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Abstract—Computational advantages of quantum systems over
classical computers have been established in principle since
decades. However, only a handful of algorithmic primitives
with proven, expected or suspected quantum advantage over
the best possible (or known) classical techniques are available.
Despite substantial progress in limitations of de-quantisation and
insights on quantum-classical separation, it remains an open
challenge to systematically construct algorithms that exhibit
quantum advantage. This can, at least partly, be attributed
to a still incomplete understanding of the origins of quantum
computational power.

Intermediate non-stabiliserness, the traversal of states outside
the Clifford orbit, indicates non-classical behaviour of a quantum
circuit. Therefore, non-stabiliserness is strictly necessary to reach
quantum advantage. On the other hand, “the more, the better”
is not a good measure for non-classical behaviour, as high non-
stabiliserness is the norm for quantum states, demonstrated by
the expected non-stabiliserness of a random Haar sampled state,
which is with overwhelming probability close to its upper bound.
To progress towards quantum advantage, it therefore seems
pertinent to understand the efficient use of the non-classical,
yet abundantly available resource of non-stabiliser states at the
right rate and places in the quantum computation.

In this paper, we present an approach towards improving
the required understanding by tracking the behaviour of non-
stabiliserness across various algorithms with known of suspected
quantum advantages. In particular, we pair results of resource
theoretic work around non-stabiliser entropies with geometric
considerations about how direct a quantum state evolution
approaches the solution space. Using our techniques we are able
to unveil different efficiencies in the use of non-stabiliserness com-
paring structured and unstructured variational state evolution.
This leaves us to hypothesise that greater degrees of freedom to
the classical optimisation step in such methods introduces the
risk of unnecessary non-stabiliser consumption, which becomes
increasingly costly when transitioning from the NISQ era into
the early era of error correction.

Index Terms—quantum resource theory, quantum magic states,
state evolution, intermittent entanglement, quantum algorithms

I. INTRODUCTION

Contrary to the general discussion of quantum versus clas-
sical computing, which often treats these as separate computa-
tional models, quantum computing (QC) extends the classical
computational model instead of replacing it. Quantum compu-
tations can (and for many suggested approaches also do, par-
ticularly for any variational ansatz) contain classical parts [7,
27, 10], which shifts the question of separating the two models

to a more nuanced approach of identifying inherently quantum
parts in computations. While possible speed-ups over purely
classical approaches must obviously originate from quantum
parts of a computation, not every quantum sub-computation
necessarily needs to positively contribute to overall solution
finding. Identifying reasons for and structure of quantum
speed-ups is a crucial question to improve the understanding of
chances and limitations of quantum approaches. In this paper,
we address this question from a novel point of view by using
geometrical distance arguments within a solution space.

Several measures for quantumness have been established;
entanglement is a prime candidate that not only originates
from the very beginnings of quantum mechanics [16], but
has also drawn substantial interest during the last few decades
[25, 17, 9]. Entanglement is a distinct, non-classical feature of
quantum mechanics, and is considered one of the fundamen-
tal computational resources of QC [18]. However, its effect
on computational power is not easy to characterise from a
computer science point of view. It is generally acknowledged
and understood that entanglement plays a fundamental role in
many quantum algorithms and protocols. Trying to pinpoint
exactly where and how such non-classical advantage is ex-
ploited necessitates more fine-grained insights. In particular,
it is well known by now that not all forms of entanglement
are equal (or: equally useful) [22]. Even maximally entangled
states like the seminal GHZ state can be prepared by Clifford
circuits; it is known that these can be efficiently simulated
by a classical computer [13]. States within the orbit of the
Clifford group are called stabiliser states (STAB). Conversely,
states outside of STAB are referred to as non-stabiliser state
(Example of non-STAB entangled states include W-states
with three or more qubits) [11]. Circuits required for their
preparation are believed to be classically hard to simulate.

Stabiliser-Rényi-Entropies (SRE) have been recently intro-
duced to entropically measure non-stabiliserness, also referred
as magic, of quantum states [21]. In this work, we adopt
SRE as measures of intermediate states to locate how and
where non-classical effects appear during the execution of
contemporary quantum algorithms.

The structure of the paper is as follows: In section II,
we review history and significance of non-stabiliser resource
theory and measures, particular stabiliser Rényi entropies.
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Followed by section III where we provide an introduction
into the relevant definitions and characteristics of stabiliser
Rényi entropies. We then present a geometric perspective in
section IV, and show how to calculate geodesic distances to
target spaces by the means of taking the expectation value of
a special problem Hamiltonian. We extend this approach to
invariance of the qubit order, and show how this enables us
to reveal previously easily overlooked non-stabiliser effects.
After that, we put our theoretic framework to use in section V
to analyse the differences of intermediate non-stabiliser con-
sumption in structured and unstructured state evolutions. By
combining the quantum resource theoretic SRE measures with
a geometric perspective, we are able to qualify the efficiency
of non-stabiliser consumption. We observed a significantly
higher efficiency for the structured evolution than for the
unstructured case. Rounding things up, we conclude our results
and discuss the potential of combining resource theoretic tools
with geometric perspectives in sections VI and VII.

II. RELATED WORK

Given the significance of non-stabiliser effects in quantum
computing, it is no surprise that understanding their proper-
ties and effects has been considered in numerous contexts.
In 1997, Gottesman presented the stabiliser formalism in
his PhD thesis, laying the foundations of quantum error
correction protocols. This formalism already covers many
quantum specific phenomena like GHZ entanglement. The
seminal Gottesman-Knill theorem [13], presented shortly after,
showed a quantum-classical separation by stating that every
stabiliser circuit can be efficiently simulated by a classical
computer. A stabiliser circuit is restricted to using gates from
the Clifford group. An interesting conflict arises as stabiliser
circuits are able to harness some quantum effects, yet an
efficient simulate requires that the separation of classical
and quantum complexity lies somewhere behind the obvious
first line drawn between classical and non-classical physics.
Colloquially speaking: There seams to be a threshold of non-
classical effects needed to achieve non-classical speedups. For
Clifford circuits, universality can be recovered by a magic
state injection process [3]: Magic states are provided on
an ancilla register, letting them interfere with the Clifford
part of the circuit. These magic states are non-STAB states.
This turns STAB states into resources that are consumed by
the magic injection procedure. Consequently, in the key to
reaching a quantum advantage must be affected by magic state
consumption. This motivated the the recent development of a
resource theory for non-stabiliserness [8], producing a diverse
set of non-stabiliserness measures including stabiliser rank [4],
stabiliser fidelity [5], or stabiliser nullity [2]. Following up on
these results, more abstract characterisations of measures like
non-stabiliser monotones have been defined [15]. The most
relevant for our work are stabiliser Rényi entropies (SRE) [21]
as introduced by Leone et al. Stabiliser Rényi entropies are
also known to be monotones for non-stabiliserness resource
theory [20]. Most measures of non-stabiliserness are hard to
compute. The SRE on the other hand is known to be efficiently

computable for matrix product state [23]. Further, SREs can
also be determined imperially through measurements [24].

III. NON-STABILISERNES

Before defining a measure for non-stabeliserness, it seems
partinent to take a brief moment for discussing the term non-
stabeliserness. We already mentioned that STAB is given by
the orbit if the Clifford group (recall that the orbit of an ele-
ment x in a group G is given by G(x) := {gx ∈ G : g ∈ G}).
The Clifford group Cn =

{
V ∈ U2n : V Pn V

† = Pn

}
is the

normaliser of the Pauli group Pn = ⟨X,Y, Z⟩n, where X,Y, Z
are the Pauli operators and n denotes the number of qubits. In
the following, we drop suffix n if the number of qubits can be
deduced from the context, or to describe systems of arbitrary
(but finite) size.

An entropy function can be defined as follows:

Definition 1 (see Ref. [21]).

SREα(|ψ⟩) =
1

1− α
log

∑

P∈Pn /⟨±i 1n⟩

ΞαP (|ψ⟩)− log 2n (1)

ΞP (|ψ⟩) =
1

2n
⟨ψ|P |ψ⟩2 (2)

Definition 1 may require some explanation to establish
an intuitive understanding. Let us start from eq. (2). Note
that ΞP (|ψ⟩) ≤ 1 and

∑
P∈Pn /⟨±i 1n⟩ ΞP (|ψ⟩) = 1. Thus,

{ΞP }P∈Pn /⟨±i 1n⟩ induces a probability distribution on a state
|ψ⟩. Here we also immediately see why we used the factor
group of Pn, ignoring the scalar unit factors ±1 and ±i.
Due to the applied square in eq. (2), they would only double
up in the sum, not contributing any valuable information to
the distribution. This also explains the normalisation factor of
2−n corresponding to |Pn /⟨±i1n⟩| = 2n in contrast to the
perhaps expected 4n = |Pn|. We also see, with {ΞP } being
a probability distribution, eq. (1) simply defines a family of
Rényi entropies offset by log 2n.

To demonstrate and provide intuition about how Stabiliser-
Rényi-Entropies work, it is worth looking into their main
characteristics, to understand how SREs characterise stabiliser
states. For this, we will revisit the property which is most
important for our work, namely that non-STAB states are
characterised by a non-zero SRE. For didactic reasons and the
sake of completeness we also provide a proof. The interested
reader may be referred to the original paper for a more in
depth discussion [21].

Theorem 1 (see [21]). A state |ψ⟩ is in STAB if and only if
SREα(|ψ⟩) = 0.

Proof. Let |ψ⟩ ∈ STAB be some not further specified stabiliser
state. Then |ψ⟩ is in the Clifford orbit of |0⟩, meaning
that there exist a U ∈ C such that U |0⟩ = |ψ⟩. Due
to the Clifford group stabilising the Pauli group, we have
U†PjU = Pj for Pi, Pj ∈ Pn /⟨±i1n⟩. In fact, C is
isomorphic to the group of permutations in a sense that U† ·U :
Pj 7→ Pπ(j). Therefore,

{
ΞPj (|ψ⟩)

}
=

{
ΞPπ(j)

(|0⟩)
}

and
consequently

∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩) =

∑
P∈P /⟨±i 1⟩ Ξ

α
P (|0⟩).



Note that, ⟨a|Z|a⟩|a=0,1 = ±1, ⟨a|1|a⟩|a=0,1 = 1 and
⟨a|X,Y|a⟩|a=0,1 = 0, which leads to the conclusion that

⟨0|P |0⟩ =
{
0 if ∃i : σi ∈ {X,Y}
1 otherwise

(3)

for all P = σi ⊗ · · · ⊗ σn ∈ Pn /⟨±i1n⟩. There are
2n many P ∈ Pn /⟨±i1n⟩ such that ⟨0|P |0⟩ = 1. As a
result

∑
P∈Pn /⟨±i 1n⟩ Ξ

α
P (|ψ⟩) = 2n2−nα = 2n(1−α). Here

is where the offset of log(2n) in eq. (1) comes into play, as
SREα(|ψ⟩) = (1−α)−1 log 2n(1−α)−log 2n = log 2n−log 2n.
We conclude that SREα(|ψ⟩) = 0 for all |ψ⟩ ∈ STAB.

To prove the other direction, we will use an alternative
characterisation of stabiliser states, which is that |ψ⟩ is in
STAB if and only if there exists a subset S ⊂ Pn such that
|S| = 2n and A |ψ⟩ = |ψ⟩ for all A ∈ S. Now let’s assume
SREα(|ψ⟩) = 0 for some arbitrary state |ψ⟩. Written out, that
gives us (1 − α)−1 log

∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩) − log 2n = 0

or rewritten log
∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩) = log 2n(1−α). Thus,

log
∑
P∈P /⟨±i 1⟩ 2

−nα⟨ψ|P |ψ⟩2α = 2n−nα. From this we can
derive a condition on |ψ⟩ for SREα(|ψ⟩) to equal to 0:

f(α) = 2n (4)

where f(α) = a1(α) + · · · + a2n(α) with ai = ⟨ψ|Pi|ψ⟩2α
and Pi ∈ Pn /⟨±i1n⟩. Due to f being a constant function,
we have d

dαf = 0. Additionally, we know that all ai ≥ 0 and
therefore d

dα ⟨ψ|P |ψ⟩
2α

= 0 for all P ∈ Pn /⟨±i1n⟩. From,
d
dα ⟨ψ|P |ψ⟩

2α
= 2⟨ψ|P |ψ⟩2α log⟨ψ|P |ψ⟩ = 0 we conclude,

that ⟨ψ|P |ψ⟩ ∈ {0, 1} for all P ∈ Pn /⟨±i1n⟩. Note that
⟨ψ|P |ψ⟩ = 1 only if P |ψ⟩ = |ψ⟩ and f(α) = 2n. Thus,
there exists a subset S ⊂ Pn /⟨±i1n⟩ such that |S| = 2n and
A |ψ⟩ = |ψ⟩ for all A ∈ S; showing that |ψ⟩ ∈ STAB.

Corollary 1. Stabiliser-Rényi-Entropies are invariant under
Clifford operations.

Proof. This follows directly from the isomorphism between
the Clifford group and permutations. Let |ψ⟩ be an arbi-
trary state and U ∈ C, then we get that

{
ΞPj

(U |ψ⟩)
}

={
ΞPπ(j)

(|ψ⟩)
}

and thus SREα(U |ψ⟩) = SREα(|ψ⟩).
IV. GEOMETRIC PERSPECTIVE

If we take a random Haar sampled state |ψ⟩ ∼ Haar. Then
it’s expected SRE is E|ψ⟩∼Haar(SREα(|ψ⟩)) ∈ O(n) for all
α ≥ 2, with overwhelming probability [14]. Additionally,
SREs are linear upper bounded by SREα(|ψ⟩) ≤ log(2n) ∈
O(n) [21] . This means, although intermediate states with
SRE ≥ 0 are linked with and even necessary for quantum
advantages, their occurrence is nothing special and has to be
expected. Consequently, this raises the question whether the
observed non-stabiliserness has a contributing factor to the
computation or if it is merely a byproduct of a suboptimal
choice of unitary propagators. So, what does contributing to
the computation mean? Every computation can be interpreted
as a state evolution starting at a specific initial state |ψ0⟩ to a
target state |ψT ⟩ encoding a problem solution or a superposi-
tion of thereof. Geometrically speaking, such a state evolution

resembles a rotation of the state vector. The whole circuit
represents one singular unitary, which in turn corresponds
to a direct rotation from the initial to the final state around
the rotational axis defined by said unitary. This only applies
from the most top-level view and discard the actual realisation
of the circuit’s unitary given by a concrete partitioning into
quantum gates and their correct sequencing. The circuits gate
level realisation induces a path of the resulting state evolution,
which is most likely diverging from the shortest path at some
point. In geometric terms, the shortest, most direct path of this
state evolution would be characterised by the geodesic from
the initial state to the target. In [1] Anandan and Aharonov
presented exactly this geometric perspective in conjunction
with the concept of geodesic efficiency µgd = s0/s of a state
evolution where s0 is the geodesic distance and s the actual
distance travelled. If we want to specify the distance to a
specific state |ϕ⟩, we write s0(|ϕ⟩) and s(|phi⟩) and if the
initial state is not clear from the context we write s(|ψ⟩, |ϕ⟩)
and s0(|ψ⟩, |ϕ⟩)

A. Problem Hamiltonian

Usually there is more than one unique solution to a compu-
tation problem, e.g. all binary variable assignments satisfying a
propositional satisfiability problem. This adds variability to the
geometric perspective discussed above. Instead of rotating our
initial state to a specific target state |ψT⟩, a quantum algorithm
has the freedom to reach any state within the target space,
which is the subspace of H⊗n that contains all superpositions
of quantum states encoding problem solutions. Thus, the
geodesic distance s0 from above needs to be reinterpreted to be
the shortest geodesic distance to one of the states in the target
space. In the following, we will address this by first defining
the target space based on an indicator function of problem
solutions and a two-level problem Hamiltonian projecting on
said target space. We then show, that the expected value of
this problem Hamiltonian corresponds to the scaled inverse
geodesic distance from the initial state to the target space.

Definition 2. Let be c : Fn
2 → F2 the solution verifier

of a problem with a finite set of classical solutions T =
{t ∈ Fn

2 : c(t) = 1}. We then linear extent c(·) to quantum
states |ψ⟩ = ∑

b∈Fn
2
αb |b⟩:

c(|ψ⟩) =
∑

b∈Fn
2

|αb|2c(b) (5)

Further, we define a quantum target space

T = {|t⟩ : c(|t⟩) = 1} ⊂ H⊗n (6)

Remark 1. Note that T is indeed a complete subspace of
H⊗n, spanned by {|b⟩ : b ∈ Fn

2 , c(b) = 1}. Thus, T has a
dimension of |T |.
Definition 3. Based on c(|ψ⟩), we define a 2-level problem
Hamiltonian Hc by the condition that

⟨Hc⟩ = c(|ψ⟩) (7)
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Fig. 1: Evolution of the colour representation of the state in
quantum circuits. Every vertical slice at x = i represents the
colour spectrum of the state after the ith gate. The reduced
one qubit density matrices are mapped to a hue-saturation-
value colour with hsv(⟨P0⟩, ⟨P+⟩, ⟨P+i⟩). Within a vertical
slice, they are sorted according to the hsv tupel.

We quickly see that Hc is a projector onto T and can
explicitly defined by Hc =

∑
t∈T |t⟩⟨t|.

Theorem 2. Given a target space T and the corresponding
problem Hamiltonian Hc according to definitions 2 and 3, we
have

s0(T ) := min
|t⟩∈T

s0(|t⟩) = 2 arccos⟨Hc⟩ (8)

Proof. Let BT = {|t⟩ : t ∈ T} the basis of T . We then expand
BT with BT = {|b⟩ : b ∈ Fn

2 \T} such that BT ∪BT forms a
basis of H⊗n. Given that expanded basis, we can write every
state |ψ⟩ ∈ H⊗n as |ψ⟩ = ∑|T |

i=1 τi|ti⟩+
∑n−|T |
i=1 βi|bi⟩, with∑|T |

i=1|τi|
2
+

∑n−|T |
i=1 |βi|2 = 1 and for all |t⟩ ∈ T we have∑|T |

i=1|τi|
2
= 1. Now, let Hc be a problem Hamiltonian as

defined in definition 3, then Hc =
∑

|t⟩∈BT
|t⟩⟨t| and

0 ≤ ⟨Hc⟩ =
|T |∑

i=1

|τi|2 ≤ 1

Now, let’s take an arbitrary state |ψ⟩, then ⟨Hc⟩ = ⟨ψ|Hc|ψ⟩
is exactly the overlap between |ψ⟩ and its projection onto the
target space Hc |ψ⟩, which satisfies

⟨Hc⟩ = max
|t⟩∈T

|⟨ψ|t⟩|

Now we use that s0(|t⟩) = 2 arccos|⟨ψ|t⟩| [6]. Now due to
the monotonicity of arccos in [0, 1] we can pull out the max
from 2 arccos⟨Hc⟩ to end up at eq. (8).

B. Permutations

In a typical quantum circuit, qubits are sequentially num-
bered. This numbering implies an unsubstantiated sense of
locality or neighbourhood. Indeed, it is actually completely
arbitrary and nothing more of a naming convention. Qubit
qi and qj could also be remapped qσ(i) and qσ(j) for some

permutation σ ∈ Sn. The actual relevance of locally comes
from the concrete problem instance 1, which imposes relations
between variables, which in turn are mapped to qubits. Those
connections could better be represented as a graph, which in
turn is isomorphic under vertex permutations. On this graph,
we assign to each vertex a colour based on properties of its
linked qubit. By keeping track of the necessary permutations,
we can, at each intermediate time, determine the permutation
order of qubits based on their assigned colour.

One could thus visualise a quantum state evolution as the
change of a colour spectrum through time. Solving a classical
problem, we are basically interested in the measurement
probabilities of all qubits and the resulting bit-string, hopefully
encoding a possible solution to the problem. We therefore
exemplary map ⟨P0⟩, ⟨P+⟩ and ⟨P+i⟩ to the hue, saturation
and value component of an HSV colour. Here ⟨P0⟩, ⟨P+⟩ and
⟨P+i⟩ are the probabilities of the reduced mixed system of said
qubit being in the state |0⟩, |+⟩ and |+i⟩. Now the, qubits can
be ordered according to their hue. Figure 1 demonstrates how
this representation, which is qubit permutation invariant, still
reveals highly specific structures of quantum state evolutions.
As we will show below, the ordering does not alter non-
stabiliserness, as it can be performed by an efficient Clifford
circuit. Therefore, it can be ignored regarding our analysis of
non-stabiliserness resource consumption. Additionally, intro-
ducing, at the worst case, one ordering and reordering before
and after each computational step does also not change the
complexity theoretic characterisation of the circuit, as it, given
the presumption of a polynomial sized initial circuit, only adds
a polynomial amount of permutation circuits which themselves
also only have a polynomial complexity. Therefore, questions
regarding the link between non-stabiliser consumption and
quantum advantages can be investigated with frameworks
factoring out permutational degrees of freedom.

We now will bring the intuition of a shift on the colour
spectrum to a concrete mathematical representation. After that
we have to formulate a permutation robust version of our
geometric measure. As a first step, we define a permutation
operator capturing the notions discussed above.

Definition 4. Given a permutation σ ∈ Sn and |b⟩ ∈ Bn
where |b⟩ = |b1⟩ ⊗ · · · ⊗ |bn⟩ with |bi⟩ ∈ {|0⟩, |1⟩} then

σ̂ |b⟩ =
∣∣bσ(1)

〉
⊗ · · · ⊗

∣∣bσ(n)
〉

(9)

and
σ̂

∑

b∈Bn

αb |b⟩ =
∑

b∈Bn

αbσ̂ |b⟩ (10)

Note that in definition 4 the inverse operator σ̂† ∈ H⊗n

corresponds to the inverse permutation σ−1 ∈ Sn. Next, we
have to show, that the SRE measure is invariant under such
permutation operators.

1An additional establishment of locality and neighbourhood comes from
restrictions imposed by the coupling graph of the concrete quantum processor
executing the circuit. This consideration is beyond the more abstract arguments
presented in this paper.



Theorem 3. Let σ̂ be a permutation operator as defined in
definition 4, then

SREα(σ̂ |ψ⟩) = SREα(|ψ⟩)
Proof. Every permutation σ ∈ Sn can be decomposed into a
sequence of 2-cycles, which can be realised by a single swap
gate. Thus, σ̂ ∈ H⊗n can be realised by a sequence of swap
gates, which are Clifford operations. Since, SREα is invari-
ant under Clifford operations, it also is for all permutation
operators constructed as defined in definition 4.

Now, after we have formalised the idea of invariance under
permutation on the operational side, we will do the same for
the objects of interest. We do this by subsuming all states equal
under permutation into equivalence classes and then extend
this to the target space itself.

Definition 5. We define an equivalence relation |ψl⟩ ∼ |ψr⟩
which is satisfied iff there exist a permutation operator σ̂ as
defined in definition 4, such that |ψr⟩ = σ̂|ψl⟩. Then

[|ψ⟩] = {σ̂|ψ⟩ : ∀σ̂} (11)

is the corresponding equivalence class of |ψ⟩ under ∼ and
further SRE([|ψ⟩]) = SRE(|ψ⟩). Let T be a subspace of H⊗n,
we then extend this notion by defining

[T ] =
⋃

|t⟩∈T

[|t⟩] (12)

From theorem 3 it also immediately follows that
SREα(|ψ⟩) = SREα([|ψ⟩]). For the geodesic distance, we
need to extend the definition to equivalence classes.

Definition 6. Let [|ϕ⟩] be a equivalence class of states then

s0([|ϕ⟩]) = min
|ϕ′⟩∈[|ϕ⟩]

s0(|ϕ′⟩) (13)

For [T ] we extend s0 in a similar fashion to

s0([T ]) = min
|t⟩∈T

s0([|t⟩]) (14)

Determining the distance [T ] requires tracing all permuta-
tions of all possible solution states, which can be a bit tricky.
Lucky, we can show that the distance from |ψ⟩ to T is equal
to the distance from [|ψ⟩] to T .

Theorem 4. Given a target space permutation equivalence
class [T ] as defined in definition 5, it holds that

s0([T ]) = s0(|ψ⟩, [T ]) = s0([|ψ⟩], T ) (15)

Proof. By definition, we have that s0([|ψ⟩], T ) =
min|ψ′⟩∈[|ψ⟩] s0(|ψ′⟩, T ) which equals minσ̂ s0(σ̂ |ψ⟩, T ) =

minσ̂ 2 arccos
〈
ψ
∣∣∣σ̂† Hc σ̂

∣∣∣ψ
〉

. As we are minimising over
the whole group of all permutation operators we can also
minimise over all complex conjugate operators instead
minσ̂† 2 arccos

〈
ψ
∣∣∣σ̂Hc σ̂

†
∣∣∣ψ

〉
. By the canonical definition

of Hc we have σ̂Hc σ̂
† =

∑
t∈T σ̂|t⟩⟨t| σ̂†. Recall that

{|t⟩ : t ∈ T} is the basis of the corresponding quantum target
space T . This means, by applying σ̂Hc σ̂

† we are performing
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Fig. 2: Calculating the minimal geodesic distance over all
target space permutations s0([T ]) reveals non-Clifford com-
putational progress being made before the final qubit order
reversal. In the direct distance to the target space s0(T ),
without taking permutations into account, these effects are not
visible. This demonstrates how potential non-stabiliser effects
can be masked by measurs that are not Clifford agnostic.

|ψ0〉

|ψ1〉

|ψ2〉
|ψ3〉

H R2
1 R3

1 R4
1

H R3
2 R4

2

H R4
3

H

Fig. 3: QFT circuit with four qubits. The dashed box marks
the qubit order inversion block of swap gates. Non-stabiliser
computations take place before this block, but their compu-
tational influence on the geodesic distance is masked by the
final qubit reordering.

a basis transformation on the target space, measuring the
expected probability of |ψ⟩ being in he permuted target space.
By minimising over all permutations we get s0(|ψ⟩, [T ]),
thus in conclusion s0(|ψ⟩, [T ]) = s0([|ψ⟩], T ).

The quantum Fourier transform (QFT) is a good example
to demonstrate this effect, and additionally shows how to
calculate the distance of the closest target space permutation.
As of today, the QFT is regarded as the seminal primitive
contributing to quantum advantage, finding application in a
wide range of quantum algorithms reaching proven quantum
speedups such as the famous integer factorisation by Shor [26]
. The interesting parts of the QFT circuit take part before the
qubits are reordered in a final step (marked section in fig. 3).
This is problematic when looking at distance measures based
on state to space overlaps like the geodesic distance. The block
of swap gates implementing the reordering is entirely Clifford,
yet looking at the geodesic instance s0(T ) one could be under



the impression that all the computational progress takes place
in this section of the circuit. This, can not be the case, as we
know that the QFT algorithm provides an exponential speedup.
Therefore valuable computational progress has to be made
before, taking possible target space permutations into account
reveals such effects (see fig. 2).

V. EXPERIMENTS

General state evolution algorithms usually are quite high
level from an algorithmic standpoint. The logical structure of
problem instances usually is encoded in a Hamiltonian either
driving the sate evolution like in quantum annealing and its
gate based counterparts (e.g., QAOA) or serving as a cost func-
tion representation expressing the solution quality, which then
can be used to optimise free parameters of a quantum circuit.
In both cases, the problem structure is quite removed from the
description of the algorithmic dynamics. This divide between
descriptive dynamics and problem structures introduces a high
level of abstraction masking the actual dynamics.

State evolution techniques can be broadly grouped into two
categories: structured and unstructured state evolution. With
the former introducing less to no restrictions on the circuit
logic, leaving more freedom to the optimisation step while the
latter directly imposes the problem structure onto the circuit
significantly reducing, the number of free parameters.

A. Problem Description
We now want to showcase our methods introduced above

to reveal actual differences in the evolution of structured and
unstructured state evolution techniques. As an exemplary prob-
lem, we chose the seminal NP complete problem of boolean
satisfiability (SAT), more precisely the problem of finding a
satisfying variable assignment of a 3-CNF boolean formula
F : Fn

2 → F2. Let’s define a problem Hamiltonian satisfying
definition 3. We start by defining the classical solution space
T where t = t1t2 · · · tn ∈ T iff c(t) := F (t) = 1. Then target
space shall be defined as T = {⊗n

i=1|ti⟩ : t1t2 · · · tn ∈ T}.
Note that F is a 3-CNF boolean formula, therefore F =∏m
i=1 fi with fi : F3

2 → F2 are disjunctions. This means,
every fi has one unique unsatisfying assignment ti. Now it
is easy to see that the Hamiltonian Hc := 1−∏m

i=1|ti⟩⟨ti|
satisfies eq. (7). See Ref. [19] for more details.

B. Unstructured State Evolution
In an unstructured state evolution ansatz a a generic circuit

template leaving maximal flexibility to be adjusted later in
an optimisation step minimising a cost function, which is
minimal if the final state is in the target space T . The
initial circuit ansatz is the same for all problems and problem
instances. Concrete instance or problem specific structure
only gets introduced during the cost function optimisation
process. As an exemplary ansatz we investigated a hardware
efficient variational quantum eigensolver. We chose a layered
architecture where one layer exists of a stack of Ry(θ

y
i ) gates

applied to each qubit i followed by a similar stack of Rz(θzi )
gates and a ladder of cnot gates to provide entanglement. For
a full circuit for the layer structure see fig. 5.

C. Structured State Evolution

In contrast to unstructured state evolution techniques, in the
structured case the ansatz already gets infused with instance
structures. One can show that problem structures extrapolated
from common instance structures are sufficient to successfully
approximate the state evolution of such methods [19]. This
shows, that the structural infusion significantly impacts the
ansatz even before instance specific cost function optimisation
techniques are applied. As a representative for structured state
evolution, we chose a standard QAOA ansatz where the driving
problem Hamiltonian is the problem Hamiltonian Hc defined
above. This equals the construction presented in [19].

D. Experimental Setup

For each ansatz we solved 20 SAT instances with the
circuits spanning n = 7 qubits and p = 7 layers. Every
instance was randomly sampled with a clause variable ration
of |C|/|V | = 3, which generates SAT instances that are
constrained enough to be at the start of the easy to hard phase
transition. At the same time those instances are still not too
hard to solve such that we can expect the state evolutions to
get fairly close to the target space, assuring that we witness a
state space traversal travelling a significant part of the distance
necessary to successfully solve the problem.

E. Results and Comparison

Comparing the state evolution of structured and unstructured
circuits we notice that the former approaches the target space
[T ] in a direct path, smoothly reducing the geodedic distance
with each step. In contrast, the unstructured evolution seems to
erratically jump through the state space, witnessed by jumps
in the geodesic distance s0([T ]) while passing through the
circuit. The differences become apparent when comparing the
top plots of figs. 4a and 4b. We now further analyse how
both state evolutions apprached the target space on a step
by step basis. For this, we calculate the delta of s0 before
and after each step. In fig. 6 we can see, that the distribution
of ∆s0([T ]) symmetrically centred around 0, ignoring few
outliers of big jumps of negative ∆s0. For the structured
evolution on the other hand we observe that the distribution
of ∆s0 values is skewed towards the below 0 regime, with the
majority of values being below 0, for more detailed numbers
see table I. This indicates that speaking on a per-step basis
the structured ansatz more efficiently approaches the target.
For the unstructured ansatz the majority of steps seem to
move towards or away from the target with equal probability,
de-facto cancelling each other out on the macroscopic level.
That being said, negative ∆s0 outliers of bigger value seem to
suggest that the unstructured approach is able to reach further
in larger individual steps, reaching the target faster if utilised
efficiently.

Another important aspect of efficiency is the consumption
of non-stabiliserness. As already mentioned above SRE is
invariant under Clifford gates. In conclusion, a change in the
SRE of the intermediate state being evolved indicates the
use of a non-Clifford operation. Therefore, we will use the
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(a) All three plots show different aspects of intermediate states (x-
axis) in a state evolution using an unstructured ansatz solving
instances (y-axis). Under this ansatz the state approaches the target
space quite erratically apparent by the uneven jumps in the geodesic
distance from [T ] depicted in the top figure. Even though the non-
stabiliserness (middle) seems to grow more smoothly, we can see
that its consumption expressed as the delta (bottom) also takes place
in a quite chaotic pattern.

s0 ([T ])

1

2

3

SRE

0

1

2

0.00 0.25 0.50 0.75 1.00
relative circuit depth

in
st

an
ce

|∆SRE|

0.00
0.25
0.50
0.75
1.00

(b) All three plots show different aspects of intermediate states (x-
axis) in a structured state evolution using a structured ansatz solving
instances (y-axis). We can see that under the QAOA ansatz the state
evolution smoothly approaches the target space [T ] (top). The non-
stabilisernes build up (middle) is highly structured peaking at ≈ 0.75
relative circuit depth, after which it starts to smoothly decrease again.
This is also reflected non-stabiliser consumption patterns shown in
the bottom plot.

Fig. 4: Comparison of intermediate geodesic distances s0([T ]), non-stabiliserness SRE and non-stabiliser consumption |∆SRE|
between unstructured (fig. 4a) and structured (fig. 4b) state evolution.
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Fig. 5: The i-th layer of the hardware efficient ansatz used in
the experiments for unstructured state evolutions.

absolute step SRE difference |∆SRE| as an indicator of non-
stabiliserness consumption, which is inherently linked to costly
operations. Comparing figs. 4a and 4b (bottom), one sees that,
similar to the geodesic distance s0([T ]) (top) the unstructured
ansatz is also more erratic than its structured counterpart,
when it comes to non-stabiliserness consumption. This begs

ansatz q25 q50 q70 ∆s0 < 0 0 < ∆s0

structured -0.0792 -0.0377 0 76.7% 16.6%
unstructured -0.0021 0 0.001 32.3% 33.7%

TABLE I: The 25%, 50%, 75% quantiles of the ∆s0([T ])
distributions for structured and unstructured state evolutions.
In the last two columns the percentage of steps decreasing
(∆s0 < 0) and increasing (∆s0 > 0) the target distance is
depicted. Overall the structured ∆s0 distribution is signifi-
cantly more slanted towards the negative side for the structured
evolution, while it is fairly centred around 0 in the unstructured
case.

the question whether there is a connection between both
observations. In fact, there is a positive correlation between
step-wise geodesic distance reductions to the target space
and non-stabiliserness consumption for the structured state
evolution. In contrast to that observation, there is no such
correlation for the unstructured case. This further supports the
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Fig. 6: The distribution of in- and decreases of the distance
to the target space (x ∼ ±∆s0([T ])) is heavily skewed
towards the decreases for the structured ansatz (top), with the
majority of distance changes being negative. In comparison,
ignoring few outliers below 0, the distance change distribution
is centred around 0 for the unstructured ansatz (bottom).

hypothesis, that the structured ansatz is more efficient in its
non-stabiliser consumption.

VI. CONCLUSION

In this paper, we extended the concept of geodesic dis-
tance measures in state evolutions targeting a specific state
to evolutions targeting a more complex target space T . We
showed how the geodesic distance to T can be derived
from the expected value of a Hamiltonian satisfying eq. (7).
This Hamiltonian based definition fits well into widely used
frameworks of Hamiltonian cost function encodings. It also
further allows for establishing empirical measurement based
setups that integrating nicely with existing toolkits of quantum
computing practitioners.

We further provided a qubit order agnostic version of
the geodesic framework by introducing equivalence classes
of states that are equal under permutation. Considering the
quantum Fourier transform as a use-case, we demonstrated
how our approach can cut through Clifford layers, and thus
unveil previously hidden computational progress in the circuit.
We then applied the developed methods to comparatively
analyse of structured and unstructured state evolutions. The
different distributions of geodesic distance changes suggest a
higher geodesic efficiency for the structured evolution.

By combining resource theoretic Stabiliser-Rényi-Entropy
and geometric geodesic distance measures, we where able to
show that the structured ansatz is significantly more efficient
in the consumption of non-stabiliser resources than the un-
structured ansatz. On a methodical level, this demonstrated
the potential of our combination of methodologies.
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Fig. 7: Structured state evolution (top) shows clear correla-
tion between non-stabiliser consumption |∆SRE| and steps
reducing the geodesic distance to the target space −∆s0([T ]).
In contrast, we cannot observe a similar correlation for the
unstructured ansatz (bottom). Data are restricted to |∆SRE| <
0.3 to filter outliers (this retains approximately 98% of the
original data points).

VII. DISCUSSION & PERSPECTIVE

We believe our methodology holds considerable promise
for the analysis of non-stabiliser effects and the efficient
utilisation of non-stabiliser resources in quantum circuits.
A nuanced understanding of such effects seems crucial for
advancing the systematic development of quantum algorithms,
particularly with regard to realising quantum speed-ups in a
well-principled manner. Furthermore, we anticipate that our
results will become increasingly pertinent as the field transi-
tions into the era of early fault-tolerant quantum computing:
In such regimes, non-stabiliser operations pose significantly
greater challenges for error correction compared to stabiliser
operations. Consequently, the use of this resource must be
optimised, and we believe that our analytical framework offers
a valuable instrument in progressing towards this objective.

We showed how permutation agnostic distance measures
can reveal internal non-stabiliser effects previously hidden by
a subset of Clifford operations. Our construction based on
permutation operators σ̂ could be extended to accept general
Clifford operators in the sense that two states |ψ1⟩ ∼ |ψ2⟩
iff there exists a U ∈ C such that U |ψ1⟩ = |ψ2⟩. Even
though Clifford circuits can be efficiently simulated by classi-
cal systems, is is not necessarily possible to construct them
efficiently. Thus, such an extension would need to impose



some complexity theoretic bounds on U to avoid grouping
states that can only be reached by overly powerful oracles.

We showed that the combination of resource theoretic and
geometric tools offers a mean to qualify resource consump-
tions by efficiency. We see a potential to embed quantum
resource theoretic measures like Stabiliser-Rényi-Entropies
into a proper differential geometric framework. This is a
second promising avenue for improvement that would allow us
to analyse resources consumed by state evolutions following
different paths over the projective state manifold.
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[22] Jovan Odavić, Michele Viscardi, and Alioscia Hamma.
“Stabilizer entropy in non-integrable quantum evolu-
tions”. In: arXiv preprint arXiv:2412.10228 (2024).

[23] Salvatore F. E. Oliviero, Lorenzo Leone, and Alioscia
Hamma. “Magic-state resource theory for the ground
state of the transverse-field Ising model”. In: Physical
Review A 106.4 (Oct. 2022). ISSN: 2469-9934. DOI: 10.
1103/physreva.106.042426. URL: http://dx.doi.org/10.
1103/PhysRevA.106.042426.

[24] Salvatore F. E. Oliviero et al. “Measuring magic on a
quantum processor”. In: npj Quantum Information 8.1
(Dec. 2022). ISSN: 2056-6387. DOI: 10.1038/s41534-
022-00666-5. URL: http://dx.doi.org/10.1038/s41534-
022-00666-5.

[25] John Preskill. “Quantum computing and the entan-
glement frontier”. In: arXiv preprint arXiv:1203.5813
(2012).

[26] Peter W. Shor. “Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer”. In: SIAM Journal on Computing 26.5 (Oct.
1997), pp. 1484–1509. ISSN: 1095-7111. DOI: 10.1137/
s0097539795293172. URL: http://dx.doi.org/10.1137/
S0097539795293172.

[27] Simon Thelen, Hila Safi, and Wolfgang Mauerer. “Ap-
proximating under the Influence of Quantum Noise and
Compute Power”. In: Proceedings of WIHPQC@IEEE
QCE. Sept. 2024. DOI: 10 . 1109 / QCE60285 . 2024 .
10291. URL: http://arxiv.org/abs/2408.02287.

https://doi.org/10.1103/physreva.106.042426
https://doi.org/10.1103/physreva.106.042426
http://dx.doi.org/10.1103/PhysRevA.106.042426
http://dx.doi.org/10.1103/PhysRevA.106.042426
https://doi.org/10.1038/s41534-022-00666-5
https://doi.org/10.1038/s41534-022-00666-5
http://dx.doi.org/10.1038/s41534-022-00666-5
http://dx.doi.org/10.1038/s41534-022-00666-5
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/QCE60285.2024.10291
https://doi.org/10.1109/QCE60285.2024.10291
http://arxiv.org/abs/2408.02287

	Introduction
	Related Work
	Non-Stabilisernes
	Geometric Perspective
	Problem Hamiltonian
	Permutations

	Experiments
	Problem Description
	Unstructured State Evolution
	Structured State Evolution
	Experimental Setup
	Results and Comparison

	Conclusion
	Discussion & Perspective

