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Abstract—The study of variational quantum algorithms
(VQCs) has received significant attention from the quantum
computing community in recent years. These hybrid algorithms,
utilizing both classical and quantum components, are well-suited
for noisy intermediate-scale quantum devices. Though estimating
exact gradients using the parameter-shift rule to optimize the
VQCs is realizable in NISQ devices, they do not scale well for
larger problem sizes. The computational complexity, in terms
of the number of circuit evaluations required for gradient
estimation by the parameter-shift rule, scales linearly with the
number of parameters in VQCs. On the other hand, techniques
that approximate the gradients of the VQCs, such as the
simultaneous perturbation stochastic approximation (SPSA),
do not scale with the number of parameters but struggle
with instability and often attain suboptimal solutions. In this
work, we introduce a novel gradient estimation approach called
Guided-SPSA, which meaningfully combines the parameter-shift
rule and SPSA-based gradient approximation. The Guided-
SPSA results in a 15% to 25% reduction in the number
of circuit evaluations required during training for a similar
or better optimality of the solution found compared to the
parameter-shift rule. The Guided-SPSA outperforms standard
SPSA in all scenarios and outperforms the parameter-shift rule
in scenarios such as suboptimal initialization of the parameters.
We demonstrate numerically the performance of Guided-SPSA
on different paradigms of quantum machine learning, such as
regression, classification, and reinforcement learning.

Index Terms—gradient estimation, SPSA, parameter-shift rule,
variational quantum algorithms, quantum regression, quantum
classification, quantum reinforcement learning.

I. INTRODUCTION

Machine learning has witnessed a surge of interest in nu-
merous fields [1]–[7]. However, the underlying algorithms usu-
ally demand substantial computational resources and energy,
which is troublesome for steadily increasing amounts of data.
Quantum computing emerges as a potential alternative based
on a fundamentally different computational paradigm [8]. By
harnessing the unique properties of quantum mechanics, fault-
tolerant quantum computers are known to exhibit substan-
tial speedups over classical computers for specialized prob-
lems [9]–[11]. Such advantages are also known for machine
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learning tasks [12], [13], and are augmented by the promise of
generalization based on fewer data points than classical meth-
ods [14], or improved accuracy [15] (albeit achieving concrete
practical advantages over established classical heuristics is a
subject of intense debate [16])

Current noisy intermediate-scale quantum (NISQ) devices in
their earlier stages of development suffer from limited qubit
counts, short coherence times, and high gate- and readout-
error rates [17], [18]. This imposes restrictions on the size
and complexity of quantum circuits, limiting algorithmic de-
sign choices. Another challenge for quantum machine learning
(QML) is the volume of data encountered in machine learn-
ing tasks: Some approaches like quantum kernel methods [19]
scale quadratically with the size of the dataset, which makes
many methods impractical for large datasets.

A widely employed approach to overcome these challenges
involves hybrid quantum-classical algorithms that combine
classical and quantum computing. One prominent example
are variational quantum algorithms (VQAs) [20]. These utilize
variational quantum circuits (VQCs), where specific parame-
ters within some of the gates of the circuit can be adjusted. A
classical optimization routine is used to tune the set of parame-
ters of the VQC to minimize the predefined objective function.
This process entails “training” the VQC by optimizing free pa-
rameters, which is a crucial ingredient for their capabilities.

Gradient-based and gradient-free methods are two main ap-
proaches used for optimizing the VQCs in VQAs. Gradient-
based methods, such as the parameter-shift rule, offer fast and
stable convergence but scale linearly with the number of cir-
cuit parameters. The computational complexity in terms of the
number of circuits evaluated (hereinafter referred to as compu-
tation complexity) for the parameter-shift rule [21] is given by
O(2NM) where N is the number of training data, and M is
the number of parameters in the circuit. Conversely, gradient-
free methods do not necessarily demand linear scaling with
the number of parameters but are less efficient in terms of
convergence speed and accuracy. In order to overcome these
shortcomings, the research question we pose in this study is as
follows: Can we develop a gradient estimation technique for
VQAs that satisfies the following conditions: (i) it achieves
stable convergence with a significantly lower number of cir-
cuit evaluations compared to existing methods, (ii) is realizable
on current quantum hardware, (iii) is suitable for noisy inter-
mediate scale quantum (NISQ) devices (i.e., does not increase
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the circuit complexity in terms of gate count or the number of
measurements required compared to other gradient estimation
techniques like the parameter-shift rule).

To answer our research question, we introduce and explore a
novel, efficient gradient estimation technique named Guided-
SPSA that leverages the advantages of both parameter-shift
rule and simultaneous perturbation stochastic approximation
(SPSA) by meaningfully combining them during the training
process. The Guided-SPSA is realizable on quantum hardware.
We evaluate our approach on different paradigms of QML,
such as regression, classification, and reinforcement learning,
along with different problem setups such as noisy simulation,
and suboptimal initialization

The rest of this paper is structured as follows: Section II
provides an overview of related literature on different gradi-
ent estimation techniques for VQCs. Section III introduces
the relevant theoretical background, providing a formal intro-
duction to VQCs, encoding techniques, parameter-shift rule,
and SPSA. Section IV introduces the Guided-SPSA technique.
Section V gives a detailed description of various numerical ex-
periments conducted to enunciate the performance of Guided-
SPSA under different QML paradigms and their results.

II. RELATED WORK

VQCs are promising for solving machine learning and op-
timization problems using near-term quantum devices. Effi-
ciently estimating gradients for these circuits is crucial for
finding optimal parameters. Various techniques have been pro-
posed in the literature to tackle this challenge of gradient es-
timation. One widely used method is the parameter-shift rule
[21], [22], which estimates gradients by shifting the circuit pa-
rameters and measuring the changes in expectation values with
respect to an observable. Despite being popular, the parameter-
shift rule is computationally expensive, particularly for circuits
with many parameters. Another common technique to compute
gradients is through finite differences, which involves evalu-
ating circuits at slightly different parameter values. Though
certain variations of this method, such as the forward distance
method, are not computationally expensive like the parameter-
shift rule, they are vulnerable to numerical errors, especially
in noisy environments. Linear combination of unitary gradi-
ents presented by Schuld et al. [22] is another method used
to estimate the gradients of a given VQC. Here, the gradient
is estimated via linearly combining values obtained by eval-
uating the observable using parameter values perturbed about
their forward-pass values. While the linear combination gra-
dient estimator offers computational efficiency compared to
the parameter-shift rule, it also suffers from numerical errors
and inaccuracies. The adjoint method, introduced by Luo et al.
[23], calculates gradients by applying the adjoint of the circuit
to the measurement operator, eliminating the need for finite
differences or multiple circuit evaluations. Meyer et al. [24] re-
formulated this adjoint method to allow batch-parallelization.
The efficiency of the adjoint methods generally depends on
the ability to compute the adjoint of the circuit accurately,
and cannot directly be executed on quantum hardware.

In recent years, SPSA, introduced by Spall et al. [25] have
gained traction for their efficiency and robustness in noisy en-
vironments. Wiedmann et al. [8] studied the best-suited clas-
sical optimizers for parameter updates when using the SPSA-
based gradient estimation technique. SPSA is an estimation
method that approximates gradients by iteratively shifting all
the parameters simultaneously with random shift values. It re-
quires a large number of measurements for accurate gradi-
ent approximation. More sophisticated methods for optimizing
VQCs beyond the above methods have been introduced: One
notable approach leverages Bayesian inference to efficiently
estimate gradients presented by Bittel et al. [26].

Quantum Natural Gradient methods have recently gained at-
tention, as they can efficiently navigate the parameter space by
incorporating the geometry of quantum state manifolds [27].
These methods often show better convergence properties than
more straightforward alternatives. However, the accurate com-
putation and storage of the second-order information can be
computationally and memory-intensive, especially for large-
scale circuits. Another method that suffers from a similar bot-
tleneck is trust region optimization [28]. Here, at every step,
a sup-optimization routine is computed with the trust region,
which involves Hessian estimation. Beyond gradient estima-
tion techniques for NISQ devices, novel approaches such as
quantum gradient evaluation through quantum non-demolition
measurements suitable for error-corrected post-NISQ devices
are also being explored [29]. Gradient-free optimization tech-
niques are becoming increasingly popular as alternative meth-
ods for optimizing VQCs without relying on gradient infor-
mation. These techniques use heuristic search algorithms like
evolutionary algorithms [30], simulated annealing, or the use
of gradient-free optimizers such as Nelder-Mead, Powell, and
COBYLA [31] algorithms to explore the parameter space. Al-
though gradient-free methods avoid the computational burden
of gradient computation, they may require a significant number
of circuit evaluations to converge to optimal solutions, espe-
cially for high-dimensional parameter spaces or noisy quantum
devices. Additionally, these methods may struggle to escape
local minima and cannot guarantee convergence to the global
optimum.

Apart from the optimization techniques, improvements in
quantum hardware capabilities such as increasing the number
of available qubits, improving coherence times, reducing error
rates, or adapting quantum processing unit (QPU) designs [32],
[33], and efficient use of existing NISQ hardware [34]–[36]
are necessary to enable QML (abnd other quantum methods)
to tackle more complex problems and handle larger datasets.
Advanced training algorithms, such as Distributed Coordinate
Descent [37], handle large datasets by letting multiple NISQ
devices work on subsets of data concurrently and use the NISQ
devices more efficiently.

Thus estimating gradients for VQCs remains a topic of on-
going research, with different techniques offering various ben-
efits and drawbacks in terms of computational efficiency, accu-
racy, and applicability to different circuit structures and noise
models [38]. The selection of a particular method depends on
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Figure 1. A simple variational quantum circuit depicting an encoding layer,
variational layer and a decoding layer.

circuit complexity, noise characteristics, and available com-
putational resources. Further improvements in this field are
crucial for unleashing the full potential of VQA on near-term
quantum devices, and also for gaining a better understanding
of the source of computational power in quantum-classical al-
gorithms.

III. THEORETICAL BACKGROUND

As we aim at a synthesis of SPSA and parameter shift tech-
niques to improve the performance of VQCs, it seems appro-
priate to briefly summarize the theoretical background for each
of these ingredients. Furthermore, we give a brief example of
a gradient descent algorithm.

A. Variational Quantum Circuits

VQCs are quantum circuits constructed using a mix of pa-
rameterized and non-parameterized unitary gates with tunable
parameters. The parameters of the VQCs are tuned to approx-
imate a target function via some training algorithm. These cir-
cuits offer a flexible framework for solving various machine
learning and optimization tasks.

1) Structure of a VQC: A VQC is formally described as
a sequence of parameterized gates U(x, θ) acting on an ini-
tial quantum state |ψ0⟩ which is often but not necessarily a
|0⟩ state, input vector x and variational parameter vector θ.
A typical VQC consists of three layers, namely the encoding
layer, the variational layer, and the decoding layer. The an-
gle encoding method is the most prevalent encoding strategy.
Here, the classical data is encoded using the Pauli rotational
gates. The angle encoding also allows for some advanced vari-
ations of encoding, such as the data re-uploading scheme [39]
and the cyclic data re-uploading scheme [40]. The variation
layer is typically made of different Pauli rotational gates and
muti-qubit entanglement gates. The decoding layer is the de-
coding technique used, such as expectation value with respect
to an observable. Fig. 1 represents the structure of a VQC.

The unitary operation U(x, θ) transforms the initial state
|ψ0⟩ to a new state |ψ(θ)⟩ by

|ψ(θ)⟩ = U(x, θ)|ψ0⟩. (1)

2) Objective Function: In QML, the goal is to find the
set of parameters θ that minimize a given objective func-
tion. The output function f(x, θ)) is defined with respect to
some observable A as shown in Eq. (2). The loss function

L(f(x, θ),y) is defined based on the type of the problem
and the target values y.

f(x, θ)) = ⟨ψ(θ)|A|ψ(θ)⟩ (2)

Optimization

To find the optimal parameters θ∗ that minimize the objec-
tive function L(f(x, θ),y), optimization algorithms such as
gradient descent are commonly employed. The parameters are
iteratively updated according to the gradient of the objective
function:

θ(t+1) = θ(t) − η∇L(θ(t)) (3)

where η denotes the learning rate and ∇L(θ) is the gradient
of the objective function with respect to the parameters.

B. Gradient Computation

Performing the optimization step in Eq. (3) requires access
to the gradient ∇L(θ) of the objective function. The chain rule
allows us to determine the gradient ∇L(θ), once the partial
derivatives of the output function with respect to the variational
parameters ∂θif(θ) is known. The following two subsections
discuss two state-of-the-art approaches to compute these par-
tial derivatives.

1) Parameter-shift rule: The parameter-shift rule was de-
veloped by [22], [41] to obtain exact expressions for the par-
tial derivatives ∂θif(θ) from expectation values that can be
estimated on the quantum hardware. The parameter-shift rule
states that the partial derivative for parameter i is exactly given
by

∂θif(θ) = r [f(θ + s)− f(θ − s)] , (4)

where r depends on the two distinct eigenvalues of the her-
mitian generator of the circuit and s is the shift value. With
the parameter-shift rule, the ∂θif(θ) can be estimated on the
quantum hardware by estimating two expectation values of
the same quantum circuit with shifted parameters. Therefore,
for the whole gradient, one needs to estimate twice as many
expectation values as parameters in the circuit.

2) Stochastic Perturbation Simultaneous Approximation: In
contrast to the gradient based optimization routines, SPSA [25]
does not require access to estimates of the partial derivatives.
Moreover, it was specifically designed for situations in which
the objective function evaluation is corrupted by noise. SPSA
uses a stochastic approximation instead of the actual gradient
of the cost function in the parameter update step given by
Eq. (3). On average, over many perturbation samples, SPSA
will eventually follow the direction of the steepest descent.
The approximation ĝk(θ̂k) ≈ ∇L(θ̂k) is computed as

ĝk(θ̂k) =
L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck


(∆k

1)
−1

(∆k
2)

−1

...
(∆k

p)
−1

 ,
Where c corresponds to the size and ∆ to the random direc-
tion of a perturbation similar to the finite difference method of



Algorithm 1: Quantum Machine Learning
Input: Training data: D = (X, y), Number of epochs:

Nepochs, Batch size: B, Learning rate: η, VQC:
U(x, θ⃗)

Output: Optimized parameters: θ⃗;
1 Initialize parameters θ⃗ randomly;
2 Normalize dataset D between [−π, π]
3 for epoch = 0 to Nepochs − 1 do
4 for batch = 0 to length(D)

B − 1 do
5 Sample mini-batch M = (Xbatch, ybatch) ∈ D of

size B;
6 Forward pass:
7 Compute predictions

ŷbatch = ⟨ψ(θ⃗)|A|ψ(θ⃗)⟩;
8 Compute error E⃗ using (ybatch, ŷbatch);
9 Backward pass:

10 Compute gradients ∇θ⃗;
11 Update parameters using chosen optimizer:

θ⃗ = optimizer(θ⃗, η,∇θ⃗E⃗);
12 end
13 if stopping criteria met then
14 break ;
15 end
16 end

numerical derivation, the upper index k denotes the perturba-
tion sample. The entries ∆k

i of the perturbation direction are
sampled independently from a uniform distribution over the
set {−1, 1}.

The key difference to the parameter-shift rule is that all pa-
rameters are perturbed at the same time. Therefore, the whole
update step always requires only exactly two expectation value
estimations times the number of perturbation samples used.
This can drastically speed up the training process as long as
the number of update steps required to reach the optimum does
not increase significantly. Theoretical and empirical consider-
ations confirm that this is not the case [42].

C. Training Algorithm for Quantum Regression

QML, like its classical counterpart, has multiple branches
such as regression, classification, and reinforcement learning.
Quantum regressors are models where a VQC predicts one or
more continuous values for a given input [8]. Quantum classi-
fiers are function approximators that predict the probability of
a given input belonging to a specific class [43]–[45]. Quantum
reinforcement learning (QRL) is a type of machine learning
technique that enables an agent to learn through trial and error
within an environment. Quantum versions of classical rein-
forcement learning such as policy gradient method [46]–[48],
DQN [30], [49], [50], and offline RL [40] have been studied
in the past.

Training a VQC U(x, θ) for regression or any learning
task, in general, involves feeding it a normalized dataset and
comparing its predictions with the actual target values. An

error function such as mean squared error, mean absolute
error, etc., quantifies this difference. An optimizer function
like SGD [51], ADAM [52], AMSGrad [53], RMSProp [54],
etc., tunes the trainable parameters. Hyperparameters, sep-
arate from the VQC architecture, control this optimization
process. Tuning these hyperparameters significantly impacts
the model’s performance. Algorithm 1 shows a simple quan-
tum regression training procedure. The training procedure is a
quantum-classical hybrid process where the quantum part of
the algorithm is also often simulated on a classical device us-
ing a quantum simulator due to the limited availability of NISQ
devices. There are two different categories of quantum simu-
lators, namely, an ideal simulator that calculates the exact ex-
pectation values and a shot-based simulator that approximates
the expectation value using finite samples. Further, one can
perform a noisy quantum simulation on a classical device that
replicates the properties of the NISQ hardware, such as limited
qubit connectivity, decoherence, gate infidelity, and crosstalk
to a certain degree using the shot-based simulator and a noise
model. Quantum error mitigation (QEM) [55] approaches such
as zero-noise extrapolation (ZNE) [56] can also be integrated
into a noisy simulator, which aids in the development of quan-
tum algorithms tailored towards the current capabilities of the
hardware. Methods like ZNE attempt to extrapolate the behav-
ior of the circuit in the ideal, noiseless limit. This extrapolation
often relies on polynomial fitting or other statistical methods.
As the hardware noise and the increase in the number of cir-
cuit evaluations introduced by ZNE influence the stability of
the training procedure, testing the Guided-SPSA under these
conditions is of prime interest to us.

IV. GUIDED-SPSA

As mentioned in Section III-B, the parameter-shift rule esti-
mates the exact gradients with respect to parameters. However,
the parameter shift rule has a computational complexity of
O(2NM) where M is the number of parameters and N is the
number of training data points. This dependence on the num-
ber of parameters M is undesirable as the computation com-
plexity increases for larger models; additionally, it is not well
suited for NISQ devices because of noise and imperfections.
The SPSA-based gradient approximation computes approxi-
mate gradients with a computational complexity of O(2kM)
where k is the number of perturbation samples; this number
is a design choice. The complexity of SPSA-based gradient
estimation does not necessarily grow with the number of cir-
cuit parameters, but the accuracy of the gradient is directly
proportional to k. In this work, we leverage the advantages
of both the parameter-shift rule and SPSA by splitting the
input samples between both methods for gradient estimation
and meaningfully combining the gradients during the training
process.

The Guided-SPSA algorithm is presented in Algorithm 2.
The Guided-SPSA introduces two new hyperparameters as de-
sign choices, namely, parameter-shift sample ratio τ and SPSA
damping constant ϵ. Parameter-shift sample ratio τ defines
the ratio of the input samples for which the parameter shift



Algorithm 2: Guided-SPSA

Input: Training data: D = (X, y), Number of epochs: Nepochs, Batch size: B, Learning rate: η, VQC: U(x, θ⃗),
Parameter-shift sample ratio: τ , SPSA damping constant: ϵ;

Output: Optimized parameters: θ⃗;
1 Initialize parameters θ⃗ randomly;
2 Set number of batches m = length(D)

B ;
3 Normalize dataset D between [−π, π]
4 Set maximum number of SPSA perturbation samples kmax = length(θ⃗)×min(1, 1.5− τ) ;
5 Set minimum number of SPSA perturbation samples kmin = max(1, length(θ⃗)× 0.1) ;
6 Calculate SPSA sample increment factor γ = kmax−kmin

Nepochs

7 for epoch = 0 to Nepochs − 1 do
8 Set current SPSA perturbation sample kepoch = ⌊kmin + epoch ∗ γ⌋;
9 Shuffle training data D;

10 for batch = 0 to m− 1 do
11 Sample mini-batch M = (Xbatch, ybatch) ∈ D of size B;
12 Forward pass:
13 Compute predictions ŷbatch = ⟨ψ(θ⃗)|A|ψ(θ⃗)⟩;
14 Compute error E⃗ using (ybatch, ŷbatch);
15 Backward pass:
16 Split M− > Mps,Mspsa where length(Mps) = τ ×B, length(Mspsa) = (1− τ)×B;
17 Calculate ∇ps for each data in Mps using parameter shift rule;

18 Calculate average norm per observable of parameter-shift gradients σ = 1
τ×B

τ×B∑
i=1

||∇i
ps||2

19 for each m in Mspsa do
20 Calculate ∇m

spsa for m using SPSA based gradient estimation;
21 Suppress the gradinet length of ∇m

spsa as follows: ∇m
g-spsa =

σ
||∇m

spsa||2
× ϵ×∇m

spsa

22 end

23 ∇θ⃗ =

[
∇ps

∇g-spsa

]
Update parameters using chosen optimizer: θ⃗ = optimizer(θ⃗, η,∇θ⃗E⃗);

24 end
25 end

rule is to be used for gradient estimation. The remaining sam-
ples will use the SPSA method. Parameter-shift sample ratio
τ should be defined between [0, 1] where τ = 1 is the stan-
dard parameter-shift rule procedure and τ = 0 implies standard
SPSA procedure. SPSA damping constant ϵ is used to suppress
the magnitude of the gradients from SPSA method. ϵ ranges
between (0, 1] where the value of 1 means that the gradients
from SPSA is not manually suppressed. ϵ close to 0 leads to
heavy suppression of the magnitude. SPSA damping constant
ϵ helps to attain a stable convergence when the training data is
noisy and contains distribution samples. The algorithm starts
by receiving the following inputs: training data D, number of
epochs Nepochs, batch size B, learning rate η, the VQC ansatz
U(x, θ⃗), τ , and ϵ. First, we calculate the maximum and min-
imum number of perturbation sample k to be used during the
training procedure based on the number of parameters in the
VQC and τ as shown in step 5, step 6 in Algorithm 2. The
perturbation samples for SPSA start from kmin and increase
linearly to kmax during the course of the training using γ.
Here, we leverage the advantage of the SPSA-based gradient

estimation by using a smaller perturbation sample size k at
the start of the training and linearly increase it as the training
progresses. These small perturbation sample sizes drastically
reduce the computational complexity of the overall gradient
estimation during the early stages of the training at the cost
of introducing some inaccuracies in the gradients. For every
epoch and each batch in those epochs, the forward pass resem-
bles the standard training procedure as shown in Algorithm 1.

During the backward pass, the batch samples M is split
into to parts, namely, Mps and Mspsa based on τ first. Then,
the gradient of the parameter vector θ for the samples Mps are
calculated using the parameter-shift rule. Next, we do the same
for the samples Mspsa but using SPSA rule and each gradient
vector is suppressed using ϵ and σ as shown in step 18 to
step 22. Here, we leverage the advantage of the parameter-
shift rule, that is, the exactness of the derivatives, and use it
to guide the derivatives calculated by SPSA. By adjusting the
magnitude of the SPSA with the magnitude of the gradients
from the parameter-shift rule, we reduce the chances of the
solution moving too far from the exact gradients. This reduces
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Figure 2. VQC used for 5 qubit circut experiments such as Friedman regression
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Figure 3. VQC used for 4 qubit circut experiments such as toy problem and boston-housing regression

the instability, especially during the early stage of the training
when the SPSA perturbation sample is too small and the last
stages of the training when the solution is potentially in the
neighborhood of the minima. Finally, the combined gradients
are multiplied with the error vector E⃗ to form the gradient
with respect to the loss based on the chain rule.

V. EXPERIMENTS AND RESULTS

In this section, we present the results of the numerical ex-
periment conducted to empirically validate the performance
of Guided-SPSA. First, we look at a toy problem where we
minimize a simple function using the Guided SPSA. Then, we
examine the performance using various regression tasks under
different experimental conditions. Finally, we test the algo-
rithm on a classification and reinforcement learning problem.

A. Toy Problem

Guided SPSA Parameter Shift

0.8 1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4 1.6

-0.50

-0.25

0.00

0.25

0.50

0.75

Model Output

C
os

t

Figure 4. Path for finding minima of the cost function given in Eq. (5) (black)
using parameter-shift rule and Guided-SPSA

To better visualize and understand the convergence of
parameter-shift-based gradients and Guided-SPSA, we uti-
lized respective gradient estimation techniques to minimize

the function specified in Eq. (5). The task of the VQC is to
find the value of x for which the Eq. (5) is minimized. The
toy problem Eq. (5) was chosen as it has a local minimum,
cf. Fig. 4, which the algorithm should be able to avoid.

L(x) = sin
(x
2

)
+ sin(2.25 · sin(4 · x)) (5)

Fig. 4 shows the convergence of the Eq. (5) to a minima us-
ing parameter-shift rule and Guided-SPSA. We used the VQC
shown in Fig. 3 without any encoding layer as the function
approximator for both experiments. The encoding layer was
unnecessary as there is no classical input to the VQC in this
problem case. All the hyper-parameters, such as learning rate,
number of epochs, etc., were the same for both runs. Fig. 4
shows that the Guided-SPSA escaped the local minima com-
pared to the parameter-shift rule. This is due to the randomness
and inaccuracies brought in by the SPSA components at the
early stage of the training.

B. Regression

1) Datasets: In order to study the performance of differ-
ent gradient estimation techniques in training a VQC beyond
the toy problem, we conducted a series of regression training
runs. Here, we trained the VQC with the same initial param-
eters and ansatz using SPSA of various perturbation sizes,
parameter-shift rule, and Guided-SPSA as defined in Algo-
rithm 2. The following datasets were employed in the exper-
iments: (i) Friedman dataset: A five-dimensional dataset, first
introduced by Friedman [57], [58]. This data set is constructed
from rational and trigonometric functions of the input features.
We sampled a total of 500 points from this dataset. (ii) Boston–
housing dataset: A fourteen-dimensional dataset consisting of
various features around a housing community in Boston, which
can be used to predict the nitrous oxide level based on the re-
maining thirteen features [59]. This dataset consists of 506
samples in total. Further, all the features in the dataset were



Table I
REGRESSION RESULTS TRAINED USING DIFFERENT SIMULATORS

Method No. Circuits Convergence Validation Test No. Circuits Convergence Validation Test

Friedman Boston Housing

Ideal simulation

SPSA-10 1M ∼77 0.08 0.10 0.75M ∼63 0.19 0.21
SPSA-20 2M ∼77 0.07 0.09 1.45M ∼54 0.18 0.19
SPSA-30 3M ∼83 0.07 0.08 2.17M ∼67 0.17 0.19

SPSA-max 5M ∼85 0.06 0.08 2.90M ∼74 0.17 0.19
Parameter-

Shift 5M ∼75 0.06 0.07 2.90M ∼63 0.16 0.18

Guided-SPSA 3.84M
(∼24%) ∼83 0.05 0.06 2.38M

(∼18%) ∼65 0.16 0.18

Shot based

SPSA-10 1M ∼68 0.11 0.15 0.75M ∼63 0.19 0.21
SPSA-20 2M ∼77 0.08 0.11 1.45M ∼65 0.17 0.20
SPSA-30 3M ∼79 0.07 0.09 2.17M ∼63 0.17 0.20

SPSA-max 5M ∼76 0.07 0.08 2.90M ∼71 0.17 0.19
Parameter-

Shift 5M ∼75 0.06 0.08 2.90M ∼68 0.16 0.18

Guided-SPSA 3.84M
(∼24%) ∼78 0.06 0.08 2.38M

(∼18%) ∼67 0.16 0.18

Noisy Simulation

SPSA-10 1M ∼69 0.11 0.14 0.75M ∼71 0.18 0.21
SPSA-20 2M ∼77 0.08 0.10 1.45M ∼78 0.17 0.20
SPSA-30 3M ∼74 0.07 0.09 2.17M ∼63 0.17 0.19

SPSA-max 5M ∼74 0.07 0.09 2.90M ∼79 0.17 0.19
Parameter-

Shift 5M ∼73 0.06 0.08 2.90M ∼62 0.16 0.19

Guided-SPSA 3.84M
(∼24%) ∼80 0.06 0.08 2.38M

(∼18%) ∼60 0.16 0.19

Error Mitigation

Parameter-
Shift 5M ∼77 0.06 0.08 2.90M ∼69 0.16 0.18

Guided-SPSA 3.84M
(∼24%) ∼79 0.06 0.08 2.38M

(∼18%) ∼63 0.16 0.18

normalized between [−π, π] to encode into the VQC. For
all training runs, we used an approximate train/validation/test
sample ratio of 0.68/0.22/0.1.

2) Problem Setup and Hyperparameters: The function ap-
proximator used for these regression tasks consists of four or
five-qubit circuits. The VQC shown in Fig. 2 was used for all
the Friedman dataset experiments. This VQC consists of one
encoding layer and five variational layers. The encoding layer
is made of single qubit Pauli-X rotational gates, and the vari-
ational layer consists of Pauli-Y and Pauli-Z rotational gates.
Furthermore, we have used CNot entanglement with nearest-
neighbour connectivity in all variational layers. The output is
decoded using the observable A = Z⊗n as shown in Eq. (2).
Likewise, the VQC shown in Fig. 3 was used for all the Boston
housing dataset experiments. This VQC is made of a four-qubit
circuit and is similar to the VQC used for Friedman dataset
experiments in terms of the gates used. However, to encode a
thirteen-dimensional feature vector into a four-qubit circuit, we
employ the incremental data-uploading technique introduced
by Periyasamy et al. [43]. We use the Adam optimizer with a

learning rate of 0.01, MSE as the loss function, and MAE as
the accuracy metric for all the experiments.

3) Ideal Simulation: For the first set of experiments, we
train the VQCs for the regression task explained in Sec-
tion V-B1 and Section V-B2 using an exact quantum simulator.
Here, the simulation mimics ideal quantum hardware with all-
to-all qubit connectivity and does not include the influence of
shot noise. To form equal test conditions and attain statistical
veracity, we sampled five sets of initial parameters from a uni-
form distribution between [0, π]. We trained all the methods
five times with each parameter set. A total of twenty-five ex-
periments per gradient estimation method were performed, and
the average results over these twenty-five runs are presented.

Fig. 5 and Fig. 6 show the convergence results of different
gradient estimation techniques for the Friedman and Boston
housing datasets, respectively. The Guided-SPSA method out-
performs the parameter-shift rule on the Friedman dataset
and performs similarly to the parameter-shift rule on the
Boston housing dataset. The Guided-SPSA outperforms stan-
dard SPSA-based gradient estimation in all scenarios. The
same results are replicated on the validation and test metrics
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Figure 5. Convergence of different gradient estimation techniques using an
ideal simulator on the Friedman dataset.
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Figure 6. Convergence of different gradient estimation techniques using an
ideal simulator on the Boston housing dataset.

shown in Table I. The convergence epochs shown in the Ta-
ble I are the average epoch at which the validation was lowest.
It is to be noted that we did not use any early stopping method
due to the significant variance in the convergence epoch on all
the gradient estimation methods. Hence, all the methods were
trained for a total of 100 epochs. SPSA-10, SPSA-20, and
SPSA-30 mentioned in the Table I denote the SPSA gradient
estimation method with perturbation samples of 10, 20, and
30, respectively. SPSA with different k were tested because
the Guided-SPSA uses different perturbation samples at dif-
ferent stages of the training process. SPSA-max denotes that
the perturbation sample k matches the number of parameters
in the VQC, resulting in the same computational complexity
as the parameter-shift rule in terms of the number of circuit
evaluations. The parameter-shift sample ratio τ of 0.5 and 0.7
was used for the experiments on the Friedman and Boston
housing datasets, respectively. The SPSA damping constant ϵ
was set to one for all the experiments with Guided-SPSA and
ideal simulator as the convergence was stable without much
instability. The results shown in Table I are averaged over 25
training runs per method, and the variance of the results was
in the order of 10−4.

Further, to get better insights into the performance of the
models, we investigated their outputs by examining the cumu-

lative sum distribution of the MAE between the predicted and
target values for the Friedman dataset. In the results presented
in Fig. 7, we analyzed the cumulative sum distribution of the
lowest MAE scores of 97% of the data. We looked into the
best 97% data to filter out any outliers in each model. This was
done to provide more informative results. Based on the find-
ings in Fig. 7, we concluded that the Guided-SPSA algorithm
has the earliest saturation point. This indicates that, besides
having the lowest average MAE, the Guided-SPSA also gen-
eralizes better than the other algorithms over the test dataset.
The Guided-SPSA algorithm demonstrated similar or better
performance than the standard parameter-shift rule while us-
ing 24% and 18% fewer circuit evaluations on the Friedman
and Boston housing datasets, respectively.
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Figure 7. Cumulative distribution of the test samples from the Friedman
dataset by different gradient estimation techniques.

4) Shot-based Simulation: For the next set of experiments,
the same regression training runs explained in Section V-B3
were repeated using a shot-based simulator. Here, the given
quantum circuit’s expectation value is then approximated by
simulating the circuit multiple times and building a probability
distribution over the output of each simulation. The number
of repetitions used to build the probability distribution is com-
monly known as ”shots”. We used 1024 shots to estimate each
expectation value during these experiments. All the hyperpa-
rameters and the training procedure for these experiments were
kept identical to the experiments in Section V-B3 except for
the SPSA damping factor ϵ. The ϵ was fixed to 0.5 instead of
1 as the shot-based simulator introduces some inaccuracies in
the estimation due to the finite number of shots used. Damp-
ing the magnitude of the gradients in the Guided-SPSA was
necessary to facilitate stable training. The results presented
in Table I demonstrate that Guided-SPSA performs similarly
and has the same advantages when trained on a shot-based
simulator as it does on an ideal simulator.

5) Noisy Simulation: The SPSA-based gradient estimation
technique is often claimed to be well suited for noisy setups.
In order to evaluate how well the algorithm would perform on
real quantum hardware that is currently known to be noise-
prone, we conducted a series of experiments on a noisy simu-
lator that mimics the behavior of a quantum device affected by
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Figure 8. Comparison of gradient value distributions for G-SPSA and parameter shift approaches with different initialisation strategies (random initialization
in range (0, π), and zero initialization) for an increasing number of epochs.

hardware noise. Here, we repeat the experiments described in
Section V-B4 with the same set of hyperparameters. To simu-
late a realistic NISQ device, we utilized the qubit connectivity
and native gate set of the “ibm brisbane” [60] hardware and
incorporated the noise model supplied by qiskit for the same
device. The validation and the test results presented in Ta-
ble I show that the Guided-SPSA algorithm exhibits similar
convergence behavior and performance compared to ideal and
shot-based simulation experiments.

6) Noisy Simulation with Error-Mitigation: To study the
convergence pattern and the performance of the Guided-SPSA
algorithm under the impact of QEM, we conducted regres-
sion experiments with a noisy simulator, which employs ZNE.
For this purpose, we used the native error mitigation capa-
bilities of the IBM Quantum services and the cloud-based
“ibaq qasm simulator” [60]. Due to the high computational
demand of ZNE and slow cloud-based simulators, we only
studied the effects of the parameter-shift rule and Guided-
SPSA based gradient estimation techniques under this setup.
The results presented in Table I indicate that Guided-SPSA
exhibits similar convergence behavior to other experiments.
It reaffirms the advantages in terms of optimal solution and
fewer circuit evaluations.

C. Suboptimal Initialization

Eric et al. [61] showed that the VQCs struggle to reach the
global minima with a bad guess of the initial parameter set.
The term “bad” is, of course, relative and depends on multiple
factors, such as the loss landscape of the VQC, dataset char-
acteristics, hyper-parameters used for training, the algorithm
itself, etc. One such bad guess for the Friedman dataset and the
problem setup explained in Section V-B3 is zero initialization
(i.e., all parameters are initialized to zero). Zero initialization
is not always a bad guess, as Franz et al. [49] showed that it
can help to achieve a faster convergence in the context of a

reinforcement learning problem. However, for the regression
task on the Friedman dataset using parameter-shift gradient
estimation, the convergence leads to a suboptimal solution as
shown in Fig. 9. On the other hand, the same regression task
with the Guided-SPSA gradient estimation converges to the
optimal solution as in the random initialization case. To ana-
lyze this behavior, we studied the gradient distribution during
early training stages for the Friedman dataset problem with the
bad initial guess mentioned above: Fig. 8 shows results for all
combinations of random and zero initialization for Guided-
SPSA and parameter shift rule.
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Figure 9. Convergence of parameter-shift rule and the Guided-SPSA based
gradient estimation under sub-optimal all-zero initialization.

The distribution of gradient values remains concentrated
sharply around zero throughout the early epochs when the
VQC is zero initialized and the parameter-shift rule is used for
gradient estimation. In contrast, using zero initialization with
Guided-SPSA delivers a gradient distribution that follows the
pattern of gradient distribution with random initialization for
both approaches. We hypothesize that the randomness intro-
duced by the SPSA part of the Guided-SPSA with a small
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Figure 10. Convergence of different gradient estimation techniques using an
ideal simulator for iris dataset classification.

perturbation sample size k at the early stages of the training
results in a wider gradient distribution and leads to a better
convergence.

D. Classification

To study the convergence behavior of the Guided-SPSA on
classification problems, we trained a VQC to solve an ac-
cording problem and compared its performance against the
parameter-shift rule. As target, we chose the widely employed
iris classification reference dataset. It consists of three differ-
ent types of irises defined by four features and contains 150
total samples. The VQC shown in Fig. 3 is chosen to act as
function approximator. There was no need for increment data
updating layers in the architecture as the input features are
four-dimensional, so it was omitted. The problem is a three-
class classification problem; hence, the observables ZIII, IZII,
and IIZI were chosen to decode the output from the VQC,
followed by a sigmoid activation function to predict the class
probabilities. The results presented in Fig. 10 show that the
Guided-SPSA depicts similar performance to the parameter-
shift rule in terms of classification. The same was observed
in the test, as well as in the validation accuracy of the trained
models. The gradient estimations through the parameter-shift
rule utilized a total of 2.6 million circuit evaluations over the
course of training, whereas the Guided-SPSA used 2 million
circuit evaluations. A reduction of 25% in the total number
of circuit evaluations required to attain similar performance
compared to the parameter-shift rule.

E. Reinforcement Learning

Finally, to get a complete picture of the different problem
categories of the QML, we pit the Guided-SPSA algorithm
against the parameter-shift rule in the quantum reinforcement
learning (QRL) setting. We chose the task of solving the Cart-
Pole-v0 environment [62] using the agent proposed by Franz et
al. [49] and the corresponding implementation provided in [63]
as the test bed for Guided-SPSA. As the algorithm proposed by
Franz et al. does not divide the training by epochs, the SPSA
sample increment factor γ from Algorithm 2 was calculated
based on maximum steps of training instead of Nepochs. The
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Figure 11. Training behaviour of a QRL agent for Guided SPSA and PS rule.

results shown in the Fig. 11 show that the agents training
using both the parameter-shift rule and the Guided-SPSA can
learn an optimal policy and depict similar learning behavior.
However, the parameter-shift rule used a total of 12.5M circuit
evaluations during the course of training, whereas the Guided-
SPSA used 9.6M circuits. A 24% reduction compared to the
parameter-shift rule.

VI. CONCLUSION

We have introduced a novel gradient estimation scheme,
Guided-SPSA, that combines advantages of the parameter-shift
rule and simultaneous perturbation stochastic approximation
based gradient estimation method. The algorithm features sta-
ble convergence, similar to or better than the parameter-shift
rule, while incorporating benefits of SPSA such as fewer cir-
cuit evaluations. Guided-SPSA results in a 15% to 25% reduc-
tion in the number of circuit evaluations required throughout
the course of training compared to the parameter-shift rule. It
is also well suited for NISQ devices, as it not only reduces the
number of circuit evaluations required for good convergence,
but also helps VQCs to avoid local minima and obtain more
evenly distributed gradient values in certain problem scenarios.
We have empirically validated, using numerical experiments,
the advantages of Guided-SPSA for regression, classification,
and reinforcement learning tasks on widely employed refer-
ence datasets and scenarios. The performance gain and the
convergence pattern remained the same even when the model
was simulated using a shot-based simulator, a noisy simulator,
or under the presence of error mitigation, at least for instance
sizes that can be managed on current NISQ hardware. We an-
ticipate these benefits will grow with problem size, and the
Guided-SPSA gradient estimation approach will be a feasi-
ble and advantageous alternative to the parameter-shift rule
or simultaneous perturbation stochastic approximation-based
gradient estimation.

VII. CODE AVAILABILITY

The implementation of the regression and classification ex-
periments are provided in the GitHub repository [64]. We
will provide a DOI-safe reproduction package [65] post ac-
ceptance.
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