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Abstract

Design space exploration (DSE) plays an important role in optimising quantum
circuit execution by systematically evaluating different configurations of compila-
tion strategies and hardware settings. In this paper, we conduct a comprehensive
investigation into the impact of various layout methods, qubit routing techniques,
and optimisation levels, as well as device-specific properties such as different
variants and strengths of noise and imperfections, the topological structure of
qubits, connectivity densities, and back-end sizes. By spanning through these
dimensions, we aim to understand the interplay between compilation choices and
hardware characteristics. A key question driving our exploration is whether the
optimal selection of device parameters, mapping techniques, comprising of ini-
tial layout strategies and routing heuristics can mitigate device induced errors
beyond standard error mitigation approaches. Our results show that carefully
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selecting software strategies (e.g., mapping and routing algorithms) and tailor-
ing hardware characteristics (such as minimising noise and leveraging topology
and connectivity density) significantly improve the fidelity of circuit execution
outcomes, and thus the expected correctness or success probability of the com-
putational result. We provide estimates based on key metrics such as circuit
depth, gate count and expected fidelity. Our results highlight the importance
of hardware–software co-design, particularly as quantum systems scale to larger
dimensions, and along the way towards fully error corrected quantum systems:
Our study is based on computationally noisy simulations, but considers various
implementations of quantum error correction (QEC) using the same approach
as for other algorithms. The observed sensitivity of circuit fidelity to noise and
connectivity suggests that co-design principles will be equally critical when inte-
grating QEC in future systems. Our exploration provides practical guidelines for
co-optimising physical mapping, qubit routing, and hardware configurations in
realistic quantum computing scenarios.

Keywords: Design Space Exploration (DSE), hardware-software co-design, quantum
circuit compilation, NISQ devices

1 Introduction

As quantum computing moves closer to practical application, the performance bot-
tlenecks are no longer defined solely by hardware limitations or algorithmic efficiency,
but increasingly by how well both align [1]. Current devices suffer from limited qubit
counts, restricted connectivity, and different types of noise, all of which degrade
circuit performance and solution quality. Just as classical computing has benefited
from decades of hardware-software co-design, quantum computing demands a similar
approach [1–3]. In this work, we take a layered perspective on quantum circuit com-
pilation (transpilation)[4], examining how choices made across the hardware-software
stack collectively shape performance and impact fidelity and resource efficiency. We
apply a Design Space Exploration (DSE) approach to systematically evaluate these
strategies. DSE enables the identification of optimal trade-offs by balancing the explo-
ration of novel design configurations with exploitation of known high-performing
strategies [5]. As illustrated in Table 1, we span five layers—from the initial circuit
setup, through qubit mapping and routing, down to noise modelling and hardware
topology. At each layer, we systematically explore the design space using a set of
representative benchmark circuits covering algorithmic, variational, arithmetic, and
simulation-based circuits to enable a meaningful evaluation. These include well-known
algorithms, for instance Quantum Fourier Transform (QFT), Shor’s algorithm, or
VQE [6–8]. To reflect the ongoing research toward fault-tolerant quantum computing,
we extend our evaluations to include quantum error correction codes—thus aligning
near-term compilation strategies with future fault-tolerant demands. We begin our
investigation with device-level parameters, including back-end size, qubit connectivity,
topologies and different noise variants— with a focus on crosstalk. Crosstalk is a dom-
inant and often underestimated source of correlated error [9]. All hardware aspects
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influence gate scheduling, circuit depth, error rates, and routing complexity. Building
on this, we examine the mapping layer, and evaluate how different initial layout strate-
gies, qubit routing techniques, and optimisation levels (as implemented in Qiskit [4])
impact circuit depth and fidelity. On top of these, we incorporate multiple additional
optimisations (e.g. gate simplification techniques). Our results confirm that optimal
circuit compilation is not only back-end-dependent in terms of architecture, but also
strongly influenced by hardware-specific noise characteristics such as decoherence and
crosstalk. Moreover, we show that informed decisions on quantum circuit mapping can
reduce the effect of noise, achieving improvements in addition to conventional error
mitigation techniques like Zero Noise Extrapolation [10]. We present a layered DSE
framework for quantum circuit optimisation, highlight the critical impact of connectiv-
ity and noise variations, particularly crosstalk, and show that co-optimised mapping
settings improve circuit fidelity and resource efficiency. By benchmarking multiple
quantum algorithms across this multi-layered stack, our work offers actionable guide-
lines for future quantum system design. Taken together, our contributions demonstrate
the necessity for treating quantum circuit compilation as a full-stack optimisation
problem. Rather that tuning individual parameters in isolation, we advocate for a
holistic, hardware-aware approach. This layered perspective enables more informed
design choices, ultimately leading to higher-fidelity executions and more efficient use
of limited quantum resources. The paper is augmented by a reproduction package [11],
(link in PDF) that also contains the full set of benchmarks used in each experiment.
For long-term reproducibility and archival, we also provide a snapshot via Zenodo.

Table 1: Full-stack design space (parameters and techniques) explored in our work.

Layers Examples

Algorithmic Design & Circuit Setup Problem formulation, QAOA layers
Logical Circuit Optimisation Gate count reduction, optimise Clifford Gates
Qubit Mapping & Routing Qubit allocation, routing, swap gate insertion
Noise Modelling & Hardware Simulation Depolarisation, crosstalk
Topology Heavy-hex, Sycamore

2 Context, Foundation & Prior Work

The execution of quantum circuits on current NISQ (Noisy Intermediate-Scale Quan-
tum) devices presents significant challenges due to hardware limitations, error-prone
operations, and restricted qubit connectivity. Addressing these constraints requires a
full-stack quantum computing approach, where both the quantum hardware and soft-
ware stack are co-designed to enhance performance and scalability. Safi et al. [12]
demonstrate that co-designing quantum processing units (QPUs) for specific appli-
cations can significantly improve execution performance, even on relatively simple
architectures. Complementary to hardware-focused efforts, recent work [13] introduces
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software-layer co-design methodology that automates the selection of quantum-
classical algorithms and their parameters based on non-functional requirements,
thereby supporting scalable and application-aware quantum software development.
Bandic et al. [14] argue that end-to-end integration—from qubit control hardware to
compilers—is essential for effective noise mitigation and progress toward fault tol-
erance. Such studies highlight the importance of co-optimisation across the stack
to align hardware capabilities with software demands. At the device level, critical
parameters such as back-end size, qubit count, native gate set, connectivity, and
noise characteristics profoundly influence circuit execution. Optimising these proper-
ties has been the focus of several works. For instance, Murali et al. [15] proposed a
noise-adaptive strategy that selects qubits based on individual error rates to increase
execution fidelity. Li et al. [16] demonstrated that topology-aware design decisions—
such as application-specific qubit placement, customised coupling graph topologies,
and routing-aware compilation—can reduce the resource overhead needed for realis-
tic workloads. The impact of these parameters extends into the software stack, where
hardware-aware compilers leverage device knowledge to guide circuit optimisation [17].
Furthermore, the MQT Predictor framework by Quetschlich et al. [18] introduces
an automated approach to selecting quantum devices and optimising compilation
flows, also demonstrating significant performance gains. Although such techniques
are relevant for near-term devices, circuit optimisation remains equally critical for
fault-tolerant devices [19]. Our work explores the intersection of hardware-level param-
eters and compilation strategies to identify and evaluate the optimal balance, that
maximised circuit fidelity with realistic architectural constraints.

2.1 NISQ Architecture vs. FTQC

NISQ era, coined by Preskill [20], describes today’s quantum devices with 50 to
1000 qubits that suffer from noise and decoherence. Although not fully error-
corrected, an intensive discussion has unfolded on the computational advantage
of NISQ machines through variational methods [21] or the QAOA class of algo-
rithms [22, 23]. Despite being unsuitable for large-scale fault-tolerant tasks, error
mitigation techniques can improve their practical utility [24]. Fault-tolerant quantum
computing (FTQC) [25] overcomes these limitations using quantum error correction
(QEC), e.g., surface codes [26], which encode logical qubits across many physical
ones. FTQC demands high qubit fidelity and scale. Bridging NISQ and FTQC will
require hybrid strategies—combining classical and quantum processing— , resilient
algorithms, improved connectivity, and crosstalk-tolerant QEC codes [12, 27].

2.2 DSE for Hardware-Software Co-Design

In the pursuit of practical quantum computing applications, hardware-software co-
design (HW-SW co-design) is a promising strategy, particularly in light of the current
limitations of quantum hardware, such as restricted number of qubits and high error
rates—especially in two-qubit gate operations [12, 14, 17, 28, 29]. These constraints
are a significant challenge for executing complex quantum algorithms in a reliable way.
HW-SW co-design involves the collaborative development of quantum hardware and
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software, ensuring that both components are optimised in tandem to enhance overall
system performance. By aligning the design of quantum algorithms with the specific
characteristics of QPUs, and vice versa, co-design facilitates more efficient and effective
quantum computations [3, 23]. In our research, we employ design space exploration
as a systematic approach to optimise quantum circuit compilation and assess the
hardware characteristics necessary for efficient execution of benchmark problems [5].
DSE, in general, enables structured evaluation of architectural and algorithmic design
choices—such as in our case qubit mappings, circuit decompositions, and noise-aware
strategies for error reduction—with the goal of enhancing performance, scalability and
resource efficiency. Within this framework, quantum circuit compilation refers to the
process of transforming a high-level circuit into a low-level, hardware-executable form,
involving qubit mapping and operations scheduling. Among the key compiler-level
challenges, quantum circuit mapping plays a fundamental role in enabling full-stack
quantum computing [30, 31]. Efficient mapping is supposed to reduce gate overhead
and latency, but becomes increasingly challenging as qubit count grows. To optimise
these metrics, various approaches—ranging from heuristics and brute-force methods
to graph-based, dynamic programming, and machine learning techniques—have been
developed [32–37]. We systematically analyse critical metrics such as circuit depth and
gate counts, as well as the impact of various noise sources—particularly crosstalk—on
overall circuit performance. We observed performance variations stem from key hard-
ware properties, including topology, layout strategies, qubit routing techniques, and
optimisation levels. Table 1 illustrates the key hardware-aware design choices involved
in our benchmarking approach, spanning logical circuit optimisation, qubit mapping,
noise modelling, and hardware back-end selection. Although we do not modify the
circuit design in our study, we incorporate a broad range of circuits, including error-
correcting ones, to assess their performance across different compilation and execution
strategies. This ensures that our findings remain relevant not only for current quan-
tum devices but also as a preparatory step toward fault-tolerant quantum computing.
This structured co-design approach sets the foundation for the next sections, where
we dive deeper into device design parameters and compilation strategies.

2.2.1 Quantum Device Design

A comprehensive analysis of device-specific parameters is essential to understand their
impact on scalability and the feasibility of achieving practical utility in quantum
computing. Key factors include:

• Device Topology: Physical arrangement and connectivity of qubits, which impacts
quantum circuit mapping and execution efficiency. This includes the size and
connectivity of the system back-end.

• Native Gate Set: Set of quantum gates natively supported by the respective
hardware, which affects gate count and parallelisation.

• Gate and Measurement Fidelity: Probability of correctly applying quantum
gates and accurately measuring states, which determine computational reliability.
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• Coherence Time: Temporal stability of qubits before decoherence. Decoherence
refers to the loss of a qubit’s superposition state over time due to environmental
interactions, causing the quantum state to collapse into a classical outcome [38].

• Noise and Error Models: The various sources of quantum errors that affect solu-
tion quality, including crosstalk, thermal relaxation, depolarisation noise, readout
noise, and gate-based noise [39].

These parameters collectively define the operational envelope of a quantum processor.
They not only determine which algorithms can be realistically deployed, but also shape
compilation strategies, error mitigation techniques, and ultimately the feasibility of
achieving quantum advantage on current and near-term hardware [17].

2.2.2 Compiling Quantum Circuits to Quantum Hardware

A systematic approach to quantum circuit compilation is essential to bridge the gap
between abstract algorithms and hardware-specific execution. To run a circuit on
a given quantum processor, it must be transformed to comply with hardware con-
straints, which vary across platforms. These constraints, many of which are outlined
in Section 2.2.1, introduce complex challenges for efficient execution [5]. Addressing
them requires a sequence of interdependent tasks, whose order and implementation
depend on the architecture and optimisation goals. The key tasks are:

• Gate Decomposition: The gates are transformed into the primitive gate set
supported by the quantum processor [40].

• Operation Scheduling Scheduling gates in parallelised manner to ensure minimal
circuit depth and decoherence effects while respecting all the architecture-dependent
shared control constraints [41].

• Qubit Allocation: Assigns logical qubits to the physical ones [42].
• Qubit Routing: Moves logical qubits into adjacency for two-qubit interactions.

For instance, by introducing SWAP gates [43–45].
• Circuit Optimisation: Performing tasks such as gate commutation or can-

cellation, transformation, with the aim of achieving the simplest form of the
circuit [46].

Our work provides a comprehensive framework for co-optimising quantum software
and informing hardware design. While it does not directly optimise hardware compo-
nents, it identifies problem-dependent requirements and performance bottlenecks that
guide the specification of optimal hardware configurations. This enables more informed
algorithmic design choices and supports the selection or development of hardware best
suited for targeted computational tasks.

3 Methodology

In this section, we outline the methodology employed to evaluate quantum circuit per-
formance under varying device and compilation conditions. We investigate the impact
of different parameters as illustrated in Table 2. Our experimental approach com-
prises two parts: one focusing on varying device parameters, while keeping compilation
settings fixed, and the other examining the effects of varying compilation conditions
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while maintaining fixed device parameters. This dual approach allowed us to isolate
and analyse the effect of device variations independently from compilation variations,
thereby providing a comprehensive understanding of these factors and their influence
on quantum circuit performance under simulation.

Table 2: Parameter ranges used in our experimental setup.

Parameter Options

Device Design

Connectivity Density [0.013895, 1.0]
back-end QASM Simulator (Qiskit)
Native Gate Set ’id’, ’rz’, ’sx’, ’x’, ’cx’, ’swap’, ’cz’
Coupling Map Heavy-Hex, Sycamore
back-end Size (Heavy-Hex) 6× 4, 6× 5, 8× 5
back-end Size (Sycamore) 6× 6, 11× 11, 12× 12
Noise Model Crosstalk, Thermal Relaxation, Depolarisation

Compiler Design

Optimisation Level 0, 1, 2
Layout Method SABRE, Dense, Trivial
Routing Technique SABRE, Stochastic
Additional Opt. Setups 0-5
Scheduling Method ALAP

3.1 Device Layer

In quantum computing, device parameters such as connectivity, topology, and noise
significantly play a critical role in determining the fidelity and efficiency of quan-
tum circuit execution. These factors influence how circuits are mapped, routed, and
scheduled, often introducing overheads that significantly affect overall performance.
To ensure a comprehensive and systematic evaluation, we examine the impact of
device connectivity, topology configurations, back-end sizes and noise models. For
experiments that involve varying device parameters, we employed fixed compiler set-
tings as follows: optimisation level 3, qubit routing technique SABRE, layout method
SABRE and scheduling method “as late as possible” (ALAP) [4]. A detailed analysis
is presented in the subsequent section.

3.1.1 Topology and Connectivity

The quantum circuits were compiled for two hardware architectures: a heavy-hex and
Sycamore, both illustrated in Figure 1. Each architecture is characterised by a spe-
cific topology—the qubit connectivity graph—and a corresponding physical layout,
which refers to the concrete arrangement of qubits on the chip. The heavy-hex topol-
ogy optimises connectivity while reducing crosstalk by limiting qubit interactions to
carefully placed neighbors [47], whereas the grid like topology of the Sycamore chip
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uses a 2D grid where each qubit connects to up to four neighbors, enabling efficient
gate operations [48]. To compare the topologies we introduce the following metric:

Relative depth =
Dsycamore −Dheavy-hex

Dheavy-hex
, (1)

where Dsycamore and Dheavy-hex denote the circuit depths when transpiled to the
Sycamore and heavy-hex layouts. This normalised measure captures the proportional
increase or decrease in circuit depth due to differences in topology and connectivity.
It allows for comparisons by quantifying how circuit execution complexity scales rela-
tive to a baseline, independent of the absolute circuit size. We study how varying the
ratio of problem size to back-end size affects circuit fidelity by uniformly scaling the
physical layout. By systematically adjusting the ratio of problem size to physical qubit
count, we analyse how the spatial embedding of a fixed logical circuit affects execution
fidelity across different topologies and device sizes. When the number of qubits used
to encode a problem is significantly smaller than the size of the quantum processor,
multiple logical-to-physical qubit mappings become possible. This flexibility in place-
ment can influence circuit fidelity, as different mappings may lead to variations in gate
routing and noise accumulation. To explore this effect, we vary the ratio of encoded
problem size to back-end size by uniformly scaling the physical layout. back-end sizes
are described in terms of their 2D as (n ×m), where n denotes the number of rows,
and m the number of columns. Layouts implementing the heavy-hex topology range
from configurations with 6 × 4 (143 physical qubits) to 8 × 6 (297 physical qubits).
Similarly, Sycamore layouts range from 36 qubits (6× 6) to 144 qubits (12× 12).

(a) Heavy-hex topology (b) Grid-like topology of the Sycamore lay-
out

Fig. 1: Comparison of hardware topologies.
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The connectivity of the back-end is measured in terms of a connectivity density

c =
NC

NC,max
, (2)

with NC denoting the total number of edges in the hardware graph and NC,max =
N(N − 1)/2 the maximal number of edges for N qubits. If two qubits are connected,
they can physically interact and a two-qubit gate can be performed between them.
c = 1 describes a device with all-to-all connectivity. In the experiments presented
below, the connectivity density is increased by randomly adding connections between
qubit pairs that are not yet connected, continuing until full connectivity is reached. The
average number of nearest neighbours per qubit grows linearly with the connectivity
density.

3.1.2 Noise

In quantum computing, noise plays a critical role in limiting circuit reliability
and fidelity. We examine common noise sources—crosstalk, thermal relaxation, and
depolarisation—and their impact on benchmark circuits. Due to computational lim-
itations, fidelities are approximated analytically using a model that incorporates the
number of gates, gate fidelities, and circuit depth.

Crosstalk

refers to unintended interactions where operations on one qubit affect nearby qubits,
reducing fidelity. It remains a hardware-specific challenge without a standardised
model. Inspired by prior studies on superconducting qubits [49, 50], we evaluate three
crosstalk models — the shared qubit, the simultaneous execution, and proximity based
model — each capturing different aspects of crosstalk behavior to assess their impact
on circuit fidelity.

Shared qubit introduces crosstalk noise whenever two two-qubit gates share a
common qubit, regardless of whether they occur in the same layer or at different
times in the circuit. This model is inspired by studies on superconducting qubits [50–
52]. Prior research has shown that crosstalk effects during two-qubit gate operations
become significant when the gates share a neighboring pair. A neighboring pair occurs
when a qubit involved in one two-qubit gate is directly connected to a qubit involved in
another two-qubit gate. Let qubits i and j participate in one two-qubit gate operation,
and qubits k and l in another. The crosstalk effect C(i, j, k, l) is defined as follows:

C(i, j, k, l) =

1 No connection between i, j and k, l,

C01,02 Connection between i, j and k, l.
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To quantify the effect of neighboring gates, the fidelity metric C01,02 is defined as the
harmonic mean of the fidelities of the overlapping two-qubit gates:

C01,02 =

(
2

1
FO1

+ 1
FO2

)n

. (3)

Here:

• FO1 and FO2 : Fidelities of the two overlapping operations O1 and O2.
• n: Degree of crosstalk amplification, proportional to the number two-qubit gate

operations executed.

The simultaneous execution model surfaces when at least two two-qubit gates are
executed within the same circuit layer. This model introduces crosstalk when two-qubit
gates are executed concurrently, regardless of spatial separation, affecting neighboring
qubits connected to the active ones [51]. For qubits i and j undergoing simultaneous
two-qubit operations at time k, the crosstalk effect C(i, j, k) is given by:

C(i, j, k) =

1 No operation on i and j at time k,

C01,02 i, j undergo ops. O1, O2 at time k.

The fidelity metric for simultaneous operations is similarly to the shared qubit model
expressed as:

Cneigh x sim =
∏

(i,j)∈N

Fn
Om

 2
1

FOi
+ 1

FOj

k

, (4)

here:

• FO1 and FO2 : Fidelities of the two simultaneously executed two-qubit gates.
• k: Amplification factor for number of simultaneous two-qubit operations.
• N : Set of all neighboring edges affected by the simultaneous two-qubit gates.
• FOm : Fidelity of the single-qubit operation on qubit .
• n: Degree of influence, proportional to the number of shared qubits.

In addition to affecting the involved two-qubit gates, both models—shared qubit
and simultaneous execution—also apply a lower-intensity noise term to nearby
single-qubit gates to reflect indirect interference.

The proximity based model considers crosstalk when two-qubit gate operations
are executed within a predefined physical distance on the hardware coupling map.
Additionally, single-qubit gates performed on neighboring qubits are also affected by
a weaker noise penalty. Let qubits i and j participate in one two-qubit gate operation,
and qubits k and l in another. If the Euclidean distance between any qubit from the
first operation and any qubit from the second operation is within a maximum radius
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rmax = 2, crosstalk noise occurs. The crosstalk effect C(i, j, k, l) is defined as follows:

C(i, j, k, l) =

{
1 if d(i, j, k, l) > rmax,

Cprox if d(i, j, k, l) ≤ rmax.

Here, d(i, j, k, l) is the Euclidean distance between any qubit in the first gate operation
and any qubit in the second gate operation. The fidelity metric for proximity based
crosstalk is given by:

Ctotal = Cprox × Cneigh, (5)

with

Cprox =

(
2

1
FO1

+ 1
FO2

)n

, Cneigh =
∏

m∈N
Fn
Om

. (6)

Here:

• N : Set of all neighbouring qubits executing single-qubit gates.
• FOm : Fidelity of the single-qubit operation on qubit .
• k: Degree of influence, proportional to the number of affected neighbours.
• FO1 and FO2 : Fidelities of the two topologically close two-qubit gates.
• n: Amplification factor based on the proximity and number of affected qubits.

Other Noise Variants

We compare the effect of crosstalk to other prominent noise types— thermal relaxation
and depolarisation noise. By conducting a systematic evaluation across these variants,
we aim to quantify the relative significance of crosstalk noise in relation to its coun-
terparts. Thermal relaxation noise is a non-unital, irreversible process describing
the interaction between qubits and their environment as they evolve toward thermal
equilibrium. A non-unital process does not preserve the identity operator, meaning it
drives the systems toward a specific state—in this case, the ground state |0⟩—rather
than maintaining a maximally mixed state. It comprises two primary mechanisms:

• Relaxation T1: The process by which a qubit exchanges energy with its environ-
ment, typically decaying from the excited state |1⟩ to the ground state |0⟩.

• Dephasing T2: A process that leads to the decay of quantum coherence without
necessarily changing the energy state of the qubit.

These effects are characterised by timescales T
(q)
1 and T

(q)
2 for each qubit q, where

typically T2 ≤ 2T1 [53]. Dephasing can occur both independently and in conjunction
with relaxation [54]. To estimate fidelity loss due to thermal relaxation (amplitude
damping and dephasing) in a quantum circuit, we consider the total time each qubit
is active during the execution of the circuit. Let t(q) be the total accumulated gate

duration for qubit q. Each qubit is characterised by a T
(q)
1 (energy relaxation) and

T
(q)
2 (dephasing) time constant. The fidelity due to thermal relaxation for qubit q is

modeled as:
F (q)(t(q)) = e−tq/T

(q)
1 · e−tq/T

(q)
ϕ , (7)
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where the pure dephasing time T
(q)
ϕ is derived from:

1

T
(q)
ϕ

=
1

T
(q)
2

− 1

2T
(q)
1

. (8)

The total circuit fidelity is estimated as the product of the fidelities over all qubits
q ∈ Q:

Ftotal =
∏
q∈Q

F (q)(t(q)). (9)

This method provides a idealised, estimation of circuit fidelity under thermal noise,
assuming Markovian relaxation and no gate errors.

Depolarisation noise affects quantum systems, by randomly replacing quantum
states with the maximally mixed state. This process results in a complete loss of
information about the original state, with the system transitioning to a uniform prob-
ability distribution over all possible states. Depolarisation noise for a quantum gate is
modelled using

Fgate = Finitial × (1− pdepolarisation) , (10)

where Finitial is the initial fidelity of the gate, and pdepolarisation is the depolarisa-
tion probability associated with the gate. The overall fidelity of a quantum circuit,
incorporating all N gates in the transpiled circuit, can be expressed as:

Fcircuit =

N∏
i=1

Fgate,i, (11)

where N is the total number of gates in the circuit [55, 56].

3.2 Compilation Layer

We evaluate the impact of compilation choices—such as optimisation level, qubit
mapping, and routing strategy—on circuit fidelity. For the experiments exploring com-
pilation variations, the fixed device configuration are set as follows: a coupling map
with 128 qubits with connectivity densities set to [0.013895, 0.03, 0.05, 0.1, 0.3, 0.5,
0.8]. The basis gates are defined as [’x’, ’y’, ’z’, ’rx’ ’ry’, ’rz’, ’cx’, ’cy’].

3.2.1 Metrics

The circuit mapping performance metrics are defined as follows: Gate overhead
measures the relative increase in the total number of quantum gates after compilation:

Goverhead =
Gafter −Gbefore

Gbefore
, (12)

where Gbefore and Gafter denote the number of gates before and after compilation.
Similarly, depth overhead measures the relative change in circuit depth with Dbefore
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and Dafter representing pre- and post- compilation:

Doverhead =
Dafter −Dbefore

Dbefore
. (13)

In the next expression, Fbefore is the fidelity before compilation and Fafter is the fidelity
after compilation.

Fdecrease =
Fbefore − Fafter

Fbefore
. (14)

To measure the impact on solution quality, we utilise the cost improvement metric—
as introduced in Arline Benchmarks [57] —combining circuit depth, gate counts and
gate fidelities. The cost improvement is defined as the ratio between the initial and
final circuit costs. A higher ratio indicates the optimisation of reduced errors. This
metric serves as the primary Figure of merit and builds upon the metric set previously
introduced in [8].

C =
Cin

Cout
, (15)

where:

Cin = −Dbefore × logK −Nbefore
1q × logF1q −Nbefore

2q × logF2q, (16)

Cout = −Dafter × logK −Nafter
1q × logF1q −Nafter

2q × logF2q. (17)

F1q, F2q denote one-qubit and two-qubit gate fidelity (default: 0.9982, 0.9765), and
N1q respectively N2q represent the number of single- and two-qubit gates before and
after compilation. The decoherence fidelity per depth unit, K (default: 0.995), models
the loss in fidelity due to idle time and circuit depth, i.e., the longer a qubit remains
active within a deep circuit, the greater the chance it suffers from decoherence effects.
A value of K = 0.995 corresponds to a 0.5% fidelity loss per unit of depth [53].

Although this work primarily focuses on cost improvement metric as a compre-
hensive indicator for solution quality, we have also evaluated the other three metrics:
fidelity decrease, gate overhead, and depth overhead. These supplementary results
are included in the full set of experiments provided in our reproduction package
(see Section 1). Gate fidelities are derived from Starmon-5 a superconducting quan-
tum processor based on circuit quantum electrodynamics [58]. While our benchmark
topologies are inspired by IBM’s heavy-hex and Google’s Sycamore architectures, we
chose Starmon-5 gate fidelities as a more neutral and representative reference point,
avoiding direct bias toward a specific commercial platform. Furthermore, Starmon-5
exhibits performance characteristics that fall within the typical range of superconduct-
ing qubit platforms making it suitable for general benchmarking without favouring
any particular topology or vendor.

3.2.2 Optimisation Level

Qiskit provides four optimisation levels (0–3) that progressively reduce circuit depth
and gate count during transpilation, with higher levels applying more aggressive
transformations at the cost of longer compilation time [59].
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3.2.3 Layout Methods

To map logical qubits to physical qubits on a quantum device, we evaluate three
Qiskit layout methods: Trivial, Dense, and SABRE [4]. The Trivial method maps
logical to physical qubits in numerical order without considering the hardware topol-
ogy, making it computationally inexpensive but potentially leading to many SWAP
operations. The Dense method aims to minimise SWAP operations by selecting a
subset of physical qubits that closely matches the logical qubit structure. It analyses
the device’s coupling map to identify a densely connected group of qubits, reducing
the distance between interacting qubits but requiring more computational effort. The
SABRE method uses a heuristic to iteratively refine the mapping as the circuit pro-
gresses, effectively minimising SWAP gates and thus circuit depth, especially in larger,
more complex circuits.

3.2.4 Qubit Routing Techniques

Qiskit offers different routing techniques to insert SWAPs when logical qubits are not
physically adjacent [60]. We examine Stochastic and SABRE routing: Stochastic uses
randomisation and heuristics to minimise circuit depth, while SABRE dynamically
adjusts qubit placement to reduce SWAP overhead during execution.

3.2.5 Pass Manager Setups (Circuit Optimisation Passes)

We investigate five pass manager setups, each applying progressively more complex
optimisation techniques to improve circuit fidelity.

• Setup 1: Optimises single-qubit gates and Clifford operations by simplifying
commutation relationships.

• Setup 2: Decomposes single-qubit gates and cancels adjacent CNOT gates.
• Setup 3: Extends Setup 1 by removing diagonal gates before measurements.
• Setup 4: Decomposes single-qubit gates and applies commutative gate cancellation.
• Setup 5: Extends Setup 3, applies the Hoare optimiser, followed by (inverse)

commutative gate cancellation.

While we utilise Qiskit as compilation, our proposed DSE technique is compiler-
agnostic and can be readily applied within other quantum software platforms.

3.3 Benchmarks

For our experiments, we selected an extensive set of quantum circuits that span a wide
range of computational paradigms and quantum algorithmic classes. The benchmark
set includes circuits from well-known quantum algorithms and standard benchmarking
tools such as Quantum Volume, Shor’s algorithm, Quantum Fourier Transform (QFT),
and circuits generating Greenberger-Horne-Zeilinger (GHZ) states. We include QFT
and related circuits because they exhibit well-understood structural and noise sensitiv-
ity characteristics, making them suitable candidates for studying residual noise effects
and error mitigation techniques [61]. This is particularly important as the transition
from NISQ to FTQC is unlikely to be abrupt; intermediate regimes will exhibit partial
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error correction and noise resilience, for which techniques like those evaluated in this
study are highly relevant [27]. Additionally, we incorporated circuits for arithmetic
operations, such as modular addition as well as structurally diverse randomly gener-
ated circuits to capture non-algorithmic patterns and stress-test compiler behaviour
in less regular configurations. To further enhance the diversity and structural variety
of our benchmark set, we ensured that the circuits represent distinct structural cat-
egories based on their circuit properties as defined in the paper by Bandic et al. [8].
This clustering is based on quantitative features rather than fixed algorithm classes.
This approach guarantees that the benchmarks are structurally distinct, enabling
more comprehensive comparisons. The benchmark set itself is derived from the qbench
benchmark set [6, 7], which offers an extensive collection of quantum circuits, sourced
from various platforms and written in different programming languages. To address
contemporary challenges we added error correction algorithms like Bosonic, Repeti-
tion, Shor, Steane and Surface Code. These circuits enable performance evaluation in
the context of FTQC and support the investigation of early-stage error correction and
mitigation strategies applicable to near-term devices. The selected benchmarks enable
a comprehensive evaluation of gate-based quantum computing performance across
diverse circuit features and use cases, including optimisation, factoring and quantum
simulation. The full benchmark suite of 30 circuits along with information on each
algorithm, its purpose, and implementation specifics are included in the reproduction
package referenced in Section 1.

4 Results

We commence with discussing our results along the two parts described in Section 3:
Device and compilation characteristics.

4.1 Results of the Device Setup and Parameter Sweep

To isolate the impact of each noise model, we evaluate circuit fidelity and circuit depth
under five distinct noise models, considering them individually and independently
in an otherwise noiseless setting. The three crosstalk-related models include shared
qubit, simultaneous execution, and proximity based (see Section 3.1.2), each
representing plausible physical behaviours in multi-qubit gate execution systems. In
addition, we include two widely studied standard noise models: thermal relaxation
and depolarisation. Figure 2 compares the effects of all five noise models across
varying connectivity densities for a representative set of benchmarks (see Section 3.3).
Note that the fidelities are model-estimated and may introduce bias or approximation
artifacts, particularly in regimes with correlated errors. We observe that devices with
higher connectivity density (right-hand side of the x-axis) are generally more resilient
to the simultaneous execution model, as parallel gate execution causes less disruption
when the qubit layout is less constrained. In contrast, the shared qubit model high-
lights a trade-off where more densely connected devices can amplify interference and
common qubits. The proximity based model performs more consistently across connec-
tivity densities, indicating its relative independence from overall connectivity density.
No single crosstalk model dominates across all benchmarks. Which model performs

15



Shor q=15 Shor q=35 Sqrt 7 q=15 Trotter q=4 VQE q=32

QSE q=16 QSE q=20 Queko q=6 QV q=5 Random 14

Grover q=8 Modulo q=13 QAOA q=128 QFT q=128 QFT q=64

Encoding q=15 GHZ q=128 GHZ q=16 GHZ q=64 Grover q=128

Bench Circ q=10 Bench Circ q=17 Bench Circ q=8 Cycle10 q=12 DNN q=16

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Connectivity

F
id

el
ity

Noise Variation
Shared Qubit Simultaneous

Execution Proximity Based

Thermal Relaxation Depolarization

Fig. 2: Illustration of fidelity vs. connectivity across benchmarks as facets comparing
three crosstalk models, thermal relaxation, and depolarisation noise for the heavy-hex
back-end topology.
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Fig. 3: Extension of Figure 2 with error correcting codes.

best is highly benchmark-specific, reinforcing the need for tailored noise mitigation.
That said, the shared qubit model nearly consistently results in the most severe degra-
dation, highlighting it as a key target for error mitigation in quantum architectures
with slightly higher connectivity density. Beyond crosstalk, quantum circuits are also
affected by thermal relaxation and depolarisation noise. While thermal relaxation
and depolarisation are generally less harmful to fidelity than crosstalk—particularly
compared to the shared qubit model—exceptions do exist. Notably, in large-qubit
benchmarks such as QAOA q=128, Grover q=128, and QFT q=128, thermal relax-
ation causes greater fidelity loss than any of the other noise variants. Error-correcting
codes are essential for achieving fault-tolerant quantum computing (FTQC). To eval-
uate their resilience to crosstalk, we analyse the fidelity of well-known error-correcting
codes, as shown in Figure 3. Proximity based and simultaneous execution models
maintain stable fidelities for all codes when connectivity exceeds 0.1. However, the
shared qubit model shows a fidelity drop with increasing connectivity, particularly
impacting steane code. Shor code performs significantly worse under the shared qubit
model than the other two models. These results highlight the need for tailored error-
correcting strategies in FTQC, that consider both noise models and hardware topology.
Effectively mitigating crosstalk remains a complex challenge. For example, Qiskit’s
now removed CrosstalkAdaptiveSchedule [62] aimed to reduce crosstalk by locally
adapting gate scheduling. However, it was found that such local optimisations can have
unpredictable global effects on circuit performance by increasing exposure to other
noise sources. This illustrates the difficulty of balancing different noise mechanisms
and underscores the need for community-wide standards to define how crosstalk is
modeled, measured, and mitigated. Nevertheless, new techniques like twirling [63] and
dynamical decoupling [64] are emerging as promising techniques to reduce crosstalk
error. Tunable couplers [65] have also been proposed as a hardware-level solution to
suppress crosstalk by enabling dynamic control over qubit-qubit interactions. To fur-
ther investigate the spatial aspects of crosstalk, Figure 4 and 5 compare the heavy-hex
and Sycamore layouts, each consisting of 143 and 144 qubits, respectively. Positive val-
ues indicate better performance on heavy-hex, while negative values favour Sycamore.
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Overall, Sycamore shows lower robustness to crosstalk across most models and circuits,
with few exceptions. This highlights the importance of back-end-specific co-design.
This is particularly evident when considering that Qiskit’s transpiler has been shown
to perform especially well on the heavy-hex architecture [47, 66]. However, the advan-
tages of adopting a different topology diminish around a connectivity density of 0.8.
For certain smaller benchmarks, this effect appears even earlier.
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Fig. 4: Difference in fidelity between heavy-hex and the grid-like topology of the
Sycamore chip across benchmarks and connectivity.
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To assess further architectural impacts on performance, we examine how different
back-end sizes influence fidelity and circuit depth. As seen in 6, different back-end sizes
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for crosstalk version shared qubit.

across different optimisation levels (0− 3) have little to no consistent effect on fidelity
across benchmarks. In certain cases, larger back-ends even exhibit a lower fidelity,
suggesting that scaling alone is insufficient— if not a disadvantage—for mitigating
crosstalk-induced loss.

The results in Figure 7 reinforce the observation that back-end sizes exerts minimal
influence on fidelity. Under the simultaneous execution crosstalk model, increasing the
back-end size does not yield noticeable improvements in fidelity. While some minor
fluctuations are visible, the overall trend indicates that fidelities remain largely unaf-
fected by back-end size scaling. Figure 8 indicates that the depth of most circuits
converges near a connectivity of 0.3, regardless of back-end size. This convergence
point is also consistent with findings in optimisation-focused problems, as reported by
Safi et al. [12]. While most larger benchmarks also tend to stabilise around this con-
nectivity threshold, some continue to exhibit slight reductions in circuit depth beyond
a connectivity of 0.3. However, these gains are marginal and often come at the cost of
increased compilation time. In general, back-end size has a limited impact on depth
and fidelity. Selecting a back-end size that matches the scale of the target problem
helps strike a balance between computational efficiency and resource allocation.

Overall, the results presented in this section indicate that higher connectivity den-
sity improves resilience to crosstalk noise across most models. Nonetheless, fidelity in
the shared qubit model can degrade as connectivity increases. The grid-like topology
of the Sycamore chip exhibits lower robustness compared to its counterpart, and both
fidelity and circuit depth converge independent of back-end size.
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4.2 Results of the Compilation Parameter Sweep

Having examined device-level parameters, we now focus on compilation parameters.
We sweep the full set of benchmarks across all combinations as defined in Section 3.

As shown in Figure 9, we evaluate each benchmark using the cost improvement
metric introduced in section methodology (see Equations (15), (16), and (17)), where
higher values indicate better performance. Across most benchmarks, the SABRE and
Dense layout provide the best improvements, though Trivial performs well for specific
cases like GHZ states. The Dense layout shows variable results, often outperforming
Trivial and sometimes matching SABRE. While SABRE yields high-quality mappings
it also has the longest compilation time. Moreover, its performance deteriorates for
variational algorithms such as VQE, where repeated circuit execution favours stable
and noise-aware mappings [67]. Therefore, its use should be carefully considered in
light of both time constraints and the specific characteristics of the problem.

Regarding qubit routing technique (see Figure 10), the SABRE router consistently
outperforms the Stochastic approach, especially for large and structurally complex
circuits such as QFT. However, this advantage has trade-off’s. The SABRE method
typically requires longer compilation time (3.2.4), and for smaller or highly regular
circuits, the improvement over Stochastic routing does not justify the additional effort.
However unlike the layout methods, where the optimal choice is problem dependent,
the comparison of qubit routing techniques reveals a clear trend.

Figure 11 illustrates the impact of various optimisation levels on cost improve-
ment. As optimisation level 2 rarely offers significant advantages over level 1, the
additional compile-time overhead and increased variability make optimisation level 1
the preferred choice across most benchmarks.

Although analysing layout method, qubit routing technique, and optimisation
level separately is useful, their effects are often interdependent. Certain combina-
tions can perform notably better or worse due to synergies between them. Figure 12
presents the frequency of best and worst-performing configurations across all bench-
marks. The most successful combinations typically use SABRE as a qubit routing
technique with optimisation level 2, with SABRE|2|SABRE performing best over-
all, followed by SABRE|2|Trivial and SABRE|2|Dense. The worst results often come
from Stochastic|0|SABRE, further validating that strong components alone are not
enough—effective performance requires aligned configurations across layout method,
qubit routing technique, and optimisation level. Notably, even SABRE|0|SABRE per-
forms poorly, underlining the significant role of the optimisation level. Figure 13
compares the performance of the best and worst-performing initial configurations
according to the cost improvement metric across our benchmark algorithms and dif-
ferent connectivity densities. The y-axis indicates the connectivity density of the
hardware topology, while the x-axis represents successive passes introducing addi-
tional circuit optimisations (as discussed in Section 3.2.5) aimed at reducing depth
and gate overhead, as well as improving fidelity. Configurations that already incorpo-
rate an effective combination of layout method, optimisation level, and qubit routing
technique generally do not benefit from additional circuit transformation passes. Even
the worst-performing initial configurations tend to benefit minimally from additional
passes, showing that further complexity does not necessarily yield in proportional
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gains. Ultimately, the most significant factor in improving circuit performance is con-
nectivity: the more complex the circuit, the more essential high connectivity becomes.
Generally, in combination SABRE consistently delivers the best layout and routing
performance but has higher compile times. Thus optimisation level 1 offers a good
compromise.
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5 Conclusion & Outlook

Our study highlights the importance of a holistic approach to optimising quantum
circuit performance, emphasising the interplay between hardware characteristics and
compilation strategies. The results demonstrate that both device attributes and com-
pilation choices impact circuit performance. We observe that different crosstalk models
affect fidelity in distinct ways, underlining the importance of tailoring error mitiga-
tion strategies to the specific noise characteristics of the device. Notably, the shared
qubit model consistently exhibits the most detrimental impact on fidelity, while the
simultaneous execution model shows a more stable behavior, especially when connec-
tivity exceeds 0.3. However, full connectivity is not required as fidelity converges much
sooner. Additionally, back-end-specific optimisations play a crucial role. Heavy-hex
topology consistently shows better crosstalk resilience compared to the grid-like topol-
ogy of the Sycamore chip. In contrast larger back-end sizes have a negligible impact
on circuit fidelity. Among compilation strategies, SABRE-based routing and layout
methods with moderate optimisation levels yield the best compromise between per-
formance and compile time. Notably, increasing system complexity through excessive
optimisation does not lead to proportional improvements in performance, as shown
in Figure 13. This suggests diminishing returns beyond setting good parameters for
qubit routing, layout method and optimisation level. Importantly, optimal perfor-
mance emerges from aligning all parameter options. Our findings support the need for
end-to-end co-design: quantum system performance is maximised when noise-aware
hardware selection, connectivity, and compilation strategies are considered jointly. Key
takeaways include:

• Connectivity density is the dominant factor influencing both fidelity and circuit
depth.

• The shared qubit crosstalk model presents the greatest fidelity challenge and should
be prioritised in mitigation strategies.

• back-end size scaling offers limited to no benefit, suggesting resource-aware deploy-
ment is preferable.

• Among compilation parameters, SABRE routing combined with optimisation level
1 provides the best cost-performance balance.

• Adding more circuit transformations beyond already aligned configurations yields
marginal or no gains, reinforcing the value of strategic simplicity.

Building on these insights, hardware developers should address some issues at the
design level. It is beneficial to establish a standardised definition of crosstalk to ensure
more consistent benchmarking. Adaptive compilation strategies that respond to both
circuit structure and device properties hold promise for scalable quantum computing.
Ultimately, aligning hardware innovations with software design will be the key to
achieving the full potential of quantum technologies. In future work, it would be
valuable to investigate the trade-offs between circuit performance and the additional
compilation time by more advanced circuit improvements.
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