
From Tracepoints to Timeliness: A Semi-Markov
Framework for Predictive Runtime Analysis

Benno Bielmeier
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

benno.bielmeier@othr.de

Ralf Ramsauer
Technical University of

Applied Sciences Regensburg
Regensburg, Germany
ralf.ramsauer@othr.de

Takahiro Yoshida
Tokyo University of Science

Tokyo, Japan
yoshida@ee.kagu.tus.ac.jp

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—Detecting and resolving violations of temporal
constraints in real-time systems is both, time-consuming and
resource-intensive, particularly in complex software environments.
Measurement-based approaches are widely used during develop-
ment, but often are unable to deliver reliable predictions with
limited data.

This paper presents a hybrid method for worst-case execution
time estimation, combining lightweight runtime tracing with
probabilistic modelling. Timestamped system events are used
to construct a semi-Markov chain, where transitions represent
empirically observed timing between events. Execution duration
is interpreted as time-to-absorption in the semi-Markov chain,
enabling worst-case execution time estimation with fewer assump-
tions and reduced overhead.

Empirical results from real-time Linux systems indicate that
the method captures both regular and extreme timing behaviours
accurately, even from short observation periods. The model
supports holistic, low-intrusion analysis across system layers and
remains interpretable and adaptable for practical use.

Index Terms—Probabilistic Timing Analysis, Stochastic Mod-
elling, Real-Time Linux

I. INTRODUCTION

Real-time systems with complex software stacks, comprising
multiple interdependent layers and components, pose challenges
for traditional worst-case execution time (WCET) analysis [1].
Static timing analysis provides sound and conservative upper
bounds with formal guarantees, making it indispensable for
safety-critical systems. However, it tends to yield overly pes-
simistic estimates and requires impractical effort, particularly
when confronted with rare timing anomalies and context-
dependent behaviours [2], [3], [4].

This challenge is further exacerbated in emerging high-
performance and heterogeneous architectures, such as quantum-
accelerated systems, where latency predictability and execution-
time characterisation are critical but poorly understood at
system level [5]. Similarly, modern hardware platforms em-
ploying mechanisms such as static hardware partitioning on
RISC-V introduce architectural features that complicate timing
analysis due to increased concurrency, resource contention, and
architectural opacity [6]. The need for modular, transparent,
and verifiable development processes, as exemplified in open

This work was supported by the European Union (Project Reference
101083427) and the European Funds for Regional Development (EFRE)
(Project Reference 20-3092.10-THD-105).

source engineering contexts, underscores the importance of
reproducibility and empirical validation in timing analysis [7].

Probabilistic timing analysis techniques based on measure-
ment data have emerged to address both issues by offering
probabilistic estimates instead of deterministic timing guaran-
tees [1], [8]. Due to their inherent uncertainty, these methods are
not meant as alternatives for deterministic methods in (safety)
critical domains. They rather provide valuable insights when
firm guarantees are not (yet) required, for instance in soft real-
time applications, or during development phases of a system.
They allow for rapid runtime validation, while avoiding exten-
sive overheads known to be associated with more sophisticated
exhaustive analyses. However, existing measurement-based
probabilistic timing analyse (MBPTA) approaches typically
require large independent and identically distributed (IID)
sample sets and assume statistical independence, which can
be difficult to ensure on complex hardware and leads to high
measurement overheads.

We propose the use of semi-Markov chains (SMCs) to
stochastically model the probabilistic execution time of real-
time tasks based on a limited number of runtime measurements.
This enables efficient timing analysis without requiring exten-
sive system instrumentation, detailed manual modelling, or
exhaustive trace evaluation. The resulting model captures both
the temporal characteristics—via stochastic transition delays—
and the logical execution flow—through the structure of states
and transitions. This state-based representation facilitates not
only intuitive visualisation and interpretation of distinct exe-
cution phases, but also supports flexible refinement guided by
domain-specific knowledge of the target system. By combining
lightweight measurement with probabilistic modelling, the
approach yields practical and scalable insights into timing
behaviour, suitable even in early development stages or in
settings with restricted observability.

Given a real-time task whose timing behaviour is to be
analysed, our approach proceeds as outlined in Figure 1. First,
the target system is instrumented 1⃝ to capture essential timing
events using lightweight tracepoints; these can appear, for
instance, in task scheduling, during interrupt processing, or
in function calls. The placement of tracepoints is guided by
system-specific considerations and expert judgement, depending
on the concrete system, application, and analysed tasks, as

mailto:benno.bielmeier@othr.de
mailto:ralf.ramsauer@othr.de
mailto:yoshida@ee.kagu.tus.ac.jp
mailto:wolfgang.mauerer@othr.de


OBSERVED SYSTEM
IN

S
T

R
U

M
E

N
T

E
D

C
O

D
E

R
U

N
T

IM
E

function RealTimeTask()
...
if checkCond() then
handleCond()

end if
foreach device do
notifyDev(device)
...

end foreach
commit()

end function

Start

Finish

= Tracepoint

= Event

Time

DATA ANALYSIS

S
E

M
I-

M
A

R
K

O
V

C
H

A
IN

E
S

T
IM

A
T

IO
N

Start Finish
= Model State

Probabilistic
State
Transition

Transition Time

Fr
eq

ue
nc

y

WCET

Absorption Time

Fr
eq

ue
nc

y

Instrumentation

1

ANNOTATION & MODELLING

Execution Sampling2

Measurement

3

Model
Generation

4

Stratified Sampling 5

Figure 1. Conceptual overview of our approach. Based on expert knowledge about the architecture of a system under test, our starts with system instrumentation,
by enabling existing or inserted tracepoitns 1⃝. We execute the instrumented code repeatedly 2⃝ and record the trace data, which we store as tabular data for
offline analysis 3⃝. We utilise this data to generate a stochastic model in the form of an semi-Markov chain 4⃝. We analyse the model through sampling by
conducting multiple simulation runs 5⃝. This analysis yields an estimated worst-case execution time.

detailed in Section IV. Next, the system is executed under
realistic conditions 2⃝, and trace events are recorded for
subsequent analysis 3⃝. This measurement data then serves as
foundation to construct semi-Markov chain models 4⃝. The
probability distribution of probabilistic worst-case execution
time (pWCET) is derived by simulating numerous state
transition sequences 5⃝, where each sequence represents the
execution of a single task run. The resulting distribution
of execution times is then analysed to extract probabilistic
temporal properties, such as quantile bounds and estimates
of the WCET. These values characterise the task’s temporal
behaviour under realistic conditions and can inform design
decisions, safety arguments, and schedulability assessments in
real-time systems.

By constructing SMC models exclusively from trace points
in all software layers of the system (i.e., kernel space, user
space, and possibly firmware), our framework is holistically
applicable to the whole software stack. It can seamlessly
integrate data from established tracing mechanisms or custom
implementations, underscoring its practical flexibility. Rather
than isolated or individual reasoning on single observations,
our method probabilistically combines effects of scheduling
decisions, hardware influence, and other systemic effects, and
thereby simplifies abstract analysis of complex real-world
systems.

Moreover, this hybrid approach—positioned between rigor-
ous formal verification and purely empirical analysis—not only
mitigates the inherent pessimism of traditional deterministic
WCET methods, but also reduces the complexity and rigidity
typically associated with such methods [8], [9]. An important
practical benefit is to assist developers, particularly as the
framework readily provides rapid feedback on the effect of
code changes to real-time behaviour, similar to the goal of
DevOps efforts. This allows for early identification of perfor-
mance regressions or improvements, and thereby accelerated
development cycles and facilitates targeted optimisations. The
low overhead of our measurement technique further supports
integration into continuous integration pipelines to provide
early feedback to developers.

Our main contributions are
• a hybrid analysis method that integrates measurement-

based observations with probabilistic semi-Markov chain
modelling for real-time system analysis;

• a demonstration of real-world applicability and the ef-
fectiveness of runtime modelling with an evaluation of
worst-case latency prediction, measured by cyclictest, a
standard Linux RT test suite, on a RISC-V target;

• an assessment of the model’s quality with respect to the
amount of measurement data to build expressive models.

This paper is structured as follows. Section II provides



background information on timing analysis of real-time system
and semi-Markov chain. After the presentation of related
work in Section III, we detail our method in Section IV. In
Section V we present the implementation components of the
approach. Section VI evaluates the approach for worst-case
latency estimation of cyclictest on a real-time Linux system.
We discuss our results in Section VII and conclude, together
with suggestions for future research, in Section VIII.

II. BACKGROUND

A. Timing Analysis in Real-Time Systems

In real-time computing systems, correctness depends on both,
correct functional, and precise temporal behaviour. Payloads
(e.g., real-time tasks) must meet strict timing constraints.
Missed deadlines may lead to severe consequences. Such tasks
often exhibit event-driven behaviour, that is, they are initiated
or triggered by specific event occurrence or changes in system
state. Determining a task’s WCET—the maximum execution
time a task can exhibit under any feasible scenario—is central
to ensure these constraints [10], [11].

Traditionally, WCET analysis relies on either static or
measurement-based approaches [10]. Static approaches that
employ modelling and formal verification provide safe bounds,
but are often overly conservative owing to the complexity
of accurately modelling advanced hardware features such as
caches, pipelines, and multicore interaction bounds [10]. They
also do not apply well to complex real-world systems like
Linux, for reasons ranging from state explosion to practically
unmanageable computational requirements [12], [13].

Measurement-based approaches estimate WCET from empir-
ical data obtained through execution profiling. They offer more
realistic but non-exhaustive estimates that risk underestimating
worst-case conditions. Hybrid methods attempt to balance these
limitations by combining elements of static and empirical
analyses [14], [15].

The mentioned challenges with excessive pessimism or insuf-
ficient coverage motivated the transition towards probabilistic
timing analysis [1], [16]. Probabilistic methods, notably static
probabilistic timing analysis (SPTA) and MBPTA, characterise
execution times as probability distributions, and thus explicitly
model uncertainty [11]. While SPTA analytically computes
execution-time probabilities from program and hardware mod-
els, MBPTA statistically derives execution-time distributions
from measurements, and extrapolates probabilistic WCET. Al-
though probabilistic techniques significantly reduce pessimism,
ensuring validity requires careful assumptions about hardware
and execution conditions.

B. Observation of Real-Time Systems

Reliable observation of real-time system behaviour requires
accurate and minimally intrusive event capture. While hardware-
assisted tracing offers precise timestamps with negligible
perturbation, it depends on specialised equipment, increases
cost, and often lacks visibility into higher software layers.
Software-based tracing has become widespread due to its
flexibility across system layers, lack of hardware requirements,

and support for fine-grained, customisable instrumentation.
However, it can introduce runtime overhead and perturb timing
behaviour, potentially distorting observed phenomena. Tracing
methods thus span software, hardware-assisted, and hybrid
approaches [17], [18], [19], [20], each balancing accuracy,
intrusiveness, and implementation effort [21], [22].

An essential requirement for tracing real-time systems is to
maintain minimal overhead, as any perturbation degrades anal-
ysis quality. Lightweight instrumentation is therefore critical
to preserve runtime characteristics. Efficient data collection
methods, such as memory-resident ring buffers or selective
logging, help ensure low overhead and practical applicability
in real-time contexts.

Trace data may be processed offline or online. Offline
analysis collects events for later evaluation, offering flexibility
and low hardware demands, albeit with delayed insights. Online
analysis, in contrast, processes events during execution for im-
mediate feedback and low memory usage, but is more complex
and may require significant computational resources [23].

Linux-based systems benefit from a mature ecosystem
of tracing tools. Prominent frameworks such as ftrace,
eBPF, and LTTng support efficient in-memory recording,
and both offline and online analysis modes. However, their
general-purpose design and associated instrumentation overhead
can interfere with the timing behaviour of real-time tasks,
particularly when analysing latencies in the sub-microsecond
range. This limits their applicability in strict real-time scenarios
and often necessitates the development of specialised, low-
intrusion tracing solutions tailored to the specific characteristics
and constraints of the target system.

C. Semi-Markov Chain

A semi-Markov chain (SMC) is a stochastic process Z(t)t∈T
defined over a finite state space Q and an index set T ,
representing time (discrete or continuous). It models the
system’s temporal evolution as a trajectory of state transitions.
It models the system’s temporal evolution as a trajectory of state
transitions, as visualised in Figure 2, which shows the system’s
state at each time. In contrast to standard Markov chains,
SMCs permit arbitrary sojourn time distributions between
transitions, thus enabling the modelling of non-Markovian,
memory-dependent behaviour [24], [25]. In particular, the time
spent in a state need not follow the exponential distribution.
In particular, the time spent in a state need not follow the
exponential distribution, but may also depend on the elapsed
time since the last transition.

Formally, an SMC is defined as a sequence of state-time
pairs (Jn, Tn)n∈N, where Jn ∈ Q denotes the state entered at
time Tn ∈ T , and the sequence (Tn) is strictly increasing. The
time spent in state Jn before transitioning is the sojourn time
Sn = Tn+1 − Tn, characterised by the cumulative distribution
function Fi(d) = Pr(Sn ≤ d | Jn = qi) where qi ∈ Q
and d ∈ T . State transitions are governed by the probability
matrix P with entries Pij = Pr(Jn+1 = qj | Jn = qi) where
qi, qj ∈ Q subject to

∑
j Pij = 1 for all qi. We consider a

transition qi → qj absent if Pij = 0.



Time

State

q0

q1

q2

q3

q4

0 t1 t2 t3 t4 t5

1. transition

2. transition

3. transition

4. transition

5. transition

Figure 2. Trajectory of a semi-Markov chain, visualising one realisation
of its state evolution over time. The horizontal axis represents continuous
time T , while the vertical axis corresponds to the discrete set of states Q.
The trajectory starts with initial state J0 = q0 and transitions at time t1 to
state q1. Assuming no state change happens after t5, q3 is considered an
absorbing state.

The joint distribution of transitioning from qi to qj within
a duration d ∈ T is given by the conditional sojourn time
distribution Fij(d) = Pr(Sn ≤ d, Jn+1 = qj | Jn = qi) which
forms the hold time kernel Q.

The initial distribution π assigns probabilities to initial states
in which the SMC starts at t = 0, satisfying πi = Pr(J0 = qi)
with

∑
i=1 πi = 1. We denote the set of states with non-zero

initial probability as S = {qi ∈ Q | πi > 0}.
We assume time-homogeneity, meaning that the transition

probabilities Pij and sojourn time distributions Fij are inde-
pendent of both absolute time and the transition index n.

A state qi is considered absorbing if Pij = 0 for all j ̸= i,
equivalently Pii = 1. The set of absorbing states is defined
as A = {qi ∈ Q | Pii = 1}. The process is absorbed once it
enters any qa ∈ A. Let N = min{n ≥ 0 | Jn ∈ A} be the
index of the absorbing transition, which is also the length of the
process’ state sequence. The corresponding time to absorption
is then Tabs = TN =

∑N−1
n=0 Sn.

III. RELATED WORK

Semi-Markov models (SMMs) are widely used to capture
systems with memory-dependent temporal behaviour. Applica-
tions span reliability analysis [26], predictive maintenance [27],
biological sequence classification [25], [28], and pattern
recognition such as speech and handwriting [29]. These models
allow arbitrary sojourn time distributions and are often extended
with hidden states to represent latent dynamics.

In real-time systems, Bozhko et al. [30] introduce the first
axiomatic characterisation of probabilistic worst-case execution
time (pWCET). Their Coq-verified framework establishes a
mathematically sound upper bound on the execution time
distribution under IID assumptions. However, the model is
abstract, defers empirical validation, and presumes statisti-
cal independence once pWCETs are derived. Our approach
contrasts with this by constructing empirical semi-Markov
models from lightweight tracepoints, capturing system-wide
timing behaviour without relying on the IID assumption. As
detailed on in Section IV, execution time is modelled as time-
to-absorption, using Gaussian mixture models (GMMs) and
stratified sampling to estimate pWCET. Thus, while Bozhko

et al. provide formal soundness, our method offers a scalable,
tool-supported alternative suited to data-constrained scenarios.

Several state-based MBPTA approaches share conceptual
ground with our method. In particular, Basic Block Measure-
ments, Bayesian Networks, and Timed Automata have been used
as probabilistic and state-based methods for runtime analysis.

Basic block measurement is a hybrid approach used in
program profiling and performance analysis [4], [31]. It
identifies execution hotspots, optimisation opportunities, or
security vulnerabilities at the CPU level [32], [33]. A program is
decomposed into basic blocks, i.e., straight-line code sequences
with a single entry and exit point, for which metrics such as
execution count, time, or resource usage are determined [31],
[34]. However, basic block–based techniques generally scale
poorly to large code bases comprising millions of blocks,
and they are ill-suited for analysing parallel, multithreaded,
or highly dynamic programs. They rely on a fixed control-
flow structure, rendering them vulnerable in the context of
dynamic code generation, self-modifying behaviour, or even
common compiler optimisations such as inlining or loop
unrolling. To address some of these limitations, the WE-
HML approach [35] combines static control-flow analysis with
machine learning–based WCET estimation at the binary level.
It mitigates the impact of compiler rearrangements by working
on compiled code and models non-deterministic timing effects
caused by caches via learned pollution-sensitive timing models.
By training on a large set of auto-generated code fragments,
WE-HML improves coverage and generalisation while avoiding
per-application measurements.

Bayesian networks are state-based probabilistic models in
which every node represents a random variable and the edges de-
note conditional dependencies between them. Their strength lies
in modelling uncertainty, interference capability, and probabilis-
tic reasoning, enabling the estimation of confidence intervals
for WCET [36]. Applied in the field of runtime analysis, they
focus on modelling complex probabilistic dependencies among
a set of variables using directed acyclic graphs [37], [38]. While
SMCs model temporal behaviour explicitly through sojourn
time distributions, Bayesian Networks model the transition
times implicit through dependencies among variables [39].
Bayesian Networks are well suited when dealing with complex
(runtime) dependencies and requiring probabilistic inference
to handle uncertainties in system behaviour. However, their
reliance on static conditional probabilities may limit the
accurate capture of dynamic temporal behaviours, particularly
in systems where timing plays a critical role. Moreover, the
computational complexity of probabilistic inference in large-
scale networks remains a challenge.

State-based models are foundational not only for timing
analysis but also for formal verification of functional and
temporal properties. Finite-state machines, such as determin-
istic finite automata (DFAs), specify valid event sequences,
while timed automata extend them with real-valued clocks
to capture real-time constraints [40]. These models support
runtime verification via model checking and online monitoring.
Oliveira et al. [41], [42], [43], for example, employ automata-



based monitors to verify that events occur only in valid
temporal and causal contexts. Though these approaches focus
on correctness rather than timing estimation, they demonstrate
the expressiveness of state-based models. Our semi-Markov
framework complements them by adding stochastic timing
semantics, enabling probabilistic analysis within a unified,
state-based abstraction.

Lesange et al. [44] proposed a framework for measurement-
based timing analyses, using an abstract model of synthetic
tasks, derived via dynamic instrumentation using Valgrind
on FFmpeg. Execution times are aggregated via discrete
convolution over syntax-tree-like structures with typed nodes
(e.g., loop, conditional), resembling basic block methods.
Although this fine-grained abstraction captures specific execu-
tion characteristics, it does not constitute dynamic behaviour,
flexibility, and the option to extrapolate unobserved behaviours
(on possible unseen paths) like our method allows utilizing a
semi-Markov framework with a stochastic process.

Friebe et al. [45] model execution times using Markov chains
with Gaussian emissions to bound deadline-miss probabilities
in reservation servers. To avoid exponential sojourn times,
they introduce hidden states. However, their method assumes
regularity and is less effective in capturing non-deterministic
phenomena such as interrupts. Our semi-Markov approach
directly models such variability with mathematically grounded
support for complex timing behaviour and minimal measure-
ment intrusion.

IV. METHOD

Our approach employs SMCs to capture the probabilistic
runtime behaviour of tasks, explicitly accounting for both
intrinsic task execution and non-deterministic interference
from concurrent system activities. We construct an abstract
probabilistic model based on runtime measurements. It aims to
characterise the distribution of latency values, with particular
emphasis on sparsely populated regions where extrapolation is
challenging, such as the tail of the latency distribution.

This framework reflects the idea that the execution of a
real-time task can be conceptualised as a finite sequence of
distinct segments separated by certain events or conditions, for
example: task initiation, execution, preemption, resumption,
and termination. The duration of each segment is influenced by
various factors, such as input data characteristics, other system
activities, and microarchitectural state of the hardware. An
SMC naturally accommodates this scenario and represents each
segment as a state, with the hold-time distribution estimated
from the timestamps of observed events.

Unlike methods that assume independent and identically
distributed (IID) execution times, our SMC approach retains
context by conditioning the timing of each transition on the
current state. Moreover, SMCs capture correlations between
events; for example, an interrupt that is frequently followed by
a cache refill penalty will manifest as a state transition charac-
terised by a heavier-tailed duration distribution. This explicit,
state-dependent modelling fills gaps in existing probabilistic
timing analyses, offering a more interpretable framework.

Consequently, developers can readily identify which phases—
such as waiting for I/O or running without preemption—
contribute most to variability and worst-case latency, rather
than relying solely on abstract statistical parameters.

A critical challenge in our approach entails balancing
overfitting and overestimating worst-case extremes, employing
overly conservative distributions. An overfitted model rep-
resents generalisation of the system and yields inaccurate
predictions, especially in data-sparse regions like the tail
regions. Our approach addresses this trade-off. It integrates
empirical measurements with a flexible, state-based stochastic
framework. This framework robustly extrapolates tail latencies.

In the following, we elaborate on the process of measurement,
the incorporation of SMCs, and the construction of the
stochastic model based on the recored data.

A. Measurement Process

During the measurement process, trace data is generated,
which is later supplied to the generation process of the SMC
models. Lightweight instrumentation techniques capture precise
timestamps and contextual metadata from relevant system
events, ensuring close alignment between observations and
the actual system state.

The workflow begins with the setup of instrumentation
mechanisms, including kernel tracepoints, user-space logging,
and manual instrumentation. Domain experts select events to
be traced based on their understanding of system internals, the
structure and implementation of real-time tasks, and potential
sources of interference, such as task switches, interrupt han-
dling, or function entry and exit. Where tracing spans domain
boundaries (e.g., kernel and user space), time consistency is
achieved by using a shared monotonic clock.

During execution of a defined scenario—often repeated
under varying side conditions—the system records events in
chronological order. Each event is annotated with a high-
resolution timestamp, a unique identifier, and optional context
(e.g., CPU or process ID) used to differentiate concurrent
execution contexts.

Following data collection, the dataset is examined for
anomalies, including duplicate timestamps, missing entries, and
domain desynchronisation. Filtering and consistency checks are
then applied to ensure the integrity and fidelity of the captured
temporal behaviour.

B. Stochastic Model

We model the runtime behaviour of a task with an SMC. In
our formulation, the task’s execution time (from initiation to
completion) equals the SMC’s time-to-absorption. We represent
the segmented execution structure by a stochastic sequence
of states, where hold-times correspond to transition durations.
System events (e.g., interrupts, signals, exceptions, tracepoints,
and function entry/exit points) link the observed system to
the model by serving as the nodes of the semi-Markov chain.
Each realisation of the stochastic process represents one task
execution instance, and its time-to-absorption directly reflects
its latency. The estimated WCET T̂max = max {Tabs} is



Table I
MAPPING BETWEEN MODEL COMPONENTS AND MEASUREMENT DATA

MODEL MEASUREMENT

Transition-Level Mapping

Q Event Set

S ⊂ Q Start Event(s)

A ⊂ Q Termination Event(s)

P Event Sequence

Q Elapsed Time Between Events

π Frequency of Start Event(s)

Derived Properties

Tabs Task Duration

Tmax WCET

therefore given by the maximal time-to-absorption Tabs. We
assume that all executions reach an absorbing state in finite
time, excluding non-terminating paths. While loops may occur,
the probability of infinite recurrence is assumed to be zero.

Determining T̂max analytically proves challenging for com-
plex models. We instead simulate the process by sampling
iteratively, following the probability for next-step transitions
(Jn)n∈N and the sojourn times (Sn)n∈N that match the
hold-times. For a dataset of n simulation runs, we define
T̂max = max {

∑n
i=0 Ti}.

Although the events’ timestamps are inherently discrete—due
to finite resolution of hardware timers—we adopt a continuous
index set T ⊆ R+. This choice simplifies the analysis over
large discrete domains and preserves the operational abstraction
of a continuous time.

We model hold times between states as univariate random
variables and represent their distributions using GMMs. This
approach balances flexibility and tractability, allowing the
approximation of complex, potentially multimodal distributions
while maintaining a manageable number of parameters.

Alternative parametric distributions—such as uniform, nor-
mal, or gamma—can also be employed; however, they impose
structural assumptions on the shape of the data and are often
insufficient to capture irregular or heavy-tailed behaviours. In
contrast, GMMs offer a data-driven, non-restrictive alternative
that supports modelling across a wide range of empirical
scenarios. Our emphasis is therefore on maximising expressive
power rather than enforcing specific distributional forms.

C. Model-Construction

We derive a semi-Markov chain model from the runtime
traces comprising timestamps, event identifiers, and optional
context. Table I summarises the semantic correspondence
between measurement data and the model components, distin-
guishing transition-level elements from derived properties.

The recorded events determine the state space Q. Based on
our instrumentation semantics, we manually specify the set of
initial states S and absorbing states A, thereby delineate the
system’s execution paths present in the dataset.

1 2 3

P12 = 60%
F12 ∼ N (3, 1)

P23 = 80%
F23 ∼ U{2, 7}

P22 = 20%
F22 ∼ Γ(2, 0.5)

P13 = 40%
F13 ∼ N (12, 4)

Figure 3. Generator model for synthetic dataset. Starting from the initial
state q1 the model transitions to q2 in 60% and directly to the absorbing
state q3 in 40%. Both transition durations are normally distributed N (µ, σ2).
The model contains a loop at q2 which is taken in 20% with the latency
distribution following a gamma distribution Γ(α, λ). The transition from q2
to q3 is uniformly distributed U{a, b}.

The empirical initial distribution π̂ is estimated as the
relative frequency of initial states across N observed executions
π̂i = #runs(J0 = qi)/N , where #runs(· · · ) denotes the
number of runs satisfying the given condition.

Transition probabilities are inferred from observed transitions.
The empirical probability of transitioning from qi to qj is

P̂ij =
#trans(qi → qj)

#trans(qi → ∗)
,

with #trans(qi → qj) counting transitions from qi to qj ,
and #trans(qi → ∗) all transitions originating in qi. This
formulation ensures the matrix P̂ is row-stochastic.

Hold times are modelled using GMMs, fitted via expectation-
maximisation to match the timestamp differences between
source and target events of each transition. For a transition
from qi to qj , the hold time distribution is expressed as
Fij(t) =

∑K
k=1 ωkN (t | µk, σ

2
k), where ωk, µk, and σ2

k

denote the weight, mean, and variance of the k-th component,
respectively, and K is the number of mixture components.
To ensure plausibility, the distribution is truncated at t = 0
and normalised, such that negative durations are excluded and
Fij(t) is defined only for t ≥ 0.

While standard model selection techniques—such as the
Akaike information criterion (AIC) or Bayesian information
criterion (BIC)—may be employed to determine a suitable value
of K, in our setting the number of components is typically
chosen by the developer or domain expert based on the observed
complexity of the empirical distribution.

D. Conceptual Demonstration of Application

To illustrate our method, we apply it to a synthetic example
resembling typical real-time task behaviour, where latency
spans from a trigger event to a termination condition. We
generate a dataset of approximately 2 700 event-timestamp
pairs from 1 000 independent executions of the generator model
shown in Figure 3, using predefined (assumed base truth)
transition probabilities and sampling transition durations from
normal, gamma, or uniform distributions with a random noise
value added to emulate realistic measurement conditions and to
capture varying characteristics of different execution segments.
In the modelling phase, all hold-times—regardless of their



0.00

0.05

0.10

0.15

0.20

0 10 20 30
Duration [a. u.]

D
en

si
ty

Measurement

Model

Figure 4. Comparison of latency distributions for the synthetic dataset
for empirical measurements and model-based analysis. The black frequency
polygon represents the latency distribution (from initiation to termination)
derived from the synthetic dataset, while the green box plots show the
aggregated density of latencies for each duration bin, as modeled by 24
independent semi-Markov chains.

origin—are re-approximated using GMMs. Distributions with
support on negative time (Pr(t < 0) > 0) are truncated at
t = ϵ > 0 during sampling to enforce non-negativity.

We partition the generated event log into individual runs us-
ing q1 as the initial and q3 as the absorbing state with π

(0)
1 = 1.

From this, 24 independent SMC models over Q = {q1, q2, q3}
are reconstructed. Transition probabilities are inferred from
sequences in the data, and holding times modeled via GMMs.
To estimate the overall latency distribution, each model is
simulated 2 000 times. The number of SMC models and the
number of runs reflects a trade-off between computational cost
and statistical robustness, capturing variability due to stochastic
fitting convergence and enabling parallelised evaluation.

Figure 4 demonstrates the close match between empirical
and simulated latency distributions, confirming that our method
reliably reconstructs timing behaviour under noise. We revisit
this example in Sections VI and VII to analyse tail quantiles
and maximum values for pWCET estimation.

V. IMPLEMENTATION COMPONENTS

Our method requires three basic components: (A) tracepoints
as data sources of events captured during runtime, (B) a tracing
tools to collect and store events, and (C) a data analysis
framework that processes the recorded data, generates an SMC
model and evaluate its predictions.

The following describes the design and implementation
of our custom instrumentation and event tracing mechanism,
followed by a brief description of our analysis framework.

A. Timed Tracepoints

To collect timing information with minimal runtime inter-
ference, we introduce a custom lightweight tracing mecha-
nism termed Timed Tracepoints (TTPs). Conventional tracing
frameworks such as ftrace or eBPF, although expressive
and widely supported, may introduce non-negligible overheads
that compromise the precision of temporal measurements. To
overcome these limitations, timed tracepoints (TTPs) are de-
signed to record only essential data: a unique event identifier, a
high-resolution timestamp, and minimal contextual information

(e.g., CPU or process ID). This reduction in scope ensures
significantly lower overhead while retaining sufficient detail
for probabilistic timing analysis.

Each TTP consists of a static probe, that can be inserted
across the kernel, and a global handler, statically compiled
to avoid dynamic instrumentation costs. Trace events are
logged into a statically allocated memory buffer using a
global interface function (ttp_emit), thereby eliminating
the need for dynamic memory allocation and preventing timing
perturbations during logging. The interface exposes only a
minimal control surface—namely enable, disable, and reset
operations—to further reduce runtime impact. After system
execution, the contents of the buffer are retrieved from user
space and processed in an offline analysis step.

B. Data Analysis Framework

The model construction and statistical evaluation is imple-
mented in R [46], and leverages its ecosystem of parallelised
data manipulation, statistical analysis, and visualisation li-
braries [47], [48], [49]. The core workflow integrates data
preprocessing, transformation, and statistical modelling to con-
struct the SMC model and analyse system runtime behaviour.
The complete codebase is published as open-source software.1

We generate the semi-Markov chain model and its estimation
by processing measurement data in a simple CSV format.
First, we transform raw event data into a time-ordered log of
transitions that correspond to individual task runs. We scale
timestamps to a consistent unit for accuracy and compatibility.
We then apply filters to discard incomplete runs and exclude
irrelevant events occurring outside the span of the designated
start and termination events. Additional checks verify assump-
tions about the data, such as unique timestamps within each
execution run.

Next, we construct the SMC from the refined transition
data. We compute transition probabilities and derive transition
duration distributions modelled with GMMs, which we fit using
the expectation-maximisation algorithm.

Finally, we perform simulation runs to sample the distribution
of execution time from the constructed SMC. We generate
random samples of the SMC’s trajectories to estimate runtime
characteristics of the system, including the worst-case execution
time. These simulations account for variability in both transition
probabilities and sojourn times, yielding probabilistic bounds
for runtime analysis.

VI. EVALUATION

In the following, we demonstrate our method with cyclictest2,
a widely used benchmarking utility for measuring scheduling
latencies in real-time Linux systems. It reports latency as the
deviation between a timer’s programmed wake-up time and
the actual time at which the corresponding task is resumed.
While this notion of latency differs from classical execution
time—typically defined as the duration from task release to

1We published our code and data at https://github.com/lfd/smc-ta.
2Cyclictest is part of rt-tests, a suite of tools for evaluating real-time

behaviour in Linux: https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git.

https://github.com/lfd/smc-ta
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git


completion—the distinction is immaterial for our approach,
which focuses on the temporal distance between a defined start
and termination event, irrespective of semantic interpretation.

We adopt cyclictest for three reasons: (i) it exercises the full
stack from kernel interrupt handling to user-space scheduling;
(ii) it is well understood by kernel developers, including the
meaning and structure of its reported jitter; and (iii) it allows us
to quantify the instrumentation overhead by comparing latency
distributions of annotated and unannotated systems.

In our model, the expected wake-up time is treated as the
start event and the actual wake-up time as the absorbing
state. The following sections describe the experimental setup,
measurement procedure, derived results, and an analysis of
robustness under partial data conditions.

A. Experimental Setup

We conduct measurements on a StarFive VisionFive 3, a
single-board computer featuring a 64 bit RISC-V processor.
It runs a real-time enabled Linux kernel (6.11.0-rc5),
configured with the PREEMPT_RT patch stack. Any unused
devices and functionalities are disabled. To further RT-tune the
system, system noise is reduced by the isolation of CPUs via
boot parameter to pin real-time tasks to specific cores.

To minimise latency perturbations while preserving high
precision, the kernel was patched with our lightweight
TTPs.3 Tracepoints are inserted at critical locations tar-
geting the key sources of latency in our evaluation: the
riscv_timer_interrupt event handler (capturing en-
try 2⃝ and exit 3⃝) and within the scheduler to record
context switches 1⃝ (TRACE_SCHED_SWITCH) as well
as task wake-ups 4⃝ 5⃝ (TRACE_SCHED_WAKEUP and
TRACE_SCHED_WAKING). To capture expected and actual
wake-up times, two additional TTPs are integrated into the
cyclictest application using the same time base as the ones in
the kernel. Data from both the kernel and the application were
recorded independently and later merged for offline analysis
on a secondary machine.

Cyclictest is executed on the real-time Linux system with
a real-time priority of 90 and FIFO scheduling to ensure
deterministic behaviour. It was configured to capture 1 000
measurements per second over a period of 5min yielding
a dataset of 600k individual runs. The worst-case latency
observed during our measurement is 51.58 µs.

B. Results

To capture the variability inherent in both system execution
and probabilistic modelling, we generate 24 independent
SMC instances from the recorded event data. This ensemble-
based approach ensures that model construction is robust to
stochastic effects in both data and parameter estimation. Each
SMC encodes transition durations using a GMM with four
components. This number was empirically chosen as a trade-off
between model flexibility and overfitting, providing sufficient
expressiveness to approximate multi-modal timing behaviours

3Our TTP implementation and instrumentation of the Linux kernel is
available at https://github.com/lfd/linux/tree/smc-ta-ttp.

expected wake-up

TTP 2 TTP 5

TTP 4 TTP 3

TTP 1actual wake-up

Figure 5. State model of a semi-Markov chain for cyclictest. The model
comprises states for each tracing events. Two states (red) represent the expected
(initial state) actual wake-up (absorbing state) within the cyclictest application.
The remaining states (green) correspond to the manually inserted timed
tracepoint in the kernel’s interrupts handler and scheduler.

30

40

50

99% 99.9%
99.99%

99.999%
100%

Quantile Level

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Measurement

Model

Figure 6. Comparison of quantiles of execution times from the measurement
(black squares) and model sampling simulation (blue), aggregated over 24
independently built semi-Markov chains. The connecting line is included only
to guide the eye and does not represent interpolation or progression.

without introducing excessive estimation variance or compu-
tational cost. Figure 5 illustrates a simplified representation
of the resulting state structure and transitions, reflecting the
temporal ordering of key events, including both kernel-level
TTPs and cyclictest measurements.

For each SMC, we conduct 10 independent Monte Carlo
simulations to propagate timing uncertainty and sample the
system’s latency distribution. Each simulation dataset comprises
10 000 absorption runs—complete state sequences from initial
to terminal states—capturing the variability in both path selec-
tion and transition timing. This sample size aims for statistical
stability in tail estimation while remaining computationally
tractable. We analyse each resulting distribution regarding
various quantiles and average its maximal value over the 10
simulation runs.

Figure 6 compares the quantiles obtained from empirical
measurements (red) with those derived from the model simula-
tion data (blue). The mean of the models’ WCET estimation
is 53.14 µs, which overestimates the empiric WCET by about
3%. The quantile values averaged over the 24 generated SMCs

https://github.com/lfd/linux/tree/smc-ta-ttp


exhibit overestimation of 4.7% for the 99.999% quantile, 4.0%
for the 99.99%, and 2.9% for 99.9% quantile.

The results indicate a strong correspondence between the
model-derived quantiles and the values observed in the original
dataset, particularly up to the 99.9% quantile. Although the
variability increases for the 99.99% quantile and the estimated
worst-case latency—as reflected by the box plots—the mean
and median values across simulations remain very close to those
measured. These findings suggest that our approach reliably
captures the latency distribution over a wide range of quantiles,
while the increased uncertainty in the tail reflects the inherent
variability in rare, extreme events.

C. Model Robustness with Partial Datasets

To assess the impact of limited measurement data on model
accuracy, we generated partial datasets by selecting only the
first x seconds (i.e., x × 1000 runs) from the full dataset.
For each subset, we follow the same analysis procedure:
independently build 24 SMCs, generate 10 sampling datasets
with 10 000 simulation runs each.

Figure 7 compares the model predictions (black box plots)
with the corresponding measured quantile values from the
partial datasets (golden dots) and with the quantiles computed
from the full dataset (blue line). The figure clearly shows
that, even with a substantially reduced dataset, the SMC-based
predictions converge toward the reference values from the
full dataset. Notably, even when we reduce the measurement
duration to only a few seconds, the model’s predictions for
extreme quantiles (e.g., the 99.99% quantile) and the WCET
remain stable. For instance, when we use a 2 second subset—
representing only 0.3% of the full 5min dataset—the empirical
WCET in this subset is 45.56 µs, which is lower than the
51.16 µs present in the complete dataset. Despite the absence
of the latter in the subset, the averaged prediction from the
models approximates the full-dataset WCET, yielding 51.16 µs.

The impact of data reduction is more apparent at lower
quantiles. Convergence of the 95% quantile emerges only
after approximately 6 seconds of measurement. In contrast,
the predictions for the 99.99% quantile and the WCET
stabilise after 2 seconds and undergo only minor variance
with longer measurement durations. On average, the models
slightly overestimate the quantile values relative to both the
full dataset and the subsets, except for the 99% quantile. We
observe a sudden increase in the 99.99% quantile between
7 and 8 seconds, which likely reflects a higher incidence of
elevated latency values in the smaller datasets. As more data
becomes available, the quantile estimate gradually converges
towards the value derived from the full dataset.

VII. DISCUSSION

The evaluation demonstrates that our method effectively
models the timing behaviour of cyclictest latency via SMCs.
The event-centric approach integrates user space and kernel
level data, ensuring that both frequent and rare extreme
behaviours receive accurate representation. The complexity
of SMC models scales with the number of distinct events and

observed transitions rather than with the number of execution
paths. This scaling avoids the exponential complexity that
plagues many static analysis techniques [1]. The method
provides significant advantage for complex, real-world systems,
as it requires only a log of events with precise timestamps.

The robustness analysis suggests that our approach effectively
generalises from limited data. Even when we use a few seconds
of measurement rather than minutes, the SMC models extrap-
olate and predict extreme execution times despite the absence
of those extremes in the measurement window. This reduction
in required measurement time and resources proves especially
beneficial when such resources are constrained. Rapid feedback
on system performance accelerates the development cycle.
Furthermore, the minor conservative bias—where the model
tends to overestimate lower quantiles slightly—can serves as
an advantage and ensures that predicted worst-case scenarios
remain on the safe side.

We observe a rise in the 99.99% quantile between 7 and
8 seconds, which indicates sensitivity in the estimation of
extreme events. This observation highlights an area for further
refinement. Future work may enhance the model’s robustness
by incorporating adaptive weighting mechanisms or context-
sensitive constraints to more accurately capture such transitions.
Overall, these findings reinforce the value of our hybrid method,
which provides dependable runtime predictions and offers
runtime insights for further system optimisation.

We applied our method to an alternative test operating
system using the same approach. We instrumented the kernel
and implemented an application analogous to cyclictest.
Results agree with those obtained for the original system.

Our framework provides an intuitive and interpretable repre-
sentation of system latency by modelling execution time as time-
to-absorption of the SMC. It aids developers to identify key
characteristics—such as waiting for I/O or interrupt handling—
that contribute most significantly to performance variability.

The reliance on GMMs to model transition durations risks
overfitting, particularly in scenarios with low variability. We
also encountered logically invalid state sequences in our
experiments. Incorporating context-sensitive constraints could
prevent infeasible state transitions and enhance model validity.
These issues are not unique to our approach, however; other
measurement-based timing analysis methods also suffer from
overfitting and incomplete representation of relevant factors.

The effectiveness of our method depends on the quality
and granularity of both the user-provided model (through
instrumentation) and the measurement data. The model’s
predictive accuracy relies on matching its complexity with
that of the underlying system. Overly simplistic models may
omit critical execution paths, while overly complex models
risk overfitting the available data. A limitation to our current
implementation is the assumption of time-homogeneity. We also
simplify by assuming that transition durations depend solely
on the source and target states, thereby neglecting possible
long-term dependencies and context-sensitive effects, such as
whether preemption is disabled.



99.99% 100%

95% 99.9%

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

43

44

45

45

50

55

25.5

26

26.5

27

46

48

50

52

Duration of Measurement [s]

E
xe

cu
tio

n
Ti

m
e

[µ
s]

Quantile Level of Model Estimations All Measurements Portion of Measurements

Figure 7. Convergence of quantile estimates with reduced measurement duration. Quantile estimates are derived from simulation data generated using subsets
of the full dataset. For each measurement duration (first x seconds, i.e., x× 10000 runs), 24 SMC models are generated. Each of the models is sampled ten
times with 10 000 runs. The models’ prediction is the mean over quantiles calculated for each of the 10 sampling runs. Black box plots show the quantile
predictions from SMC models, golden squares represent measured quantiles, and the blue line represents the quantile computed from the full dataset.

Although our demonstration confirms the model’s generali-
sation capability, challenges remain. Missing transitions yield
an incomplete state model that may reduce accuracy [44].
The model’s simplicity, however, permits mitigation. We can
address missing transitions and adjust assumptions regarding
the distribution of transition durations between events manually.
In such cases, we readily adapt the model by modifying its
probabilistic parameters, such as the transition probability
matrix P or the holding-time kernel Q.

VIII. CONCLUSION

We presented a semiformal hybrid method for runtime
analysis that integrates measurement-based observations with
model-based techniques. We employ semi-Markov chains
to model execution times (latency between critical system
events). Our approach balances realism and statistical precision,
while preserving simplicity. It operates at a high level of
abstraction, and primarily requires a choice of statistical
distribution for transition durations. Our method requires only
minor modifications to the target system, such as enabling
and configuring lightweight tracepoints. As demonstrated in
our evaluation, the approach integrates runtime interference
within and across different domains, while imposing minimal
overhead without compromising accuracy.

Our SMC models capture the structural characteristics of
task execution through inter-event latencies. The experimental

evaluation with cyclictest shows that the approach overestimates
the empirical WCET by only about 3% on average. This level
of precision persists even when the measurement duration is
reduced from multiple minutes to only a few seconds. Although
longer measurements are typically needed to capture worst-
case events directly, our framework predicts WCET from a
limited dataset. This offers developers rapid insights into system
timing behaviour, enabling quick feedback on the impact of
code modifications and accelerating development.

In summary, our approach bridges rigorous modelling
and pragmatic measurement-driven validation. It combines
empirical data with stochastic models, and is applicable to
rapid prototyping and in-depth performance evaluation.

We plan to extend the framework to support online analysis
and integrate it with established real-time monitoring tools. This
will enable real-time verification, adaptive instrumentation, and
broader applicability in dynamic and industrial settings.

On the modelling side, we aim to incorporate context-
sensitive factors (e.g., temperature, voltage, preemption state) to
improve predictive accuracy and responsiveness to system con-
ditions. We will also explore richer sojourn time distributions
to better capture tail behaviour and rare-event dynamics.

Finally, we plan to apply the method to larger and more
complex systems, including multicore and distributed real-time
platforms, to evaluate scalability and demonstrate its utility in
realistic deployment scenarios.



REFERENCES

[1] R. I. Davis and L. Cucu-Grosjean, “A survey of
probabilistic timing analysis techniques for real-time
systems,” Leibniz Transactions on Embedded Systems,
2019. DOI: 10.4230/LITES-V006-I001-A003.

[2] M. Becker, R. Metta, R. Venkatesh, and S. Chakraborty,
“Scalable and precise estimation and debugging of the
worst-case execution time for analysis-friendly proces-
sors: A comeback of model checking,” International
Journal on Software Tools for Technology Transfer, 2019.
DOI: 10.1007/s10009-018-0497-2.

[3] F. Meng and X. Su, “Reducing WCET overestimations
by correcting errors in loop bound constraints,” Energies,
2017. DOI: 10.3390/en10122113.

[4] P. Graydon and I. Bate, “Realistic safety cases for the
timing of systems,” The Computer Journal, 2014. DOI:
10.1093/comjnl/bxt027.

[5] K. Wintersperger, H. Safi, and W. Mauerer, “Qpu-system
co-design for quantum hpc accelerators,” in Architecture
of Computing Systems. Springer International Publishing,
2022. DOI: 10.1007/978-3-031-21867-5 7.

[6] R. Ramsauer, S. Huber, K. Schwarz, J. Kiszka, and
W. Mauerer, “Static hardware partitioning on risc-v:
Shortcomings, limitations, and prospects,” in 2022 IEEE
8th World Forum on Internet of Things (WF-IoT), 2022.
DOI: 10.1109/WF-IoT54382.2022.10152063.

[7] W. Mauerer and M. C. Jaeger, “Open source engineering
processes / open source-entwicklungsprozesse,” itit,
2013. DOI: 10.1515/itit.2013.1008.

[8] S. Jiménez Gil, I. Bate, G. Lima, L. Santinelli, A.
Gogonel, and L. Cucu-Grosjean, “Open challenges for
probabilistic measurement-based worst-case execution
time,” IEEE Embedded Systems Letters, 2017. DOI: 10.
1109/LES.2017.2712858.

[9] L. Santinelli, F. Guet, and J. Morio, “Revising
measurement-based probabilistic timing analysis,” in
2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), Pittsburg, PA, USA,
2017. DOI: 10.1109/RTAS.2017.16.

[10] J. Abella et al., “WCET analysis methods: Pitfalls and
challenges on their trustworthiness,” in 10th IEEE Inter-
national Symposium on Industrial Embedded Systems
(SIES), 2015. DOI: 10.1109/SIES.2015.7185039.

[11] G. Bernat, A. Colin, and S. Petters, “WCET analysis
of probabilistic hard real-time systems,” in 23rd IEEE
Real-Time Systems Symposium, 2002. RTSS 2002., 2002.
DOI: 10.1109/REAL.2002.1181582.

[12] C. Daws and S. Tripakis, “Model checking of real-time
reachability properties using abstractions,” in Tools and
Algorithms for the Construction and Analysis of Systems,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
DOI: 10.1007/bfb0054180.

[13] S. Jeon, K. Cho, C. G. Kang, J. Lee, H. Oh, and
J. Kang, “Quantum probabilistic model checking for
time-bounded properties,” Artifact for ”Quantum Proba-

bilistic Model Checking for Time-Bounded Properties”,
OOPSLA2 2024. DOI: 10.1145/3689731.

[14] A. Betts, N. Merriam, and G. Bernat, “Hybrid
measurement-based WCET analysis at the source level
using object-level traces,” in 10th International Work-
shop on Worst-Case Execution Time Analysis (WCET
2010), Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2010. DOI: 10.4230/OASIcs.WCET.2010.54.

[15] S. Edgar and A. Burns, “Statistical analysis of WCET
for scheduling,” in Proceedings 22nd IEEE Real-Time
Systems Symposium (RTSS 2001) (Cat. No.01PR1420),
2001. DOI: 10.1109/REAL.2001.990614.

[16] C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer,
and R. I. Davis, “A survey of timing verification
techniques for multi-core real-time systems,” ACM
Computing Surveys (CSUR), 2019. DOI: 10 . 1145 /
3323212.

[17] F. Brandenburg, “A comparison of scheduling latency in
linux, preempt rt, and litmusrt,” OSPERT 2013, 2013.

[18] S. D. Sharma and M. Dagenais, “Hardware-assisted
instruction profiling and latency detection,” The Journal
of Engineering, 2016. DOI: 10.1049/joe.2016.0127.

[19] Y. Bao et al., HMTT: A hybrid hardware/software tracing
system for bridging memory trace’s semantic gap, 2011.
DOI: 10.48550/arXiv.1106.2568.

[20] D. B. De Oliveira and R. S. De Oliveira, “Timing
analysis of the PREEMPT RT linux kernel,” Software:
Practice and Experience, 2016. DOI: 10.1002/spe.2333.

[21] R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle,
“Distributed performance monitoring: Methods, tools,
and applications,” IEEE Transactions on Parallel and
Distributed Systems, 1994. DOI: 10.1109/71.285605.

[22] A. Vergé, N. Ezzati-Jivan, and M. R. Dagenais,
“Hardware-assisted software event tracing,” Concurrency
and Computation: Practice and Experience, 2017. DOI:
10.1002/cpe.4069.

[23] A. M. K. Cheng, Real-time systems: scheduling, analysis,
and verification. Hoboken, NJ: Wiley-Interscience, 2002.

[24] P.-C. G. Vassiliou and A. C. Georgiou, “Markov and
semi-markov chains, processes, systems, and emerging
related fields,” Mathematics, 2021. DOI: 10 . 3390 /
math9192490.

[25] V. S. Barbu, Semi-Markov Chains and Hidden Semi-
Markov Models Toward Applications: Their Use in Reli-
ability and DNA Analysis (Lecture Notes in Statistics).
New York, NY: Springer New York, 2008. DOI: 10 .
1007/978-0-387-73173-5.

[26] G. D’Amico, F. Petroni, and F. Prattico, “Reliability
measures of second-order semi-markov chain applied to
wind energy production,” Journal of Renewable Energy,
2013. DOI: 10.1155/2013/368940.

[27] F. Cartella, J. Lemeire, L. Dimiccoli, and H. Sahli, “Hid-
den semi-markov models for predictive maintenance,”
Mathematical Problems in Engineering, 2015. DOI: 10.
1155/2015/278120.

https://doi.org/10.4230/LITES-V006-I001-A003
https://doi.org/10.1007/s10009-018-0497-2
https://doi.org/10.3390/en10122113
https://doi.org/10.1093/comjnl/bxt027
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1109/WF-IoT54382.2022.10152063
https://doi.org/10.1515/itit.2013.1008
https://doi.org/10.1109/LES.2017.2712858
https://doi.org/10.1109/LES.2017.2712858
https://doi.org/10.1109/RTAS.2017.16
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/REAL.2002.1181582
https://doi.org/10.1007/bfb0054180
https://doi.org/10.1145/3689731
https://doi.org/10.4230/OASIcs.WCET.2010.54
https://doi.org/10.1109/REAL.2001.990614
https://doi.org/10.1145/3323212
https://doi.org/10.1145/3323212
https://doi.org/10.1049/joe.2016.0127
https://doi.org/10.48550/arXiv.1106.2568
https://doi.org/10.1002/spe.2333
https://doi.org/10.1109/71.285605
https://doi.org/10.1002/cpe.4069
https://doi.org/10.3390/math9192490
https://doi.org/10.3390/math9192490
https://doi.org/10.1007/978-0-387-73173-5
https://doi.org/10.1007/978-0-387-73173-5
https://doi.org/10.1155/2013/368940
https://doi.org/10.1155/2015/278120
https://doi.org/10.1155/2015/278120


[28] S. Ruiz-Suarez, V. Leos-Barajas, and J. M. Morales,
“Hidden markov and semi-markov models when and
why are these models useful for classifying states in
time series data?” Journal of Agricultural, Biological and
Environmental Statistics, 2022. DOI: 10.1007/s13253-
021-00483-x.

[29] S.-Z. Yu, “Hidden semi-markov models,” Artificial
Intelligence, 2010. DOI: 10.1016/j.artint.2009.11.011.

[30] S. Bozhko, F. Marković, G. von der Brüggen, and
B. B. Brandenburg, “What really is pWCET? a rigorous
axiomatic proposal,” in 2023 IEEE Real-Time Systems
Symposium (RTSS), 2023. DOI: 10.1109/RTSS59052.
2023.00012.

[31] G. Chennupati, N. Santhi, P. Romero, and S. Eidenbenz,
“Machine learning–enabled scalable performance predic-
tion of scientific codes,” ACM Transactions on Modeling
and Computer Simulation, 2021. DOI: 10.1145/3450264.

[32] J. P. Thoma, J. Feldtkeller, M. Krausz, T. Güneysu,
and D. J. Bernstein, “BasicBlocker: ISA redesign to
make spectre-immune CPUs faster,” 24th International
Symposium on Research in Attacks, Intrusions and
Defenses, 2021. DOI: 10.1145/3471621.3471857.

[33] R. Ragel, J. A. Ambrose, and S. Parameswaran, “Se-
cureD: A secure dual core embedded processor,” 2015.

[34] H.-Y. Lin and R. Tsay, “A precise program phase iden-
tification method based on frequency domain analysis,”
2021.

[35] A. N. Amalou, I. Puaut, and G. Muller, “WE-HML:
Hybrid WCET estimation using machine learning for
architectures with caches,” in 2021 IEEE 27th In-
ternational Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2021.
DOI: 10.1109/RTCSA52859.2021.00011.

[36] B. Cai et al., “Application of bayesian networks in
reliability evaluation,” IEEE Transactions on Industrial
Informatics, 2019. DOI: 10.1109/TII.2018.2858281.

[37] Z. Zhang, “Bayesian networks with examples in
RBayesian networks with examples in r,” Journal of
Quality Technology, 2023. DOI: 10.1080/00224065.2023.
2171320.

[38] B. G. Marcot and T. D. Penman, “Advances in bayesian
network modelling: Integration of modelling technolo-
gies,” Environmental Modelling & Software, 2019. DOI:
10.1016/j.envsoft.2018.09.016.

[39] J. L. Puga, M. Krzywinski, and N. Altman, “Bayesian
networks,” Nature Methods, 2015. DOI: 10.1038/nmeth.
3550.

[40] R. Alur, “Timed automata,” in Computer Aided Veri-
fication, N. Halbwachs and D. Peled, Eds., vol. 1633,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 8–22. DOI: 10.1007/3-540-48683-6 3.

[41] D. B. de Oliveira, R. S. d. Oliveira, and T. Cucinotta,
“A thread synchronization model for the PREEMPT rt
linux kernel,” Journal of Systems Architecture, 2020.
DOI: 10.1016/j.sysarc.2020.101729.

[42] D. B. de Oliveira, T. Cucinotta, and R. S. de Oliveira,
“Efficient formal verification for the linux kernel,”
in Software Engineering and Formal Methods, P. C.
Ölveczky and G. Salaün, Eds., Springer International
Publishing, 2019.

[43] D. B. de Oliveira, “Automata-based formal analysis
and verification of the real-time linux kernel,” Ph.D.
dissertation, Universidade Federal de Santa Catarina and
Scuola Superiore Sant’Anna, 2020.

[44] B. Lesage, D. Griffin, F. Soboczenski, I. Bate, and R. I.
Davis, “A framework for the evaluation of measurement-
based timing analyses,” in Proceedings of the 23rd
International Conference on Real Time and Networks
Systems, Lille France: ACM, 2015. DOI: 10 . 1145 /
2834848.2834858.

[45] A. Friebe, F. Marković, A. V. Papadopoulos, and T.
Nolte, “Continuous-emission markov models for real-
time applications: Bounding deadline miss probabilities,”
in 2023 IEEE 29th Real-Time and Embedded Technology
and Applications Symposium (RTAS), San Antonio, TX,
USA: IEEE, 2023. DOI: 10 .1109/RTAS58335.2023.
00009.

[46] R Core Team, R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing, 2024.

[47] H. Wickham et al., “Welcome to the tidyverse,” Journal
of Open Source Software, 2019. DOI: 10.21105/joss.
01686.

[48] H. Wickham, ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York, 2016.

[49] T. Barrett et al., data.table: Extension of ‘data.frame‘.
2024.

https://doi.org/10.1007/s13253-021-00483-x
https://doi.org/10.1007/s13253-021-00483-x
https://doi.org/10.1016/j.artint.2009.11.011
https://doi.org/10.1109/RTSS59052.2023.00012
https://doi.org/10.1109/RTSS59052.2023.00012
https://doi.org/10.1145/3450264
https://doi.org/10.1145/3471621.3471857
https://doi.org/10.1109/RTCSA52859.2021.00011
https://doi.org/10.1109/TII.2018.2858281
https://doi.org/10.1080/00224065.2023.2171320
https://doi.org/10.1080/00224065.2023.2171320
https://doi.org/10.1016/j.envsoft.2018.09.016
https://doi.org/10.1038/nmeth.3550
https://doi.org/10.1038/nmeth.3550
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1016/j.sysarc.2020.101729
https://doi.org/10.1145/2834848.2834858
https://doi.org/10.1145/2834848.2834858
https://doi.org/10.1109/RTAS58335.2023.00009
https://doi.org/10.1109/RTAS58335.2023.00009
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686

	Introduction
	Background
	Timing Analysis in Real-Time Systems
	Observation of Real-Time Systems
	Semi-Markov Chain

	Related Work
	Method
	Measurement Process
	Stochastic Model
	Model-Construction
	Conceptual Demonstration of Application

	Implementation Components
	Timed Tracepoints
	Data Analysis Framework

	Evaluation
	Experimental Setup
	Results
	Model Robustness with Partial Datasets

	Discussion
	Conclusion

