈ R such that

||Tx|| ≤ C · ||x|| (2)

for all x ∈ D(T ).

We write B(·) to denote the set of all bounded operators acting on an
underlying space. Operators that map Hilbert spaces to Hilbert spaces are
crucial for our considerations:

Definition 3 (Hilbert-Schmidt operator) Let X,Y be Hilbert spaces.
An operator K ∈ B(X,Y ) is called Hilbert-Schmidt operator if there ex-
ists an orthonormal basis {eα : α ∈ A} (where A is some index set) with∑

α∈A ||Keα||2 <∞.

Using the trace of an operator M given by trM =
∑

i ⟨i|M |i⟩ for an
orthonormal basis {|i⟩} of the Hilbert space H, we can also express the latter
condition in the above definition by trK†K <∞, which is obviously fulfilled
if K ∈ B(H) and dim(H) < ∞, and therefore for the finite-dimensional
Hilbert spaces relevant for quantum computing.

Theorem 1 (Hilbert space of Hilbert-Schmidt operators) For Hilbert-
Schmidt operators K,L of a Hilbert space X to a Hilbert space Y , ||·||HS is a
norm on this space induced by the scalar product

⟨K,L⟩HS :=
∑
α

⟨Keα, Leα⟩ . (3)

In the quantum computing literature (and more general expositions from
quantum physics), this is usually expressed by using the trace operation:

⟨K,L⟩HS = trK†L. (4)

Proof If K is a Hilbert-Schmidt operator, aK is a Hilbert-Schmidt operator
as well for every a ∈ K. If K,L are HS operators, then for every orthonormal
basis {eα}, it holds that∑

α

||(K + L)eα||2 ≤ 2 ·
∑
α

(
||Keα||2 + ||Leα||2

)
<∞, (5)

which makes K+L a Hilbert-Schmidt operator. By ⟨·, ·⟩, we denote the scalar
product in the space of Hilbert-Schmidt operators, and ||K||HS = ⟨K,K⟩1/2HS

(of course, the scalar product induces a metric). □

A comparison of Hilbert spaces for quantum states and Hilbert spaces with
a Hilbert-Schmidt operator basis that extend and generalise this concept is
given in Table 1. The similarities between the two constructions that may
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seem very different at a first glance are particularly obvious when viewed in
direct comparison.

Table 1: A comparison between standard Hilbert spaces used for quantum
states, and Hilbert spaces based on Hilbert-Schmidt operators.

State |f⟩ ∈ H D̂ : H → H
Operator H→H: D̂ |x⟩ = |x′⟩ Λ : D̂→D̂ ≡ (H → H) → (H → H)

Norm ||f⟩| =
√
⟨f |f⟩ ∥D̂∥HS =

√
trD†D

Operator
norma

∥D̂∥ = sup
|f⟩∈H
∥|f⟩∥≤1

|D̂ |f⟩ | ||Λ|| = sup
D̂∈H
∥D̂∥≤1

Λ(D̂) = sup
D̂∈H
∥D̂∥≤1

trΛ(D̂)†Λ(D̂)

Entity Hilbert space Hilbert space of Hilbert-Schmidt
operators

a Other choices for the Hilbert space norm that fulfil the required properties
are possible.

3 Modelling Hybrid Quantum-Classical Systems

Having laid out the mathematical preliminaries, we commence with discuss-
ing how to apply the formalism to model hybrid quantum-classical systems,
as they form the basis of essentially all known quantum algorithms.

3.1 States and effects

Ideally, an experiment resulting in a probability distribution can be carried
out by repeating the following two processes until a a meaningful level of
statistical significance is reached?

• Preparation of a (quantum mechanical) state according to some fixed pro-
cedure that can be repeated a sufficient number of times.

• Measurement of some observable quantity (e.g., spin, energy, . . . ). Effects
are a special class of measurements that can result in either the answer
‘yes’ or ‘no’ according to some probability distribution.

It is important to note that quantum measurements do not correspond to
a passive acquisition of information that is common in classical computing.
While it is a physical process, it is described by a different set of mathematical
tools in the standard formalism of quantum computing based on states and
operators. This unsatisfactory difference can be mostly mended by the use of
superoperators.
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Since quantum computing does not only deal with pure quantum states
(and, at least in the NISQ era, statistical mixtures), but needs to handle
classical and quantum data, the formalism must be able to account for such
settings. Resulting systems are usually termed hybrid systems). It is obvious
that any measurement results obtained from quantum systems fall into the
classical category since measurement gauges that materialise in the macro-
scopic world are used to infer them from the quantum system, whatever their
exact mechanism of performing the measurement is; this requires to provide
mechanisms that reduce quantum to classical data.3

Every quantum system can be completely characterised by its observable
quantities which in turn are characterised by self-adjoint operators. These
operators form an algebra A; since we do only deal with finite-dimensional
Hilbert spaces here, we can restrict ourselves to sub-algebras of B(H) (i.e.,
A ⊂ B(H)). A is called the observable algebra of the system and is often
identified with the system itself because it is possible to deduce all properties
of the system from its observable algebra. The dual algebra of A is denoted
by A∗ and is the algebra defined on the dual space.

To capture the notions of state and effect mathematically, two sets (S
representing all states, and E containing all effects) are defined as follows:

S(A) = { ϱ ∈ A∗ | ϱ ≥ 0 ∧ ϱ(1) = 1 } , (6)

E(A) = {A ∈ A | A ≥ 0 ∧A ≤ 1 } . (7)

For every tuple (ϱ,A) ∈ S×E , there exists a map (ϱ,A) → ϱ(A) ∈ [0, 1] which
gives the probability p = ϱ(A) that measuring an effect A on a (system pre-
pared in the) state ϱ results in the answer ‘yes’. Accordingly, the probability
for the answer ‘no’ is given by 1 − p. ϱ(A) is called the expectation value of
an effect A; states are thus defined as expectation value functionals from an
abstract point of view. These expectation value functionals can be uniquely
connected with a normalised trace-class operator (for which the the value of
the trace operation is independent of the basis chosen to evaluate the trace)
ϱ such that ϱ(A) = tr(ϱA). In principle, it would be necessary to introduce
two different symbols for the expectation value functional and the operator,
but for simplicity, we omit this complication.

We need to distinguish between two different kinds of states: Pure and
mixed ones. This is a consequence of both S and E being convex spaces: For
two states ϱ1, ϱ2 ∈ S(A) and λ ∈ R, 0 ≤ λ ≤ 1, the convex combination
λϱ1 + (1 − λ)ϱ2 is also an element of S(A). The same statement holds for
the elements of E(A). This decomposition provides a nice insight into the
structure of both spaces: Extremal points cannot be written as a proper

3 The problem of how measurements of a quantum system are to be interpreted (or even

how the whole process can be described consistently) has been and still is one of the
fundamental philosophical problems of quantummechanics Auletta, Fortunato, Parisi 2009.

Fortunately, choosing an interpretation (or answering the question if an interpretation is

necessary at all) is not relevant for any of the formalisms discussed in this chapter.
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convex decomposition, that is, for x = λy + (1 − λ)z it follows that either
λ = 1, or λ = 0, or x = y = z. They can be interpreted as follows:

• For S(A), extremal points are pure states with no associated classical
uncertainty.

• For E(A), extremal points describe measurements which do not allow any
fuzziness as is, for instance, introduced by a detector which detects some
property not with certainty, but only up to some finite error (alas, this
applied to all real-world detectors used in NISQ machines to read the
result of a computation).

It can be shown that the density matrix ϱ = |ϕ⟩ ⟨ϕ| of pure states fulfils
the property tr(ϱ2) = 1, whereas for mixed states, tr(ϱ2) < 1. Consequently,
it is possible to distinguish between pure and mixed states when a physical
tomography of the resulting state (or any intermediate state of a computa-
tion) is available. While this is not within the usual functionalities offered by
NISQ machines, it can be implemented with some effort, and it is important
to know from a software point of view (especially in terms of result reliability
and quality) that the approach is available.

3.2 Observables

Until now, we have only considered effects, that is, measurements resulting
in a binary answer that is either ‘yes’ or ‘no’. We also need to cover meas-
urements with a more complicated result range; this is necessary to describe
general observables. Although we would have to consider an infinite (even un-
countable) number of possible outcomes for a general description of quantum
mechanics, it is sufficient to consider only observables with a finite range for
the purposes of quantum computing.4 Such observables are represented by
maps which connect elements x of a finite set R to some effect Ex ∈ E(A);
this in turn gives rise to a probability distribution px = ϱ(Ex). More formally,
we can put it as in the following:

Definition 4 (Positive Operator-Valued Measurement) A family
E = {Ex}, x ∈ R of effects Ex ∈ A is called a positive operator valued
measurement (POVM) on R if

∑
x∈REx = 1.

Note that the Ex need not necessarily be projectors, that is, they must
not necessarily satisfy the identity E2

x = Ex. Should this be the case for all

4 This is justified because quantum computers process states of the type (|0⟩ , |1⟩)⊗n. Al-

though quantum computers can possess an arbitrary number of qubits, it is still a fixed and

(which is most important) finite number; additionally, we do not care for any continuous
quantum properties of these objects. Notice that special types of computations like ana-

logue quantum simulation of molecules of chemical compounds that are seen as possible

use-cases for quantum computers are not included in the framework discussed here.
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x, the measurement is called a projective measurement, which is the type
measurement used in most canonical quantum algorithms and variational
approaches when a projection onto the binary basis is performed.

Observables of this kind can be described by self-adjoint operators of the
underlying Hilbert space H which can be seen as follows: Every self-adjoint
operator A on a Hilbert space H of finite dimension can (owing to the spec-
tral theorem for normal matrices) be decomposed as A =

∑
λ∈σ(A) λPλ. Here

σ(A) denotes the spectrum of A, while Pλ provide projectors onto the corres-
ponding eigenspace. The expectation value

∑
λ λϱ(Pλ) of A for a given state

ϱ can equivalently be calculated by ϱ(A) = tr(ϱA). Since this is the standard
way of formulating the expectation value of an operator, both points of view
coincide.

3.3 Classical components

Systems consisting solely of quantum components are generally not to be
found: At the latest after a measurement has been performed, classical prob-
abilities need to be accounted for. Therefore, we need to pay attention to
hybrid systems composed from quantum and classical parts as well. Obvi-
ously, we have to orient ourselves along the lines of Section 3.1 to provide
proper grounding for both possibilities. Consider a finite set X of element-
ary events, that is, all possible outcomes of an experiment. Again, S(A) and
E(A) define the set of states and effects, respectively, but this time, the ob-
servable algebra is given by all complex valued functions from the set X to
C as defined by

A = C(X) = { f : X → C } . (8)

By identifying the function f with the operator f̂ given by

f̂ =
∑
x∈X

fx |x⟩ ⟨x| (9)

where |x⟩ denotes a fixed orthonormal basis, the probability distribution can
be interpreted as an operator algebra similar to the quantum mechanical case
because f̂ is an element of B(H). Thus, C(X) can be used as an observable
algebra A along any other quantum mechanical or classical constituent of a
multi-partite composite system.

3.4 Composite and hybrid systems

Since quantum mechanical and classical systems can be described with very
similar structures, the presented formalism is well suited for the presentation
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of composite systems, as becomes necessary when quantum computations
are subjected to a classical control flow, or when hybrid quantum-classical
calculations are performed, as is the case for variational algorithms. Let A ⊂
B(H) and A′ ⊂ B(K) be systems given in terms of their observable algebras;
the composite system is then given by

A⊗A′ ≡ span {A⊗B | A ∈ A, B ∈ A′ } . (10)

Three cases for the choice of H,K can be distinguished:

• If both systems are quantum, then A⊗A′ = B(H⊗K).
• If both systems are classical, then A ⊗A′ = C(X × Y ) with C as defined

by Eq. (8)
• If A is classical and A′ is quantum mechanical, we have a hybrid system;

the composite observable algebra is then given by C(X)⊗B(H) which can-
not be simplified any further. Observables are operator-valued functions
in this case, as expected.

4 Completely Positive Maps and their Representation

In quantum mechanics, time evolution is described by transformations of
density matrices with an operator Λ that is called a superoperator.5 Before we
can proceed to formally define superoperators, let us fix some terminology: An
operator O acting on a Hilbert space is positive definite if ⟨ψ|O |ψ⟩ > 0 for all
elements |ψ⟩ of the Hilbert space, and positive semi-definite if ⟨ψ|O |ψ⟩ is non-
negative. Physical density operators are Hermitian and positive semidefinite,
which implies they have real non-negative eigenvalues. A positive map Λ
transforms positive operators into positive operators. If Λ⊗1 is semidefinite
positive (∀n ∈ N : Λ⊗ 1n ≥ 0), then Λ is called a completely positive map.

Definition 5 (Superoperator) A superoperator Λ : B(H) → B(H) has
the following properties for all density operators ϱ with ϱ′ = Λ(ϱ):

1. Λ is linear.
2. If ϱ† = ϱ, then ϱ′† = ϱ′ (Hermiticity preservation).
3. If tr ϱ = 1, then tr ϱ′ = 1 (trace preservation).
4. Λ is a completely positive map.

5 The Schrödinger equation iℏ ∂
∂t

|ψ(t)⟩ = H |ψ(t)⟩ governs, given a Hamilton operator H

(whose meaning is extensively discussed in the quantum software engineering chapter of this
book) the time evolution of a closed quantum system. The Liouville–von Neumann equation
iℏ ∂ϱ

∂t
= [H, ϱ] = Hϱ− ϱH generalises the Schrödinger equation to density operators. For a

time-independent system (which we take as a simple illustration, albeit the consideration

would also apply to time-dependent interactions), the density operator at time t, ϱ(t),
can be obtained as ϱ(t) = exp(−iHt/ℏ)ϱ(t = 0) exp(iHt/ℏ), which is nothing else than a

mapping ϱ(t = 0) 7→ ϱ(t) = Λ(ϱ) using a superoperator Λ.
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Superoperators share the convenient property of linearity with many other
objects in computer science. Since physical density operators are Hermitian,
the preservation of Hermiticity in property (2) means this important charac-
teristic of a density operator is not changed by any superoperator. Especially,
it implies that eigenvalues of the operator remain real-valued after transform-
ations. Property (3) means that statistical mixtures of quantum states are
mapped to other valid statistical mixtures of quantum states, and we cannot
produce ‘invalid’ objects by executing transformations described by superop-
erators. Note that if dissipative processes are considered, the second condition
must be loosened to tr(ϱ′) ≤ 1; we will see later that relaxing this physically
motivated condition is reasonable for the computer science domain. Finally,
property (4) is of physical importance: Λ is not only positive semidefinite
(i.e., ϱ′ is non-negative if ϱ is non-negative) on HA, but also on any possible
extension HA⊗HB . This ensures that Λ maps a density operator to another
valid density operator even when the system under consideration is entangled
with some outside entity.

4.1 Operator-Sum Representation

Kraus 1983 provides a seminal result about the decomposability of completely
positive maps that allows us to specify concrete, operational representations
for superoperators:

Theorem 2 (Kraus representation theorem) A superoperator Λ as defined

in Def. 5 can be written as a partition of 1 =
∑N

k=1A
†
kAk where Ak are linear

operators acting on the Hilbert space of the system such that

ϱ′ = Λ(ϱ) =

N∑
k=1

AkϱA
†
k (11)

for any density matrix ϱ that represents a mixed or a pure state.6

This representation is also known under the illustrative name operator-sum
representation.

A unitary operator U that is applied to a (possibly mixed) density operator
ϱ is a Kraus representation with a single element (k = 1) for the underlying
transformation, as ϱ′ = UϱU†, and U†U = 1. Superoperators, in that sense,

6 Notice that while Kraus published his representation theorem relatively late compared
to the advent of quantum mechanics, and coincidentally around the time when Feynman
first considered the computational power of quantum mechanics, the concept of density

operators goes back much further in history. Both, concept and representation, find wide-
spread use outside quantum computing in the dynamical description of general dissipative

systems.
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generalise unitary transformations as they allow for expressing more complex
transformations than can be provided by ϱ 7→ UϱU†.

To further illustrate the Kraus representation, consider the situation that
the system is in contact with a (larger) environment, which is a common
situation not only for more general physical experiments, but especially for
quantum computers: The processing unit (QPU) where quantum effects take
place is surrounded by multiple levels of cooling, the laboratory room in
an experimental facility (or a data centre), and ultimately, the rest of the
universe. All of these can perturb and therefore influence the QPU, which
must be shielded from the influence of this environment. Even setting aside
engineering issues, a perfect shielding that eliminates the influence of the
environment is impossible to achieve, as this would make it impossible to
prepare initial states, apply transformations on them, and read out the result.

If the environment is modelled sufficiently large, both systems form a
closed quantum system. Transformations in the combined system can be de-
scribed by a unitary transformation U ∈ U(dim(H) · dim(Henv)) where H
denotes the Hilbert space of the system under consideration and Henv the
Hilbert space of the environment. Assume that the environment is in a pure
state |e0⟩ ⟨e0|.7 The density operator of the system under consideration after
the unitary operation was applied to the total system can be recovered by
tracing out the environment:

ϱ′ = Λ(ϱ) = trenv(Uϱ⊗ |e0⟩ ⟨e0|U†) (12)

=
∑
k

⟨ek|U(ϱ⊗ |e0⟩ ⟨e0|)U† |ek⟩ (13)

=
∑
k

⟨ek|U |e0⟩ ϱ ⟨e0|U† |ek⟩ (14)

=
∑
k

AkϱA
†
k. (15)

In the last step, we define Ak by Ak ≡ ⟨ek|U |e0⟩. A set of Kraus operators

{Ak} implements a completely positive Λ if ∀ϱ ∈ D :
∑

k AkϱA
†
k = Λ(ϱ).

Theorem 3 The operation elements of a given superoperator Λ are not
unique: If {Ej} is a set of Kraus operators, then a different set of Kraus
operators {Fk} describes the same operation if and only if there exists a unit-
ary matrix U ∈ U(n) with n = card({Ek}) (where card(X) is the cardinality
of the set X) such that

Fk =
∑
j

UkjEj . (16)

7 This assumption holds without loss of generality because it can be shown that a sys-

tem can be purified by introducing extra dimensions which do not have any physical

consequences.
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Note that the shorter set may be padded with zero elements until the cardin-
ality of both matches.

Let {Ak} be a set of Kraus operators that represents the cp-map Λ. Note
that if any number of elements Ai is taken from {Ak}, the set still remains a
completely positive map, but is not trace preserving any more.

Superoperators are elements of B(H), which makes it possible to apply
many theorems of linear operator algebra to superoperators. As we have
seen above superoperators can themselves be used as elements of a Hilbert
space, which implies that from a structural point of view, any distinction
between operators and superoperators is mathematically irrelevant. However,
we believe this is an argument in favour of using superoperators to describe
quantum programming languages, as insights and techniques from linear op-
erator theory can be immediately applied. Finally, notice that the number
of Kraus elements needed to express any arbitrary completely positive map
T : B(H1) → B(H2) is bounded by dim(H1) · dim(H2).

5 Applications in Quantum Software and Systems
Engineering

In this section, we provide concrete examples for the use of superoperators
in problems related to software engineering, embedding a brief discussion of
seminal and recent results.

5.1 Formal Semantics and Verification

Several semantic domains based on various mathematical formalisms of the
underlying quantum physics have been used to provide semantics for quantum
programs: Unitary operations or probabilistic functions on pure quantum
states, admissible transformations Perdrix 2008, or completely positive maps
on density operators, for which Selinger 2004 initiated a series of follow-up
results that established connexions between the physical framework outlined
in this chapter, and established approaches to (denotational) semantics in
computer science, in particular based on category theory.

Following Moggi 1991, it is known that modelling classical computational
effects like assignments or exceptions are possible using the category theor-
etical concept of monads that have received considerable attention in com-
puter science as abstract data types in functional programming languages.
Likewise, quantum computing based on states and linear operators is known
to be almost a monad Mu, Bird 2001; by extending the physical model to
density operators and superoperators Vizotto, Altenkirch, Sabry 2006, it is
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possible to formalise the computational semantics by the category theoretical
construct of arrows, which generalise monads. Importantly, such approaches
do not need to distinguish between computation and measurement, as the
underlying superoperator formalism unifies both aspects. As stated before,
establishing connexions between quantum computations (in terms of the su-
peroperator formalism) and monads and arrows enables embeddings in cur-
rent classical languages, and exposes connections to well-understood concepts
from the semantics of (classical) programming languages.

Earlier seminal work Selinger 2004 defines a functional programming lan-
guage that can establish various compile-time guarantees, and is equipped
with a denotational semantics based on complete partial orders of superoper-
ators: The established Löwner partial order, in which A ⊑ B holds if and only
if B−A is positive semidefinite, is slightly extended to apply on matrix tuples.
The approach also offers a formal category theoretic treatment based on so-
called complete partial order-enriched traced monadial categories, for which
categorical operations like composition and tensor are Scott-continuous, (i.e.,
they preserve least upper bounds of increasing sequences), which allows for
using the guaranteed existence of fix-points of Scott-continuous endofunc-
tions on pointed (i.e., equipped with a least element) complete partial orders
to deal with loops and recursion.

An additional recent approach, QUnity Voichick et al. 2023 provides a
type system based on algebraic data types, and allows for combining (and
nesting) the use of unitary transformations and superoperators. Denotational
semantics are provided in the form of pure and mixed semantics, building
upon unitary transformation of quantum states and superoperators applied
to density operators, respectively. Finally, let us mention the review of formal
verification Lewis, Soudjani, Zuliani 2023 that summarises further approaches
to quantum semantics, not limited to superoperator-based constructions.

Given the multitude of existing approaches, it is interesting to observe that
actual software containing quantum code Schönberger et al. 2022 and pat-
terns for quantum software Leymann 2019 are almost exclusively expressed in
languages that are not equipped with advanced formal semantics, while lan-
guages that enjoy this quality find popularity restricted to within academic
circles. This leaves important gaps to be filled, given that it is textbook
knowledge in software engineering how software quality and reliability of sys-
tems can be considerably improved by formal verification, static analysis or
correctness by construction. First results along this line for the quantum
domain have appeared recently (albeit also based, as is customary in this
line of research, on toy languages that expose only the most salient features
without syntactic sugar) Peduri, Schaefer, Walter 2023; Zhou et al. 2023;
interestingly, both approaches revolve around denotational semantics Scott,
Strachey 1971 for a ‘while’ language that inductively constructs a super-
operator JCK : B(H) → B(H) as denotation of program (fragment) C. To
convey the flavour of how the approaches relate to superoperators, consider
the following (incomplete) fragment of a language similarly to what is used
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by Peduri et al. and Zhou et al.:

S := skip | abort | q⃗ := Û(q⃗) | S1;S2 | repeat N do S end |
while meas q⃗ with B do S end

Here, Si denote quantum program fragments obtained from the production
S, q⃗ allows us to select quantum bits from the overall quantum register, and
Û is a unitary operator, as usual. An application of the operator on a subset
of the available quantum bits is given by Û(q⃗). A denotational semantics,
again similar to the variants used in the cited approaches, can be defined as
follows:

JskipK = 1; that is, JskipK(ϱ) = 1ϱ1†
JabortK = 0; that is, JabortK(ϱ) = 0

Jq⃗ := Û(q⃗)K = Ûq⃗; that is, Jq⃗ := Û(q⃗)K(ϱ) = Ûq⃗ρÛ
†
q⃗

JS1;S2K = JS2K ◦ JS1K
Jrepeat N do S endK = JSK ◦ JSK ◦ · · · ◦ JSK︸ ︷︷ ︸

N times

Jwhile meas q⃗ with B do S endK =
∑∞

k=0

(
B0,q⃗ ◦ (JSK ◦ B1,q⃗)

k
)

The definitions for the skip statement and unitary operator application on
(a list of) quantum states q⃗ defined in the first two lines make it clear that
the denotations for the fragments are superoperators that can be applied
on concrete density matrices ϱ; however, a density matrix is not required to
define the actual denotation. The while statement uses two binary projective
measurement operations that can also be represented by superoperators that
define the transformation: Bi(ϱ) = BiϱB

†
i for Bi = |i⟩ ⟨i| in the computational

standard basis.
Multiple approaches can establish that the while statement is well-defined;

Peduri et al. base their consideration on an increasing sequence (in terms of
the Löwner partial order as defined above) of density operators obtained for
termination within an increasing number of iterations. To allow for modelling
non-termination, their considerations are based on sub-normalised density
operators, that is, positive semi-definite operators with trace at most one
instead of exactly one, which is satisfied for physical density operators. It is
immediately clear that the abort is non-trace preserving, and the while loop
can be non-trace preserving if it does not terminate after a finite number of
iterations.

However, despite recent progress and compared to the substantial body of
literature on classical programming language semantics, the field is still very
much in its early stages. Apt mathematical models to describe foundational
semantics that attract researchers from both fields, together with a common
understanding of necessities, can hopefully lead to fruitful progress in the
future, possibly also eventually benefiting classical software engineering. As
many of the approaches are implicitly or explicitly based on superoperators,
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it is not unlikely that this formalisation of quantum computing will play an
important role in the further development of quantum software semantics.

5.2 Communicating and Distributed Systems

Quantum communicating systems Khatri, Wilde 2020 can be seen as an ex-
ample of restricted, distributed quantum computers; while they are not in-
tended for general-purpose computing, they share some characteristics with
quantum computers in that they prepare, manipulate and measure quantum
states. In contrast to NISQ machines and future fault-tolerant quantum com-
puters, quantum communication systems have reached commercial maturity.
In view of future distributed quantum computers that will also face how
to distribute quantum states over spatial distances, insights into quantum
communication systems can therefore benefit future quantum software en-
gineering. Again, superoperators play a pronounced role in this domain.

Let, for example, ϱAB denote the density matrix of the state shared by
Alice and Bob, the two customary virtual representative parties of distributed
(communication) systems. The information available for each of them can be
inferred by calculating the partial trace: ϱA = trB ϱAB and ϱB = trA(ϱAB).
The bipartite density matrix can never be recovered from these partial dens-
ity matrices because as it is known that in general, many bipartite density
matrices that give rise to the same partial density matrices. It is also obvious
that a density operator representing an entangled state cannot be represen-
ted by a direct tensor product of unrelated partial density operators by the
very definition of entanglement. One of the goals of denotational semantics
as exemplified for the quantum case in the previous section is, essentially,
to assign sufficient information to every edge of a flow graph such that the
complete semantics of a program can be reconstructed by combining only
the information given by the edges constituting the program. The denota-
tion of a statement composed of several sub-statements must be completely
determined only by a function of the denotations of the sub-statements.

This is impossible when transformations between explicit density matrices
are considered. Since a combination of the partial density matrices ϱA, ϱB
which were manipulated by Alice and Bob does not restore the total bipart-
ite state ϱAB, a description that relies on a single density operator would
obviously not comply with the physical state afterwards.

A possible solution would be to annotate the complete flow graph, that is,
of both paths representing the control flow for Alice and Bob. In this case, the
operations performed by Alice and Bob would be written as tensor products
of the type A⊗1B and 1A⊗B that act on the combined density matrix ϱAB.
This way, we could assign semantics to the program as a whole, but would
loose the ability to construct the denotation of a phrase from the denotations
of its sub-phrases. This means that the semantics of the complete program
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could not be constructed from the denotation of Alice’s and Bob’s programs
(each running on a separate computational entity) alone, which contrasts the
key idea of denotational semantics.

Therefore, we need to seek a solution that does not characterise quantum
operations by showing transformations of explicit density matrices (or provides
superoperators that operate on the overall density operator), but instead
captures the notion of a transformation in a more abstract sense. Completely
positive maps (as explicitly represented by a set of Kraus operators) obviously
fulfil this need, and we consequently deem them a good choice to describe
quantum communication processes, and more general quantum computations
that involve communication Mauerer 2005, or distributed computations Cirac
et al. 1999. While this requires some additional care in making sure that the
definition of denotations does not carry an implicit dependence on an actual
density operator, this is possible with the Kraus representation of superop-
erators as introduced above.

5.3 Noise and Imperfection Modelling

At the time of writing, all physically available quantum computers fall into
the class of noisy, intermediate-scale quantum (NISQ) machines that are not
fully fault-tolerant. This means that there is a difference between the inten-
ded transformation of quantum states (and measurements) described by a
quantum program, and the actual transformation performed by the hard-
ware. While no physical obstacles prevent building perfect machines reduce
error rates to arbitrary low levels by using error-correcting codes, this comes
at the expense of substantial overhead in the amount of required qubits and
other resources that is currently much beyond experimental reach. There-
fore, any formal and semantic considerations that implicitly assume perfect
quantum computers will be in disagreement with experimental and practical
reality, which is counter to their crucial point as they are supposed to improve
software quality and correctness, which is a strongly practical desideratum.

However, even if this problem will disappear with the advent of perfect
quantum computers, there are reasons to believe that NISQ machines of suf-
ficient quality will be able to perform advantageous computations, and it can-
not be ruled out this class of machines—given that it will likely be possible to
manufacture them at substantially reduced cost and effort in comparison to
fault-tolerant machines with application-specific co-design techniques Win-
tersperger, Safi, Mauerer 2022; Safi, Wintersperger, Mauerer 2023—will be
of long-term or even permanent relevance. Considering the effects of imper-
fections is, consequently, not only worthwhile in the NISQ area, but might
also display benefits beyond, and software engineering research should con-
sider the respective implications: We believe it is important to understand
scalability, performance, quality and reliability of quantum software on NISQ
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machines beyond empirical measurements, as these are also core considera-
tions for classical software executing on classical hardware.

As NISQ systems can be seen as open quantum systems, superoperators
are again well suited to modelling their properties and behaviour (other tech-
niques like Lindbladian dynamics Preskill 2015 could model such scenarios,
but are outside the scope of our considerations).

Current software-centric research deals, for instance, with effectively ad-
apting noise models to real machines Georgopoulos, Emary, Zuliani 2021 or
the efficient learning of quantum noise Harper, Flammia, Wallman 2020, as
characterising noise from first physical principles or even measuring the actual
characteristics on machines can be computationally prohibitive. Likewise, the
(non-)resilience against noise of variational algorithms like the quantum al-
ternating operator approach (QAOA), an optimisation algorithm targeted at
NISQ machines, has been studied Marshall et al. 2020; Xue et al. 2021. From
the software engineering point of view, Greiwe, Krüger, Mauerer 2023 provide
a didactic exposition to modelling imperfections of quantum computers with
a focus on consequences for non-functional properties; we partly follow their
presentation below.

To model such imperfections, consider that while the evolution of a closed
quantum system is described by unitary operations, NISQ machines do
not enjoy a complete isolation against their environment. Until fully error-
corrected systems that mitigate this deficiency are available, the arising con-
sequences will penetrate into the quantum software and programming lan-
guage layers. A noisy system is subject to the influence of an external, un-
controlled environment that must be included in any model of the system,
eventually ending up with a larger, but closed quantum system.

Similar to the illustration of the Kraus representation theorem before, ϱ
denotes the open quantum system under consideration. It is combined with
an uncontrolled environment ϱenv, equating to a larger, closed system ϱ⊗ϱenv
subject to evolution U(ϱ⊗ ϱenv)U

†. This overall evolution is described by a
unitary operator U . By eliminating the uncontrolled environment using a
partial trace operation, the effective (and usually non-unitary) evolution of
ϱ under noise is given by E(ϱ) = trenv(U(ϱ⊗ ϱenv)U

†).
Let Be = {|ek⟩}k be a basis of the environment. If the environment is

measured in Be after the time evolution, then the outcome determines the
state of the principal system. We end up with a random distribution of states
for the principal system depending on the measurement. The effect the en-
vironment had on ϱ when the outcome k occurred can be described by an
operator Ek, leading to a mixed state description

ϱ 7→
∑
k

EkϱE
†
k. (17)

This Kraus representation can be used to describe effects that occur in im-
perfect, NISQ-era quantum systems. One canonical example is a probabilistic
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qubit flip that randomly with probability p (i.e., by the influence of external
factors like energy dissipation, or the imperfect operation of quantum gates)
negates a quantum bit can be described by

ϱ 7→ (1− p)1ϱ1† + pXϱX†. (18)

The Pauli X gate is a unitary operator that, in state-based notation, flips a
quantum bit: X |0⟩ = |1⟩, and X |1⟩ = |0⟩. The operator can be applied as
usual in a quantum circuit to deterministically negate a quantum bit. In the
above formulation of Eq. (18), however, the gate is applied to the one qubit
system ϱ with probability p, and else leaves the state as is. When the source of
corresponding errors is unclear in a NISQ system, probability p is an effective
(classical) parameter of the system whose magnitude can be determined by
testing the system. By comparing the structure of Eq. (17) with the above
equation, it can be seen that this delivers operators Ek. Similarly, randomly
occurring phase flip errors (described in the state formulation by a Pauli Z
gate), or a combination of bit and phase flip error (described in the state
formulation by a Pauli Y gate) can be constructed by replacing X by Z or Y
in Eq. (18). In each case, the interpretation of the the operation is that the
quantum state is left intact with probability 1 − p by applying an identity
transformation, and affected by the error with probability p, resulting in a
convex combination of density operators that includes classical, stochastic
uncertainty: While the actual quantum system is in each of possibly multiple
computational runs either in state ϱ (when no error occurred) or state XϱX
(in case an error occurred), an observer does not know if a stochastic error
occurred, and must therefore include this lack of knowledge in the description
of the quantum state. Note that while the initial state may be a pure state
that does not contain any lack of knowledge before the operation induced
by Eq. (18) is performed, it is also possible that a density operator already
featuring classical lack of knowledge enters the quantum operation, which
then in turn (usually) increases the lack of knowledge even further.

Generalising from the binary error model use for bit, phase and phase-bit
flips, the formalism also allows us to model more complex imperfections as
they occur in realistic systems, for instance with the commonly employed
completely depolarising operator: One qubit is randomly subjected to one of
the Pauli operators X,Y, Z by

ϱ 7→ (1− p)1ϱ1†+

p
1

4

(
1ϱ1† +XϱX† + Y ϱY † + ZϱZ†) , (19)

with a certain probability, and else leaves the qubit as is. A quick calculation
reveals that (19) equals ϱ 7→ (1− p)ϱ+ p 1

21, where
1
21 is the density repres-

enting the state of a system being in every basis state with equal probability.
Hence, the system either stays intact or all information gets destroyed with
probability p. For an n qubit system, we obtain
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ϱ 7→ (1− p)ϱ+ p
1

2n
1 (20)

following a textbook calculation.

6 Summary and Conclusion

Superoperators provide a rigorous mathematical representation of quantum
operations that go beyond unitary transformations, as they allow us to model
measurements and imperfections. In this chapter, we have provided an in-
troductory exposition to the concept tailored towards the domain of soft-
ware engineering, and have elaborated on existing and possible use-cases for
the concept, including to equip quantum programs with formal semantics,
and how to handle communication and imperfection in current and future
quantum computers.

While constructing practical software and algorithms for NISQ machines
is likely to differ substantially from approaches geared towards scaleable and
fault-tolerant quantum computing, the superoperator formalism may provide
a unified and consistent representation that caters well to both scenarios. We
expect that with an increasing interest for quantum computing in software
engineering, more uses of the concept will appear in future literature, which
makes it important for software engineering researchers to be aware of the
necessary structures and methods.
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