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Abstract:

This work-in-progress explores the architectural and systemic foundations required for future tight
integration of quantum accelerators in heterogeneous computing environments. We propose and
implement a modular architecture where quantum processing units operate as peripheral devices,
supporting pulse-level control interfaces as well as high-level circuit execution offloading, while
internally managing tasks such as compilation, transpilation, and scheduling. To enable efficient
quantum-classical orchestration, we introduce a Quantum Abstraction Layer (QAL) at the operating
system level that facilitates seamless communication, resource management, and smooth integration
with established software frameworks.

We follow a two-step design approach: Firstly, we validate our architecture using device models and
simulations in virtualised environments. Secondly, we provide a FPGA-based surrogate implementation
that supports both, result-accurate and timing-accurate modes, which allows for full-stack emulation,
interface validation, and performance evaluation in the absence of physical quantum hardware. The
overarching objective is to establish an extensible platform for prototyping, Hardware/Software
Co-Design, and investigating the practical quantum advantage under realistic system-level constraints
of various use cases. We believe this process will result in a sufficiently complete and useful design
that can be immediately adopted by hardware vendors, as the design process can be finalised before
real hardware is available.

Keywords: Hardware Platforms and Architectures, Hardware/Software Co-Design, Integrated
Quantum Systems, Quantum Accelerators, Quantum/Classical Co-Design, System-Level Abstraction,
Temporal Modelling and Emulation, Vertical System Integration

1 Introduction

Current quantum computing platforms remain largely experimental, comprising loosely
integrated hardware and software components that resemble complex physical experiments.
They rely on remotely managed, finely controlled signal generators (RF pulses, lasers, masers)
to manipulate quantum states. Although these platforms have driven substantial scientific
progress, they face inherent challenges in scalability, seamless integration into classical
infrastructure, and broad applicability within heterogeneous computing environments. In
particular, few existing efforts address vertical system integration, including the interplay
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with hardware components that—while not yet physically realised—can be meaningfully
designed and evaluated through simulation [Zh23].

In our work, we investigate the architectural and systemic foundations required for tightly
integrated quantum accelerators into existing classical infrastructure. We model quantum
processing units as modular peripheral devices embedded within or tightly connected with
classical hosts. Each unit supports heterogeneous interfaces—from low-level, waveform-
based pulse control to high-level circuit execution.

At the operating system level, we introduce a kernel-level Quantum Abstraction Layer
(QAL). It provides a uniform, technology-agnostic interface for resource management,
communication, and error handling between host and accelerator. A complementary user-
space control infrastructure offers high-level bindings to established SDKs (e. g., Qiskit,
QDMI [Wi]).

To validate and refine our design in the absence of physical hardware, we instantiate
virtualised device models within a QEMU-based environment. Our hardware model
supports two operational modes. (1.) Result-accurate emulation to provide correct results at
the cost of exponential runtime, and (2.) Timing-accurate emulation to run without quantum
fidelity, with realistic runtime behaviour. (1.) allows for iterative algorithm tuning and
interface validation, while (2.) allows for real-time, latency and run-time analyses.

In our framework, the timing-accurate simulation within the QEMU-based environment
primarily serves for early-stage validation of system design, interface behaviour, and
software-hardware interaction under realistic assumptions. While this virtualised approach
enables rapid prototyping and iterative co-design, it does not fully capture the precise
execution characteristics of eventual quantum hardware. Therefore, final timing analyses
and more accurate real-time behaviour studies are intended to be conducted on FPGA-based
platforms, which offer closer alignment with the physical properties and latencies of future
quantum devices.

This progression enables quantitative investigation of performance limits, break-even
points, and the practical feasibility of quantum speed-up within tailored [SSM23; WSM22],
tightly integrated, heterogeneous computing architectures as they may emerge in future
deployments.

2 State of the Art

Integration of quantum hardware into classical infrastructures operates across multiple
abstraction levels. At the highest level, software developers design quantum algorithms
expressed as quantum circuits [Kh]. At the lowest level, quantum hardware uses specialised
instruments such as arbitrary-waveform generators (AWGs), radio-frequency generators,
and FPGAs to manipulate physical qubits precisely. Bridging these abstraction layers
necessitates homogeneous interfaces and standardised formats, as well as clearly defined



abstraction layers that enable efficient communication, reduce complexity, and facilitate
seamless integration.

Prior research has explored low-level representations of quantum programs by encoding
quantum instructions as binary streams of Quantum Intermediate Representation (QIR)
or Quantum-ISA commands, which are parsed and dispatched by a quantum control
processor to analogue signal generators [Fu; GQS; MN; SBW]. Standardisation efforts
have further advanced with the introduction of the Quantum Device-agnostic middleware
Interface (QDMI) within the Munich Quantum Software Stack, providing a uniform
abstraction of hardware characteristics to facilitate the adaptation of high-level tools to
heterogeneous quantum platforms [Wi].

Unified, layered architectural approaches addressing multiple abstraction levels have
been identified as promising for hybrid quantum-classical computing systems. Full-stack
frameworks have been proposed to span these abstraction layers and integrate quantum
resources into high-performance computing environments [EGS24; Gi; Zh23]. Despite
these advances, the field still lacks comprehensive end-to-end implementations that also
combine accurate hardware simulation with vertically integrated software and hardware
stacks.

3 Quantum Architecture Framework
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Fig. 1: Software Stack of Quantum Architecture comprising five conceptual components that reside in
userspace, kernel space and the (virtual) hardware.

The proposed architecture integrates five principal components into a cohesive and layered
system, as depicted in Figure 1. To foster interoperability across current computing



ecosystems, it builds on established (operating-system) interfaces and strives to provide
seamless compatibility with existing software and hardware stacks by adhering to proven
standards. Its foundation is a kernel-level Quantum Abstraction Layer (QAL), which provides
a streamlined system call interface for device configuration, job scheduling and submission,
and monitoring. A lightweight user-space library encapsulates high-level quantum programs
into compact binary representations and provides access to kernel interfaces. Initially, we
explicitly avoid instruction set architecture (ISA) extensions, acknowledging prior research
indicating that quantum ISA developments are promising but presently impractical due to
current hardware limitations [Cr22; SBW]. Instead, we propose an intermediary solution
utilising established hardware communication protocols and intermediate representation.
This library offers to implement backend support for established frameworks such as Qiskit
and Pennylane and submit jobs after compilation and transpilation to the hardware. In
kernel space, specific device drivers facilitate interaction with the actual control hardware
while exposing a uniform kernel API. A central research question addressed in this work
concerns the appropriate level of abstraction for interfacing quantum hardware within
heterogeneous computing systems. Our architecture is deliberately designed to remain
flexible and extensible regarding (yet unknown) abstraction boundaries, recognising that
different applications and user expertise necessitate access at varying semantic levels. While
the framework aims to expose low-level control capabilities—such as direct manipulation
of pulse-level sequences for fine-grained hardware tuning under expert supervision—it
equally supports higher-level representations, including quantum circuits and algorithmic
workflows, to facilitate broader usability and integration with established quantum software
ecosystems.

Throughout the project, we investigate how these layers of abstraction can be coherently
structured to balance hardware accessibility, system efficiency, and user programmability,
to ensure that the platform accommodates both specialist requirements and future general-
purpose quantum computing workloads [SWM23].

Complementing the software stack, both a virtual device model and an FPGA-based prototype
are employed to support iterative development, interface validation, and performance
evaluation in advance of the availability of physical quantum processing units (QPUs).

In summary, the proposed architecture establishes a flexible experimental platform to
explore the interplay of hardware and software in quantum-classical systems. It enables the
systematic evaluation of architectural choices, control interfaces, and application-specific
workflows under realistic operational conditions. By supporting both virtual and physical
prototyping, it provides the means to assess performance boundaries and identify practical
quantum benefits in diverse computational contexts.
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