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ABSTRACT
Finding optimal join orders is among the most crucial steps to be
performed by query optimisers. Though extensively studied in data
management research, the problem remains far from solved: While
query optimisers rely on exhaustive search methods to determine
ideal solutions for small problems, such methods reach their limits
once queries grow in size. Yet, large queries become increasingly
common in real-world scenarios, and require suitable methods to
generate efficient execution plans. While a variety of heuristics
have been proposed for large-scale query optimisation, they suffer
from degrading solution quality as queries grow in size, or feature
highly sub-optimal worst-case behavior, as we will show.

We propose a novel method based on the paradigm of mixed
integer linear programming (MILP): By deriving a novel MILP model
capable of optimising arbitrary bushy tree structures, we address the
limitations of existing MILP methods for join ordering, and can rely
on highly optimised MILP solvers to derive efficient tree structures
that elude competing methods. To ensure optimisation efficiency,
we embed our MILP method into a hybrid framework, which applies
MILP solvers precisely where they provide the greatest advantage
over competitors, while relying on more efficient methods for less
complex optimisation steps. Thereby, our approach gracefully scales
to extremely large query sizes joining up to 100 relations, and
consistently achieves the most robust plan quality among a large
variety of competing join ordering methods.
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1 INTRODUCTION
The fundamental database issue of join order optimisation remains
one of the most crucial steps to be performed in query optimisation.
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As solution costs can vary by orders of magnitude, query optimisers
must avoid suboptimal join orders that yield extremely large query
execution times [25, 31, 40]. For small queries, query optimisers rely
on exhaustive search methods to obtain optimal solutions. However,
as join ordering is NP-hard [4] (even in the approximate variant [3]),
the performance of exhaustive search methods quickly degrades
as queries grow in size. Yet, large queries remain a challenge to
be addressed in real-world workloads [5, 25, 42]. For such queries,
query optimisers shift towards more efficient heuristic join ordering
approaches, such as genetic algorithms as applied by PostgreSQL.

However, such heuristic methods typically provide no guaran-
tees on solution quality, and often produce extremely costly join
orders. In contrast, methods such as the conventional polynomial-
time IKKBZ algorithm [13, 15] efficiently yield optimal solutions
within a restricted solution space encompassing only left-deep join
trees. Yet, such linear join ordering solutions can exceed optimal
solution costs by orders of magnitude [25], which prompts the
search for scalable join ordering methods capable of identifying
efficient general bushy tree solutions. To this end, Neumann and
Radke have derived an adaptive join ordering approach utilising a
search space linearisation technique that applies dynamic program-
ming to obtain bushy trees based on linear IKKBZ join orders [25].
However, the guarantees on solution optimality provided by IKKBZ
do not generally translate to the quality of bushy join trees obtained
by linearisation techniques. As we will empirically show, linearised
join orders frequently fail to capture ideal bushy tree structures,
resulting in highly suboptimal plans.

To address the limitations of existing join ordering methods, we
propose a novel hybrid optimisation method based on the estab-
lished paradigm of mixed integer linear programming (MILP). By
formulating join ordering as a MILP problem, we can rely on highly
optimised MILP software solvers with decades of maturing, which
renders them ideal tools for optimising large-scale problems. As a
substantial benefit over most competing join ordering approaches
for large-scale queries, our novel method benefits from formal guar-
antees on solution optimality provided by the MILP optimisation.
Thereby, our method achieves remarkable robustness for extremely
large queries joining up to 100 relations, as we will empirically
show.

Our novel hybrid MILP method improves over the existing MILP
approach for join ordering proposed by Trummer and Koch [40]
in multiple regards. Firstly, their approach was limited to left-deep
join trees, which frequently results in substantial cost overheads
compared to bushy join trees. In contrast, we derive a novel MILP
model capable of identifying bushy join trees. However, rather than
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exploring the complete bushy tree solution space, which is largely
filled with highly undesirable suboptimal solutions, we maintain
a lightweight MILP model size by focusing the optimisation on
specific sets of bushy join trees contained within a carefully selec-
ted join tree template. In our paper, we identify suitable templates
consistently capturing highly efficient join tree structures for a
large number of NP-hard tree queries.

In addition to the restriction to left-deep trees, the existing MILP
method [40] further features only limited scalability, which prompts
frequent timeouts without obtaining any solution once queries grow
in size 1. To prevent such limitations, and to optimise scalability
aptness, we embed our novel MILP method in a hybrid framework
that (1) utilises MILP precisely for those parts of the join tree op-
timisation where the MILP solver provides the greatest benefit over
competitors by identifying complex bushy tree structures, and (2)
switches to more efficient join ordering alternatives for those tree
portions where such methods are likely to yield optimal or near-
optimal solutions. In particular, for scenarios where linear left-deep
shapes constitute optimal solutions, methods like IKKBZ efficiently
identify ideal plans, while relying on MILP constitutes a waste of
optimisation resources in such cases. Our hybrid method achieves
maximum efficiency by selecting the most suitable join ordering
algorithm for each optimisation step.

Contributions. In summary, our research contributions are as
follows:
(1) We derive a novel MILP encoding for join order optimisation,

which allows the use of highly efficient MILP solvers to identify
complex bushy tree structures that elude competing join order-
ing methods.

(2) We propose a hybrid algorithm that combines our novel MILP
method and complementary join ordering approaches, ensuring
that resource-intensiveMILP is used precisely where it provides
the greatest advantage over competing approaches. We thereby
substantially boost MILP model efficiency, and render our ap-
proach suitable for large-scale query optimisation.

(3) We conduct an empirical analysis that compares our novel
hybrid MILP approach against a wide range of competitors fea-
turing a large variety of characteristics, including conventional
dynamic programming methods, polynomial-time heuristics,
greedy heuristics, as well as probabilistic algorithms.

(4) We demonstrate the remarkable robustness of our hybrid MILP
method for extremely large query loads, including NP-hard
tree queries that join up to 100 relations. Our approach obtains
optimal or near-optimal solutions for most of the 900 queries
considered in our analysis, and avoids the worst-case behavior
of other join ordering methods, which frequently exceed best
solution costs by orders of magnitude. In contrast to competit-
ors, our hybrid MILP algorithm thus scales gracefully alongside
increasing query sizes, and maintains high solution quality
even for extremely large problem loads.

The remainder of this paper is structured as follows: We begin by
outlining our considered join ordering model in Sec. 2. We present
our novel MILP encoding in Sec. 3, and detail our hybrid framework
combining MILP and complementary methods in Sec. 4. We present

1As assessed by Neumann and Radke [25], the existing MILP method experiences
timeouts without obtaining any solution once queries join 40 relations or more.

our experimental results in Sec. 5, and discuss related work in Sec. 6.
Finally, we conclude in Sec. 7.

2 JOIN ORDERING MODEL
In this section, we discuss the fundamentals of join order optim-
isation and our join ordering model. We begin by outlining the
problem input in Sec. 2.1, and consider the general join ordering
solution space, as well as commonly applied search space restric-
tions, in Sec. 2.2. Finally, we discuss our considered cost function
in Sec. 2.3.

2.1 Query Graph
The input to the join ordering problem is given by a query graph𝑄 =

(𝑉 , 𝐸), where nodes represent base relations, and edges represent
join predicates [20]. Each node 𝑣𝑘 ∈ 𝑉 is labeled by the cardinality
𝑛𝑘 for relation 𝑘 , while each join predicate is labeled by the join
selectivity 0 < 𝑓𝑘𝑙 ≤ 1 for joining relations 𝑘 and 𝑙 .

In contrast to some competing join ordering methods, which
require certain query graph properties such as connectivity or an
absence of cycles, as presupposed, e.g., by the conventional IKKBZ
algorithm [13, 15], our MILP model as proposed in Sec. 3 is not
restricted to specific graph shapes or properties.

2.2 Join Tree
Each solution to the join ordering problem is given by a join tree,
where tree nodes correspond to join operations, with the exception
of leaf nodes, which represent joined base relations. The general
size of the join ordering solution space is hence given by all possible
tree shapes that can be expressed by individual solutions. To handle
the extremely large solution space, and to enhance the exploration
efficiency, most join ordering methods only consider solutions of
certain properties.

Cross Products. Most prominently, join ordering methods often
exclude cross product operations, i.e., joining base relations that do
not feature a shared join predicate. While these operations typically
produce very costly results, and can thus often be safely disregarded,
cross products can be optimal in rare cases [16]. Our novel MILP
model explores an extended solution space including cross-product
operations.

Tree Shape. As a further, commonly applied solution space re-
striction, many join ordering methods, including the conventional
IKKBZ method [13, 15], only consider linear, or left-deep join trees.
Depending on the query graph shape, this search space restriction
can be very effective: For star queries, where the central relation
constitutes a crucial operand to be featured by all joins, optimal solu-
tions accordingly correspond to left-deep join trees. Yet, for other,
more general query graph shapes, enforcing left-deep tree shapes
can severely degrade solution quality by orders of magnitude [25].
To address this limitation of the existing MILP encoding for join
ordering by Trummer and Koch [40], our novel encoding allows
the specification of arbitrary tree structures to be optimised.

2.3 Cost Function
Finally, each join tree is evaluated based on a cost function. In our
paper, we consider the conventional cost function cout , which sums
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over the sizes of all intermediate join results [20]. For a list of join-
operand assignments represented by a join tree T , costs are derived
as

cout (T ) =
∑︂
Opj ∈T

⎛⎜⎝
∏︂
𝑟 ∈Opj

𝑛𝑟 ·
∏︂

(𝑟𝑘 ,𝑟𝑙 )⊆Opj

fkl
⎞⎟⎠ , (1)

where Opj denotes a list of relations 𝑟 used as operands for join 𝑗 .
Note that we do not consider the costs of the final (root) join in

our cost calculation, as this cost value is invariant w.r.t. individual
join ordering solutions and join trees, and would be merely added
as a constant offset to the costs of any solution. Thereby, we avoid
cases where the cost offset yielded by the final join equalises the
solutions yielded by varying algorithms that otherwise vastly differ
in costs. This may occur if final join costs substantially exceed the
accumulated costs contributed by the remaining intermediate joins.

3 MILP ENCODING
In this section, we present our novel MILP encoding that allows
for the optimisation of bushy join tree structures, thus improving
over the existing MILP model by Trummer and Koch [40], which is
limited to left-deep join trees. Rather than exploring the complete
bushy join tree solution space, our model operates based on arbit-
rary join tree templates: We allow the MILP optimiser to choose
between varying join trees encompassed by a specified template.
Fig. 1 (a) illustrates a template featuring four joins 𝑖 , 𝑗 , 𝑘 , and 𝑙

for joining four relations A, B, C and D. Given this template join
arrangement, the MILP optimiser can either select a left-deep join
tree as shown in Fig. 1 (b), or the balanced tree variant featured in
Fig. 1 (c).

Restricting the MILP optimisation to select join trees encoded
via a tree template allows us to maintain a high modeling efficiency
and algorithmic performance, which constitute essential properties
for our goal of large-scale join order optimisation. In contrast, MILP
models for the unrestricted bushy join tree solution space would
require both, a substantial encoding overhead in both variables and
constraints, as well as increased search complexity that degrades
performance. Naturally, the optimisation quality of our approach
rests on the selection of suitable templates that capture optimal or
near-optimal tree structures. We will discuss our template selection
approach in Sec. 4, and empirically demonstrate its aptness in our
experimental analysis in Sec. 5.

In the following, we discuss each MILP encoding step in detail.
We explain the encoding process for join operators in Sec. 3.1, oper-
and relations in Sec. 3.2, and finally, the cost calculation in Sec. 3.3.
We illustrate each encoding step based on a running example for
joining four relations A, B, C and D, using the join tree template
shown in Fig. 1. Table 1 and Table 2 respectively provide an over-
view on all variables and constraints used in our MILP model.

3.1 Encoding Joins Operators
We begin by discussing variables and constraints pertaining to
the join operators included in the join tree template. The template
contains an arbitrary number of joins, to allow the selection of
varying join trees formed by specific subsets of join operators,
while excess joins not included in the selected tree will remain
unused. Accordingly, we require variables indicating which among

𝑖

𝑗

𝑙

𝑘

(a)

𝑖

𝑗

𝑙 C

A B

D

(b)

𝑖

𝑗

A B

𝑘

C D

(c)

Figure 1: Illustrating our approach based on a tree template
(a) featuring joins 𝑖, 𝑗 , 𝑘 , 𝑙 , to join the four relations A, B, C
and D. The template encompasses both a left-deep join tree
(b), and a balanced join tree (c).

Table 1: Overview of all variables, their semantics and re-
quired amounts for queries joining 𝑅 relations and 𝑃 pre-
dicates, using a join template with 𝐽 joins, and 𝑇 threshold
values for the cost calculation.

Vars Semantics # Variables
jaj Is join j active? 𝐽

rojrj Is relation r an operand for join j? 𝑅𝐽

pajpj Is predicate p applicable for join j? 𝑃 𝐽

trjtj Is threshold 𝜃𝑡 reached by join j? 𝑇 𝐽

the included joins are actively used and form the join tree: Let
the binary variable jaj (Join is Active), introduced for each join 𝑗 ,
indicate whether 𝑗 is active. Further, we require constraints that
enforce the creation of valid join trees, by (A) ensuring the correct
number of active joins, and by (B) ensuring each intermediate join
eventually connects to the root join.

Constraint (A). For condition (A), we add the constraint (A)∑︁𝐽

𝑗=1 jaj = 𝑅 − 1, where 𝐽 denotes the total number of joins in
the template, and 𝑅 denotes the number of base relations to be
joined. Thus, we enforce that the number of active joins correctly
corresponds to 𝑅 − 1, such that all base relations can be joined, and
any excess join beyond this bound must remain inactive.

Example 3.1. To illustrate each step of our MILP encoding, con-
sider an example problem joining four relations 𝐴, 𝐵, 𝐶 , and 𝐷 , using
the join tree template depicted in Fig. 1, with joins 𝑖 , 𝑗 , 𝑘 , 𝑙 . For all
joins, we add the corresponding join variables jai , jaj , jak and jal . Our
model must ensure that a MILP optimiser only selects those variable
configurations that form valid join trees.

We begin our example by considering the effect of adding constraint
(A) discussed above, which enforces the correct number of active joins.
Since 𝑅 = 4, jai + jaj + jak + jal = 𝑅 − 1 = 3 must hold. Thus, the
optimiser may select jai = jaj = jal = 1 and jak = 0, thereby forming
a left-deep tree, or jai = jaj = jak = 1 and jal = 0, which forms a
balanced tree. These two variants exhaust all valid tree formations
possible for join ordering problems featuring four base relations. How-
ever, as our set of join operator constraints is still incomplete, the
optimiser may, for instance, instead select the variable configuration

3



Table 2: Overview of all constraints, their semantics, and encodings used by our novel MILP model.

Semantics Encoding

(A) Enforce correct number of active joins for a query joining 𝑅 relations.
∑︁𝐽

𝑗=1 jaj = 𝑅 − 1
(B) Enforce join tree connectivity between join 𝑖 and its successor 𝑗 . jai ≤ jaj
(C) Enforce correct number of operands for each join 𝑗 .

∑︁𝑅
𝑟 rojrj = 2 · jaj +

∑︁
𝑖∈Pred (j) jai

(D) Ensure continuity of joined operands for a join 𝑗 and its successor 𝑖 . rojrj ≤ rojri
(E) Prevent assignment of operands to inactive joins. rojrj ≤ jaj
(F) Prevent conflicting operand assignments for joins 𝑖 and 𝑗 with a shared successor. rojri + rojrj ≤ 1
(G) Prevent invalid join predicates for each join 𝑗 and predicate 𝑝 . paopj ≤ rojRel1 (p) j, paopj ≤ rojRel2 (p) j
(H) Enforce cost threshold value activation for each join 𝑗 and threshold 𝜃𝑡 . LogIntCard (j) − trjtj · ∞ ≤ log(𝜃𝑡 )

jaj = jak = jal = 1 and jai = 0, which corresponds to an incomplete
tree with a missing root join.

Constraint (B). To prevent invalid variable configurations as fea-
tured in Example 3.1, we next consider constraints that enforce join
tree connectivity. To this end, we rely on MILP implication encod-
ings, i.e., a constraint type that enforces the relationship 𝑎 =⇒ 𝑏

for two binary variables 𝑎 and 𝑏. In MILP, this relationship can be
enforced by adding the constraint 𝑎 ≤ 𝑏. As such, for each join 𝑗

in our template, and for each join 𝑖 directly preceding 𝑗 in accord-
ance with our template, we add the constraint (B) jai ≤ jaj , which
enforces join 𝑗 to be activated if any direct predecessor join 𝑖 is
active: If jai = 1 and jaj = 0, we obtain 1 ≤ 0, which violates the
constraint. We will rely on similar implication encodings for other
variable types discussed below.

Example 3.2. (cont’d) We continue our example problem joining
four relations 𝐴, 𝐵, 𝐶 and 𝐷 , using the join tree template depicted in
Fig. 1, with joins 𝑖 , 𝑗 , 𝑘 , 𝑙 .

We now consider the effect of constraint (B) on the variable con-
figuration jaj = jak = jal = 1 and jai = 0, which forms an incomplete
tree without a root join as discussed in Example 3.1. Since join 𝑖 is
preceded by both 𝑗 and 𝑘 , we add constraints jaj ≤ jai and jak ≤ jai .
However, given the variable configuration above, the optimiser encoun-
ters constraint violations, as jaj = 1 ≤ 0 = jai , and jak = 1 ≤ 0 = jai .
Accordingly, constraint (B) prevents the optimiser from choosing this
variable configuration, or any other configuration representing a dis-
connected tree. In contrast, for the valid left-deep tree variant, no
violations occur, as we obtain jal = 1 ≤ 1 = jaj , and jaj = 1 ≤ 1 = jai .
The same holds, mutatis mutandis, for the balanced tree variant.

By adding both constraints (A) and (B), we have ensured that
the selected join operators form valid join trees encompassed by
the tree template.

3.2 Encoding Operand Relations
Having completed our MILP encoding for join operators, we next
consider the join operands, i.e., the base relations processed by each
join: Let the binary variable rojrj (Relation is Operand for Join),
introduced for each relation 𝑟 and join 𝑗 , indicate whether 𝑟 is an
operand for 𝑗 . As before, we require a set of constraints to ensure
valid assignments of join operands. In addition to constraints (A)
and (B) for join operators, we must
• ensure correct operands amounts for each join (C),
• ensure continuity of operands (D),

• prevent the assignment of operands to inactive joins (E), and
• prevent conflicting operand assignments (F).
In the following, we discuss each of these conditions in detail.

Constraint (C). We begin with condition (C), which requires
the correct number of operands 𝑛 𝑗 for each join operator 𝑗 . In the
straightforward scenario of joining two base relations, 𝑛 𝑗 = 2.
However, since joins may moreover process intermediate results
produced by predecessor joins, wemust further consider the number
of direct or indirect predecessor joins |Pred (j) | for 𝑗 . In particular, we
require 𝑛 𝑗 = 2 + |Pred (j) | operands for any join 𝑗 . However, rather
than accounting for each join included in the join tree template,
we must only consider those joins that have been activated by
the optimiser, including join 𝑗 or any of its potential predecessors.
Accordingly, for each join 𝑗 , we add the constraint (C)

∑︁𝑅
𝑟 rojrj =

2 · jaj +
∑︁

𝑖∈Pred (j) jai .

Example 3.3. (cont’d) We continue our example problem joining
four relations 𝐴, 𝐵, 𝐶 and 𝐷 , using the join tree template depicted in
Fig. 1, with joins 𝑖 , 𝑗 , 𝑘 , 𝑙 . We assume the optimiser has selected the
balanced tree variant, expressed by the variables jai = jaj = jak = 1
and jal = 0.

Firstly, for each join and relation pair, we add the corresponding
roj variable, to indicate the assignment of relations to join operat-
ors. Next, we add the constraint type (𝐶) for each join. For the act-
ive join 𝑗 , the optimiser then selects two operands, since

∑︁𝑅
𝑟 rojrj =

2 · jaj + jal = 2 + 0 = 2, given the inactive join 𝑙 . The same ap-
plies to join 𝑘 , which features no predecessor joins in the template.
Finally, further processing the intermediate results produced by joins
𝑗 and 𝑘 , the optimiser selects four operands for the root join 𝑖 , as∑︁𝑅
𝑟 rojri = 2 · jai + jaj + jak = 2 + 1 + 1 = 4.

While our MILP encoding so far ensures the correct number
of operands for each join, the specific assignment of operands
otherwise remains arbitrary, which allows for invalid solutions as
discussed in Example 3.4 below. We thus continue by considering
constraints to ensure a valid assignment of particular operands.

Constraints (D) and (E). Following the definition of join order
optimisation, our MILP model must ensure continuity of joined
operands, i.e., once a relation 𝑟 has been selected as an operand
for join 𝑗 , 𝑟 must moreover be featured by all joins succeeding 𝑗 .
Expressed in variables, we must enforce rojrj =⇒ rojri for all join
pairs ( 𝑗, 𝑖), where 𝑖 directly succeeds 𝑗 . Relying on the same MILP
implication encoding used for constraint (B) above, we accordingly
add constraint (D) rojrj ≤ rojri for all such join pairs featured in
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the template. In a similar manner, we can prevent the assignment
of relations to inactive joins by adding a constraint (E) rojrj ≤ jaj ,
which enforces rojrj =⇒ jaj .

Example 3.4. (cont’d) We continue our example problem joining
four relations 𝐴, 𝐵, 𝐶 and 𝐷 , using the join tree template depicted in
Fig. 1, with joins 𝑖 , 𝑗 , 𝑘 , 𝑙 . To illustrate operand continuity, we assume
the optimiser has selected the left-deep tree variant, expressed by the
variables jai = jaj = jal = 1 and jak = 0.

For the left-deep tree variant, we require two, three and four op-
erands for joins 𝑙 , 𝑗 and 𝑖 respectively, in accordance to constraint
(C). The optimiser may select relations 𝐴 and 𝐵 for join 𝑙 , setting
rojAl = rojBl = 1. However, without the effect of constraint (D), the op-
timiser may further choose the variable configuration rojBj = rojCj =
rojDj = 1 and rojAj = 0. Hence, relations 𝐵, 𝐶 and 𝐷 are selected for
join 𝑗 , disregarding the requirement to process relation 𝐴 as part of
the intermediate result produced by 𝑙 . However, by adding constraint
(D), the configuration results in the violation rojAl = 1 ≤ 0 = rojAj ,
and is accordingly rendered invalid. Thus, relation 𝐴 must be selected
as an operand for join 𝑗 , if it is initially joined by 𝑙 .

Constraint (F). For purely left-deep join trees, the constraints
added thus far are sufficient to ensure solution validity. However, for
any bushy tree structure supported by the template, we require one
additional constraint preventing conflicting operand assignments.
Specifically, for any join featuring two direct predecessor joins (𝑖, 𝑗),
there must be no overlaps between the sets of operands assigned
to 𝑖 and 𝑗 respectively. Hence, for all such join pairs (𝑖, 𝑗), and for
each relation 𝑟 , we add the constraint (F) rojri + rojrj ≤ 1, which is
violated when 𝑟 is assigned to both joins 𝑖 and 𝑗 .

Example 3.5. (cont’d) We continue our example problem joining
four relations 𝐴, 𝐵, 𝐶 and 𝐷 , using the join tree template depicted in
Fig. 1, with joins 𝑖 , 𝑗 , 𝑘 , 𝑙 . To illustrate the prevention of conflicting op-
erand assignments, we assume the optimiser has selected the balanced
tree variant, expressed by the variables jai = jaj = jak = 1 and jal = 0.

Following Example 3.3, we respectively require two operands for
either join 𝑗 and 𝑘 with mutual direct successor 𝑖 . Without the effect of
constraint (F), the optimiser may activate the variables rojAj = rojBj =
1 for join 𝑗 , and rojAk = rojCk = 1 for join 𝑘 . However, this implies
relation 𝐴 is joined by both joins 𝑗 and 𝑘 , and thus corresponds to
an invalid join ordering solution. By adding constraint (F), the solver
encounters the violation rojAj + rojAk = 1 + 1 = 2 ≤ 1, and hence
correctly identifies such conflicting operand assignments as invalid.

With constraints (A)-(F) in place, we have ensured both, valid
join tree formations and valid operand assignments, and thus obtain
valid join ordering solutions when processing our MILP model.

3.3 Cost Calculation
As a final step, we must encode the costs for each join ordering
solution, to allow the optimiser to determine those solutions that
minimise solution costs. As described in Sec. 2, we consider the
conventional cost function cout featured in Eqn. 1, which evaluates
solutions based on accumulated intermediate result sizes, relying on
base relation cardinalities and join predicate selectivities. While our
encoding thus far accounts for the former, we have yet to encode
join predicate applicability. Following the existing MILP encoding

for left-deep trees [40], we introduce a variable paopj , indicating
whether predicate 𝑝 is applicable for join 𝑗 .

Constraint (G). We may only allow the use of a join predicate
𝑝 for a join 𝑗 if both of its associated relations Rel1 (p) and Rel2 (p)
are present as operands for 𝑗 . Thus, we add the constraints (G)
paopj ≤ rojRel1 (p) j, paopj ≤ rojRel2 (p) j for each predicate 𝑝 and join 𝑗 .

Example 3.6. (cont’d) We continue our example problem joining
four relations 𝐴, 𝐵, 𝐶 and 𝐷 . We now assume join predicates 𝑝1 for
relations (𝐴, 𝐵), 𝑝2 for (𝐵,𝐶), and 𝑝3 for (𝐶, 𝐷). Accordingly, for each
predicate and join, we add the corresponding pao variable to indicate
predicate use.

We assume the optimiser has selected the left-deep join tree as depic-
ted in Fig. 1 (b). To reduce costs via predicate selectivities (as discussed
below), the MILP optimiser seeks to activate as many pao variables
as possible. For instance, the optimiser may correctly apply predicate
𝑝1 for join 𝑙 by activating pao1l : As both associated relations 𝐴 and 𝐵
are used as operands for join 𝑙 , none of the constraints pao1l ≤ rojAl
and pao1l ≤ rojBl are violated. In contrast, further activating pao2l
results in a violation, as the associated relation 𝐶 is not an operand
for join 𝑙 . The optimiser may only apply 𝑝2 after the succeeding join
𝑗 , which adds the missing relation 𝐶 .

Having encoded both operand types used by cout , we next con-
sider the involved operations. Crucially, cout relies on product op-
erations, which are not supported by the MILP formalism. To cir-
cumvent this issue, we can reapply the cost calculation scheme
proposed by Trummer and Koch [40] for the existing left-deep
MILP model: By replacing all input cardinalities and predicate se-
lectivities with their logarithmic values, we can exploit the product
rule for logarithms, and thereby substitute sums for the required
product operations. Finally, as illustrated below, we may then ap-
proximate the original non-logarithmic costs by introducing an
arbitrary set of threshold values 𝑇 . We summarise their approach in
the following, and refer to Ref. [40] for further details.

Let the binary variable trjtj (Threshold is Reached by Join), intro-
duced for each join 𝑗 and threshold value 𝜃𝑡 ∈ 𝑇 , indicate whether
the logarithmic intermediate result size LogIntCard (j) produced by
𝑗 exceeds log𝜃𝑡 . Relying on the product rule for logarithms, we ob-
tain LogIntCard (j) = ∑︁𝑅

𝑟=1 LogCard (r)rojrj +
∑︁𝑃

𝑝=1 LogSel(p)pajpj ,
where LogCard (r) and LogSel(p) give the logarithmic cardinality
for a relation 𝑟 and the logarithmic selectivity for a join predicate
𝑝 respectively.

Constraint (H). To approximate non-logarithmic costs, we fur-
ther introduce the constraint (G) LogIntCard (j) − trjtj · ∞ ≤ log(𝜃𝑡 )
for every threshold value 𝜃𝑡 and join 𝑗 , where ∞ is a sufficiently
large constant to ensure validity if trjtj = 1. Hence, if LogIntCard (j) >
log(𝜃𝑡 ), trjtj must be activated in order to obtain a valid MILP solu-
tion. Finally, we specify the approximated cout cost value as our
MILP objective function:

∑︁𝑇
𝑡=1

∑︁𝐽 −1
𝑗=1 trjtj𝜃𝑡 .

Example 3.7. (cont’d) We complete our example problem joining
four relations𝐴, 𝐵,𝐶 and 𝐷 by demonstrating the cost approximation.
We assume the optimiser has selected the left-deep tree depicted in
Fig. 1 (b). We further assume intermediate cardinalities IntCard (l) =
10, IntCard (j) = 100 and IntCard (i) = 1,000 for joins 𝑙 , 𝑗 and 𝑖
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respectively, with overall cout costs given by IntCard (l) + IntCard (j) +
IntCard (i) = 10 + 100 + 1,000 = 1,110.

To enable cout cost calculation in MILP, the solver can rely on sum
operations to derive the corresponding logarithmic intermediate car-
dinalities LogIntCard (l) = 1, LogIntCard (j) = 2 and LogIntCard (i) =
3. Next, to approximate the actual non-logarithmic cout costs, we con-
sider threshold values 𝜃1 = 10 and 𝜃2 = 100, and introduce the
corresponding trj variables for each threshold value and join. To
minimise costs, the MILP optimiser seeks to leave trj variables in-
active. While this yields no constraint violation for join 𝑙 , we obtain
LogIntCard (j)−trj1j ·∞ = 2−trj1j ·∞ ≤ 1 = log(𝜃1) for constraint (H).
Thus, to satisfy the constraint, trj1j must be activated, adding the non-
logarithmic cost value 𝜃1 = 10 in accordance in our objective function.
Likewise, both logarithmic thresholds are exceeded by LogIntCard (i),
further adding non-logarithmic costs 𝜃1 + 𝜃2 = 110. Accordingly, we
obtain approximated cout costs of 120 2. Clearly, threshold choice in our
example fails to accurately capture actual cout costs 1,110, illustrating
the importance of a suitable threshold value selection.

In Example 3.7, we have shown the importance of choosing
suitable threshold values for the optimisation process. While op-
timisation accuracy increases alongside a more plentiful choice
of thresholds, algorithmic efficiency deteriorates with increasing
MILP model size. Thresholds should hence be carefully selected,
to strike an optimal balance between approximation quality and
optimisation efficiency. In the following section, we discuss how
our hybrid method, which uses MILP in conjunction with comple-
mentary join ordering approaches, provides valuable information
on threshold selection.

4 HYBRID MILP METHOD
So far, we have discussed our novel MILP encoding that overcomes
the left-deep search space limitation of the original MILP method by
Trummer and Koch [40]. Yet, in addition to expanding the solution
scope to non-linear trees, we must address further issues pertaining
to the MILP paradigm itself, and thereby afflicting both, the original
left-deep model as well as our novel MILP method. While MILP
constitutes a powerful tool to explore complex solution spaces while
providing guarantees on solution quality, its scalability aptness
highly depends on the model efficiency. For the original left-deep
MILP method, optimisers have been reported to fail in obtaining
solutions within 60s once queries join 40 relations or more [25].
However, finding robust join ordering methods capable of reliably
identifying efficient, complex tree structures even for large queries
is precisely our main motivation to rely on highly optimised and
mature MILP solvers in the first place.

Therefore, to obtain robustness for our desired large-scale quer-
ies, we must ensure maximum model efficiency, and optimal use of
computational resources. While MILP solvers are capable of reliably
identifying complex tree structures that elude competing join order-
ingmethods, their use is wasted on queries where ideal solutions are
given by straightforward tree shapes. For instance, queries where
optimal solutions are given by linear trees can be efficiently solved
2For simplicity, we have not considered the issue of overlapping threshold values in
our example: As exceeding 𝜃2 also implies exceeding 𝜃1 , the latter is added twice
for join 𝑖 . To avoid this issue, we may reduce 𝜃2 by 𝜃1 . However, not accounting for
such overlaps does not influence the actual MILP optimisation, since the resulting cost
overheads correspond to mere cost offsets that do not impact solution ranking.

by conventional approaches such as IKKBZ [13, 15], while MILP
can neither provide any advantage in solution quality, nor match
the runtime performance of such efficient baselines. MILP is hence
ideally used on precisely those parts of the join tree optimisation
where its capability to identify complex, non-linear tree structures
is likely to provide the greatest benefit. Conversely, we should rely
on more efficient alternatives for the remaining optimisation steps,
to maintain MILP model efficiency and thus achieve scalability ro-
bustness for large problems. Thus, a hybrid method encompassing
both, MILP and complementary join ordering methods, is required.

Having outlined the generalmotivation behind our hybridmethod,
a series of questions remains to be addressed. In the following, we
therefore discuss (a) our selection of a complementary join ordering
algorithm, (b) our method to identify suitable cost approximation
thresholds, (c) our tree template selection, as well as (d) any ne-
cessary MILP model adjustments, before (e) finally discussing our
complete hybrid algorithm.

4.1 Complementary Algorithm Selection
To select a suitable complementary join ordering approach for our
hybrid approach, we firstly consider its required properties. In par-
ticular, the algorithm should be characterised by a high algorithmic
efficiency, to balance the resource-intensive MILP optimisation
step. Conversely, optimising over linear join trees is sufficient for
the complementary algorithm, as the tree portions that require
more sophisticated bushy shapes are covered by our MILP method.
Based on these criteria, we may, for instance, select the conven-
tional IKKBZ algorithm [13, 15], which identifies ideal left-deep
trees in polynomial time. However, when considering further, more
recent join ordering approaches, we can identify still more suit-
able candidates. In particular, Neumann and Radke have proposed
a search space linearisation technique [25], incorporated into an
adaptive framework, to further processes linear trees produced by
IKKBZ into more efficient bushy trees using dynamic programming.
Their approach is among the most scalable join ordering methods
proposed in recent literature, and substantially outclasses IKKBZ
solution quality [25]. We therefore select their adaptive method
as the complementary join ordering method to be used alongside
MILP in our hybrid framework. For further details on the adaptive
method including the search space linearisation technique, we refer
the reader to Ref. [25].

4.2 Cost Approximation Thresholds Selection
A further question that remains to be addressed is the selection
of cost approximation thresholds. In Example 3.7, we have seen
how suboptimal threshold selection can severely hamper the op-
timisation quality of MILP. Yet, an excessively abundant choice of
thresholds blows up model size, and curbs optimisation efficiency.
Ideally, we can identify a moderate set of precise thresholds mark-
ing cost levels of interest, sufficient to closely approximate actual
cout costs. To this end, rather than arbitrarily selecting thresholds,
we may rely on the solution costs obtained by suitable join ordering
alternatives as a baseline for an informed selection. We thus use
the adaptive join ordering method [25], which is already part of
our hybrid method, to swiftly obtain a preliminary solution as a
reference for threshold selection.
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As join ordering solutions vary in costs by orders of magnitude,
we select thresholds as powers of 2, to capture larger jumps in
solution costs. Yet, to retain a lightweight model size, we consider
the first power of 2 to exceed overall adaptive costs as an upper
bound: Exceeding this threshold implies the current MILP solution
fails to improve over the adaptive join tree. We moreover only
consider the last few threshold candidates preceding this upper
bound, to further reduce model size. In our empirical evaluation,
we found a total number of five thresholds selected in this manner
sufficient to achieve remarkable optimisation quality.

4.3 Tree Template Selection
In addition to approximation threshold selection, the tree template
is clearly among the greatest determinants of optimisation quality:
Improvements over the existing left-deep MILP approach, or other
join ordering methods, are only feasible if the chosen template
captures tree shapes approximating optimal join trees. Yet, similarly
to approximation thresholds, choosing overly extensive templates
results in largeMILPmodels that cannot be optimised efficiently.We
therefore require a lightweight template that is likely to encompass
optimal solutions.

To identify suitable template structures, we have quantitatively
analysed optimal join trees for queries of small and moderate sizes,
where exhaustive search methods like DPSize [33] can feasibly
obtain optimal solutions. In particular, we assess the relative fre-
quencies of bushy joins within batches of 100 tree queries randomly
generated by Neumann and Radke [25]. Doing so, we obtain in-
sights into effective template structures: While bushy joins are
frequently used within the upper depth levels of the join tree, their
use becomes increasingly sparse in lower levels of optimal join
trees, where optimal solutions tend to constitute linear shapes.

For our method, we therefore select tree templates that encom-
pass balanced tree structures at the top of the join tree, allowing for
arbitrary bushy shapes within the first few depth levels. For lower
levels, our template may encompass only left-deep structures, or
only sparse bushy tree elements. However, given the nature of our
method as a hybrid algorithm, we are merely interested in those
parts of the template where MILP use can provide an advantage
over competitors by identifying complex bushy tree shapes. We
therefore apply MILP optimisation exclusively for a limited number
of depth levels following the root of the tree, while switching to the
more efficient but less exploratory adaptive method for lower levels.
Our empirical assessment below will demonstrate the remarkable
solution quality achieved by our hybrid method, and thus confirm
the aptness of our template selection process.

4.4 MILP Model Adjustments
As our hybridmethod foresees the use ofMILP only for limited parts
of the join tree, some adjustments are needed for ourMILP encoding,
which so far requires tree templates to encompass complete join
trees, rather than allowing partial join ordering solutions. To render
our model compatible with our hybrid algorithm, we seek to specify
a set of anchor joins AJ , corresponding to leaf joins with no further
predecessor joins given in the template. For such joins, we must
allow the MILP optimiser to terminate without producing complete
join trees.

For each anchor join j ∈ AJ , we introduce a new integer variable
napj (Number of Anchor Predecessors) to our MILP model, where we
may freely specify an upper value bound pmax marking the max-
imum number of predecessor joins for j, to be later optimised by the
complementary adaptive join ordering method.While an increasing
number of anchor joins implies more flexibility to escape the rigid
bounds of the tree template, the increased flexibility corresponds
to an enhanced optimisation complexity. Similarly to the choice of
cost thresholds, anchor joins should hence be carefully selected, to
maintain a high optimisation quality.

To fully integrate the anchor joins into our MILP model, we must
adjust a series of MILP constraints. Firstly, we incorporate them into
constraint (A) as

∑︁𝐽

𝑗=1 jaj +
∑︁

j∈JL napj = 𝑅 − 1, to maintain a total
number of 𝑅−1 actively used joins. Next, we consider constraint (B),
which activates joins if any of their direct predecessors have been
activated. For each anchor join 𝑗 , we introduce the new constraint
variant (B’) napj ≤ pmax · jaj . Thus, if the optimiser assumes any
joins preceding 𝑗 to be active (napj > 0), join 𝑗 must likewise be
active to satisfy the constraint in all cases, as napj ≤ pmax . Likewise,
for constraint (C), which enforces correct numbers of operands for
each join, we add the anchor join variant (C’)

∑︁𝑅
𝑟 rojrj = 2 · jaj+napj .

4.5 Hybrid Algorithm

MILP Step

Adaptive Step

a

b

d e

c

f g

h i j

k

Figure 2: Illustration of the optimisation steps performed
by our hybrid MILP method. Relying on highly optimised
MILP solvers, we determine efficient bushy tree structures
in the upper tree levels using complete tree templates, with
joins a, b, c, d and f selected by the optimiser, while e and g
remain inactive. Continuing from the anchor joins d and f
(colored in green), we rely on the efficient adaptive algorithm
by Neumann and Radke [25] for lower tree optimisation,
yielding joins h-k.

Having outlined all elements of our approach, we nowdiscuss our
complete hybrid method as featured in Algorithm 1, and illustrated
in Fig. 2. Firstly, we rely on the adaptive search space linearisation
method by Neumann and Radke [25] to swiftly obtain a reference
solution, and derive our set of cost approximation thresholds based
on the adaptive solution costs as an upper cost bound as described
above. Next, we build our MILP model for the given query graph
𝑄 , the approximation thresholds as well as the specified maximum
join tree depth to process with MILP. Relying on highly optimised
MILP solvers, we obtain a partial solution containing the upper
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Algorithm 1: Hybrid MILP Method
1 Function HybridMILP(𝑄 = (𝑉 , 𝐸),maxDepth):
2 // Derive adaptive solution (sol)
3 soladpt ← adaptive(Q)
4 // Derive threshold values for cost approximation
5 thresholds← deriveApproximationThresholds(soladpt)
6 // Build MILP model for thresholds and max. tree depth
7 model ← buildMILPModel(Q, thresholds,maxDepth)
8 // Perform MILP optimisation
9 sol ← optimise(model)

10 // Derive part. problems from raw MILP solution
11 partProblems← derivePartProblems(sol)
12 // Perform adaptive optimisation on each part. problem
13 for Qpart ∈ partProblems do
14 solpart ← adaptive(Qpart)
15 sol.appendPartSolution(solpart)
16 return 𝑠𝑜𝑙

part of the join tree up to the specified maximum depth. Finally,
we derive the set of operands associated with each anchor join
left incomplete by MILP, which correspond to partial join ordering
problems that are efficiently solved using the adaptive algorithm.
Each respective partial join tree solution is then appended to the
upper join tree portion obtained by MILP, to obtain the complete
join tree solution.

5 EXPERIMENTAL ANALYSIS
In this section, we experimentally verify the aptness of our novel
hybrid MILP method for large-scale join order optimisation. We
discuss our experimental setup in Sec. 5.1, present results for con-
ventional query optimisation benchmarks in Sec. 5.2, and finally
assess scalability to extremely large query sizes in Sec. 5.3.

5.1 Experimental Setup
In our analysis, we seek to identify the most suitable method for
large-scale join order optimisation. To this end, we seek to include
a wide range of methods with varying properties, prompting the
following selection of baseline algorithms:
• DPSize: Dynamic programming (DP) method, building optimal

bushy join trees without cross products [33].
• DPHyp:Dynamic programming (DP)method, featuring improved

algorithmic efficiency over DPSize [22].
• IKKBZ: Polynomial-time algorithm, yielding optimal left-deep

trees for acyclic query graphs [13, 15].
• Adaptive: Adaptively selects algorithms based on query graph

size and properties. For problems considered in our paper, the
method applies a search space linearisation technique refining
IKKBZ solutions into bushy trees via dynamic programming (lin-
earizedDP) [25].

• Greedy Operator Ordering (GOO): Greedy bottom-up heuristic
yielding bushy trees [6].

• GOO-DP: Algorithm refining GOO solutions via dynamic pro-
gramming [25].

• Minsel: Greedy algorithm yielding left-deep trees [35].

• Genetic: Genetic algorithm yielding bushy trees.
• QuickPick: Randomised algorithm yielding bushy trees [43].
• Simplification: Heuristic that greedily prunes the query graph,

obtaining bushy trees [24].
Our selection of algorithms covers a wide range of paradigms, in-

cluding (1) dynamic programming methods like DPSize and DPHyp,
as conventionally applied by query optimisers to ensure optimal
solutions, (2) polynomial-time methods like IKKBZ, guarantee-
ing optimal solutions in a reduced linear search space, (3) greedy
heuristics such as Minsel or GOO, trading solution quality for al-
gorithmic efficiency, (4) probabilistic methods like QuickPick, as
well as (5) genetic algorithms. We further include the adaptive
method proposed by Neumann and Radke [25], which applies a
search space linearisation based on IKKBZ result for the problem
sizes and properties considered in our analysis. Their approach is
among the most robust methods for large-scale query optimisation
proposed in the recent literature, and thus constitutes one of the
most suitable baselines to compare against. In our analysis, we will
show how our hybrid MILP method, which incorporates the adapt-
ive algorithm as discussed in Sec. 4, improves over the standalone
adaptive method, as well as the remaining wide range of considered
join ordering competitors.

For all baseline algorithms, we use implementations by Neumann
and Radke [25]. For our MILP method, we use our own implement-
ation in Python (version 3.10.14), using the conventional Gurobi
MILP solver with the gurobipy package (version 12.0.2) [11]. To
create our MILP model, our hybrid algorithm as featured in Al-
gorithm 1 builds a tree template containing every join up until the
specified maxDepth parameter. We run four configurations with
depths (4, 5, 6, 7), which we find sufficient to determine optimal
bushy tree structures. We consider the best result obtained by all
configurations, which correspond to individual MILP models that
can be optimised in parallel. Further, we specify two anchor joins as
described in Sec. 4.4: For both, the left and right sub tree joined by
the root join, anchor joins correspond to the left-deep join of either
tree half, as illustrated in Fig. 2. Our implementation is provided in
our reproduction package [18]. We run all experiments on a system
with two AMD EPYC 7662 CPUs and 1 TB of RAM. All algorithms
are set to time out after 60 seconds.

Finally, rather than raw queries, the input to the join ordering
problem is given by a query graph as discussed in Sec. 2. Accord-
ingly, for all queries considered in our analysis, we pass query
graphs as extracted by Neumann and Radke [25] for both, the con-
ventional benchmark and synthetic tree queries that we analyse in
the following, to each algorithm.

5.2 Conventional Benchmarks
We begin our analysis by considering conventional benchmarks,
including TPC-H [37], TPC-DS [38], LDBC BI [1], as well as the
join ordering benchmark (JOB) [17]. For the query sizes featured in
these benchmarks, exhaustive search methods such as DPSize [33]
obtain optimal solutions within their considered solution space
well within our 60s time limit. For these benchmarks, we therefore
restrict our analysis to comparing MILP solution quality against the
DPSizemethod, which yields an upper bound on the solution quality
for all considered competing join ordering methods. Further below,
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we will contrast the full set of algorithms for substantially larger
tree queries, where performance differences between individual
methods become significantly more pronounced.

For all benchmark queries, Neumann and Radke [25] extracted
their corresponding query graphs, which we consider in our ana-
lysis. We restrict the problem set to those queries conforming to
the conventional join ordering model outlined in Sec. 2. Since all
queries featured by the benchmarks are of only small sizes, our
hybrid framework is not required to maintain performance for
large problems, and we can instead rely on our pure, standalone
MILP method as presented in Sec. 3. We apply cost approximation
thresholds as powers of 2, and use a tree template featuring joins
to allow for both, balanced and left-deep join trees, as well as any
trees interpolating between these shapes. Code for our template
generation can be found in our reproduction package.

Fig. 3 contrasts the solution quality achieved by ourMILPmethod
against DPSize solutions. We depict normalised solution costs, rel-
ative to the best solution obtained by any algorithm, as cost ranges
indicating minimal, average and maximal solution costs over all
queries featured by each respective benchmark (notice that we do
not use boxplots that would degenerate to to a single line, as the
results are sharply centered around the mean value). We consider
normalised solution costs of 20 as an upper bound for visualisation.

While DPSize obtains optimal solutions within its considered
solution space, its exhaustive search only explores solutions that
do not rely on cross product operations. In contrast, our MILP
model considers the complete search space including cross products.
Thereby, the MILP solver often beats DPSize solution quality: For
the JOB, average normalised costs are given by 1.04 for MILP and
1.14 for DPSize, with maximum MILP costs of 4 compared to max-
imum DPSize costs of 7.97. The performance gap is still more pro-
nounced for TPC-DS, with average DPSize costs of 2 compared to
average MILP costs of 1.01, and maximum DPSize costs exceeding
our normalised cost bound of 20.

Our MILP method consistently obtains optimal or near-optimal
solutions for almost all of the 282 queries collectively featured by all
benchmarks, exceeding normalised costs of 2 only for two particular
queries3. By identifying beneficial cross product operations, our
approach significantly improves over DPSize solution quality, which
exceeds normalised costs of 2 for 23 benchmark queries, and which
moreover constitutes an upper bound on solution quality for the
remaining competitors listed above.

5.3 Scalability Analysis
While our analysis for conventional benchmarks indicates the ro-
bust performance of our MILP method, the sizes of queries con-
sidered so far remain insufficient to assess its scalability aptness4.
As such, we now consider tree queries generated by Neumann and
Radke [25] to benchmark methods for large-scale join order optim-
isation. Fig. 4 depicts normalised solution costs for 900 tree queries
joining up to 100 relations. Each depicted query size features 100
individual queries.

3While normalised MILP worst-case costs are given by 4, they occur for a query with
minimal absolute costs of 1. Thus, even the slightly suboptimal MILP solution with
absolute costs of 4 results in a big normalised cost value.
4The biggest queries among all considered conventional benchmarks join 18 relations.
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Figure 3: Normalised solution costs (relative to overall best
solutions) for conventional benchmark queries. Range lines
visualise minimal, average and maximal normalised costs
over individual queries. Crosses with value N/A represent
individual solutions with prohibitively large costs ≥ 20.

In the following, we discuss the performance of each considered
join ordering algorithm in detail.

DPHyp. We begin with DPHyp, which applies dynamic program-
ming to guarantee optimal bushy join trees without cross products.
For small and moderate queries, the method thereby beats all other
methods considered in our analysis, which regularly yield at least
slightly suboptimal results. However, the biggest drawback of the
method becomes apparent once queries further grow in size: For
40 relations, DPHyp starts experiencing occasional timeouts, and
beginning at 50 relations, the method fails to yield any result within
60s for all but two of the 100 randomly generated tree queries 5.
To achieve robustness not only for small queries, but even within
extremely large solution spaces, we hence require suitable alternat-
ives.

IKKBZ. Similarly to DPHyp, the conventional IKKBZ algorithm
provides guarantees on solution quality; yet, its polynomial-time
characteristics render it substantially more efficient, avoiding the
timeout issues of DPHyp. However, while the method promises
to yield optimal solutions, it is restricted to a search space strictly
containing left-deep join trees. While such trees often correspond
to, or approximate optimal tree structures, failure to capture bushy
tree structures commonly results in a blow-up of solution costs, as
shown by our empirical results: Worst-case costs exceed our upper
normalised cost bound of 20 for most problem sizes, while even the
average normalised IKKBZ costs reach as high as 4.1 for 20 relations.
Identifying scalable join ordering methods to obtain efficient plans
encompassing bushy join trees thus remains desirable.

5Note that our visualisation in Fig. 4 maps scenarios with timeouts to our upper "N/A"
cost bound of 20. This prompts average DPHyp costs to exceed 1 once the method
fails to obtain optimal solutions within our 60s time limit.
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Figure 4: Normalised solution costs (relative to overall best solutions) for tree queries joining increasing numbers of relations.
Range lines visualise minimal, average and maximal normalised costs for a set of 100 problem instances. Crosses with value
N/A (slightly jittered horizontally and vertically to resolve outlier count) represent individual solutions with prohibitively
large costs ≥ 20, or scenarios where an algorithm failed to obtain any result within our 60s time limit.

Minsel. Like IKKBZ, the Minsel algorithm only considers a left-
deep solution space, but applies a greedy heuristic to build join trees
without any guarantees on solution quality. Accordingly, Minsel
is among the algorithms yielding the lowest solution quality, with
costs often far exceeding even our generous normalised cost bound
of 20, by orders of magnitude. While this unsteady performance is
characteristic for greedy optimisation approaches, it is further rein-
forced by the method’s inability to account for bushy tree structures.
We thus next consider further refined greedy approaches.

GOO. In contrast to Minsel, the GOO method applies a greedy
search strategy to build join trees that can feature bushy tree struc-
tures. The method thereby achieves a significantly more robust per-
formance compared to Minsel. However, it struggles to approximate
the solution quality of other methods considered in our analysis,
and, like Minsel, exceeds our normalised cost bound of 20 for prob-
lems of all considered query sizes. Average GOO costs start at 2.36
for 20 relations, but grow as high as 10.7 for our largest problem
class featuring 100 relations, corresponding to very inconsistent
performance.

GOO-DP. To boost GOO solution quality, the GOO-DP method
applies dynamic programming to further refine GOO join trees.
Hence, GOO solutions provide an upper bound onGOO-DP solution
costs. While the method does improve GOO solution quality, cost
improvements are only moderate, and even the refined GOO-DP
solutions fail to match the quality of competitors considered in

our analysis: Like standard GOO, the method often exceeds our
normalised cost bound for all problem sizes, with average GOO-DP
costs reaching up to 8.99 for our largest class of 100 relations.

Simplification. We next consider the simplification method as
a final algorithm relying on greedy optimisation steps. For our
smallest classes of join ordering problems, the method tends to
identify significantly better solutions compared to the other greedy
algorithms discussed so far: For 20 relations, average costs are close
to the optimal costs of 1, as compared to 2.35 and 2.2 for GOO and
GOO-DP respectively, while growing to a worst case value of 5.5
for one particular problem. Yet, the simplification method scales
less gracefully, leading to a quick deterioration of solution quality
once query sizes grow. Starting at 40 relations, the method fails
to beat GOO and GOO-DP in the average case, with worst case
costs well beyond our normalised cost bound of 20. In conclusion,
none of the greedy algorithms considered in our analysis manage
to achieve scalability robustness for large query sizes.

QuickPick. Rather than applying dynamic programming or greedy
optimisation steps, QuickPick, as implemented by Neumann and
Radke [25], randomly generates 1,000 join trees, and picks the best
solution found in the process. For a small number of problem scen-
arios, this search flexibility enables the method to obtain optimal
solutions that elude most other join ordering methods considered
in our analysis. However, the drawbacks of randomised methods
like QuickPick quickly become apparent when considering their
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overall performance, which is subpar compared to most other al-
gorithms: Even for 30 relations, average normalised costs exceed
10, whereas most of the QuickPick solutions reach our upper cost
bound of 20 starting at 60 relations. QuickPick is hence among the
most unreliable methods considered in our analysis, alongside the
Minsel algorithm.

Genetic. We next consider the genetic algorithm as a further
randomised metaheuristic, which is applied, for instance, by the
PostgreSQL query optimiser for queries joining at least 12 tables.
Similarly to QuickPick, its rather flexible solution space exploration
enables the genetic algorithm to identify efficient bushy trees in a
few cases where more rigid competitors fail to approximate the op-
timal tree structure. Yet, while genetic performance is significantly
more stable compared to QuickPick, with lower average solution
costs in all scenarios, solution quality still degrades substantially
once queries grow in size. Starting at 50 relations, average costs
exceed 5, and approximate our normalised cost bound of 20 once
queries join 100 relations. Much like the greedy algorithms, ran-
domised approaches like QuickPick or the genetic algorithms thus
fail to yield a sufficient level of robustness for large-scale query
optimisation.

Adaptive. For the problem sizes and characteristics considered
in our analysis, the adaptive algorithm applies a search space lin-
earisation method to refine linear IKKBZ solutions into bushy trees,
using dynamic programming. Thereby, the method inherits the
algorithmic efficiency of IKKBZ, and overcomes its linear search
space limitation. Doing so, the method significantly improves over
all competitors considered so far: Average normalised adaptive
costs tend to be near-optimal for all problem sizes. While these em-
pirical results confirm the overall effectiveness of the search space
linearisation, the guarantees on solution quality provided by IKKBZ
for linear solutions do not directly translate to the linearised bushy
trees. In particular, as the solution range explored by the method
is confined by the IKKBZ baseline, the method fails to identify op-
timal trees that diverge from the linearised solution space. This
results in suboptimal worst-case behavior: For 40 and 50 relations,
worst-case adaptive costs exceed normalised optimal costs by a
factor larger than 10. For 60 and 70 relations, some adaptive solu-
tions even exceed our normalised cost bound of 20. Finally, these
worst-case characteristics hold up to our largest query sizes join-
ing 100 relations, with worst-case adaptive costs of 10. While the
adaptive method efficiently yields computationally cheap plans in
cases where optimal trees conform to the linearised solution space,
its worst-case performance results in suboptimal plans exceeding
optimal solution costs by orders of magnitude.

Hybrid MILP. To address the limitations of the join ordering
methods discussed so far, we finally consider our novel hybrid
MILP method: By applying a flexible search space exploration using
MILP, our method identifies efficient bushy tree structures at the
tree top, while maintaining algorithmic efficiency by swiftly op-
timising lower tree parts using the adaptive method. Thereby, our
method overcomes the drawbacks and limitations of competing ap-
proaches: The hybrid MILP method obtains near-optimal solutions
in almost all scenarios, while avoiding the suboptimal worst-case
performance of the adaptive method and other competitors. Among

the 900 tree queries considered in our analysis, normalised costs
of 2 are exceeded in merely two cases (with maximum costs of
3.86) by our hybrid MILP method, as compared to 47 cases for the
adaptive method as its closest competitor. This demonstrates the
remarkable robustness of our hybrid MILP method for large-scale
query optimisation.

So far, we have only considered the quality of solutions in our
analysis. We complete our analysis by considering the runtime be-
havior of our method compared to competitors. While our hybrid
MILP method obtains solutions well before our 60s timeout, the
resource-intensive nature of MILP optimisation renders approaches
relying on MILP less time-efficient by default compared to most of
the competitors considered in our analysis, with the exception of
dynamic programming methods such as DPHyp. While optimisa-
tion times for other competitors range in the milliseconds, MILP
requires up to 23 seconds for the most complex queries until solu-
tion quality converges: Table 3 details the average optimisation
times required until solution costs are within a 20% threshold of
the final MILP result, for increasing numbers of relations. Note that
the convergence times tend to, but do not need to strictly increase
as queries grow in size, as particular smaller queries may be more
complex to optimise compared to larger ones.

While the runtime behavior of MILP approaches cannot match
most of the considered competitors, our empirical analysis has
shown that relying on mature MILP solvers and investing increased
computational resources allows us to substantially improve over the
solution quality of most competitors. By avoiding the worst-case
costs of competing methods, which exceed our hybrid MILP plan
costs by orders of magnitude, our method yields efficient plans in
all of the scenarios considered in our paper, and thus provides a
robust, novel alternative for large-scale query optimisation.

Table 3: AverageMILP convergence times for increasing num-
bers of relations. We measure MILP result quality in inter-
vals of 10s. Accordingly, our reported values capture upper
bounds on convergence times, that may further decrease
with more fine-grained interval measurements.

# Relations 30 40 50 60 70 80 90 100
Time [s] 10 10.8 14.2 16.1 22.6 15.3 20.3 18.6

6 RELATEDWORK
Join ordering algorithms can be roughly divided into two distinct
categories. The first class of approaches comprises exhaustive search
methods that seek out optimal solutions relying on techniques such
as dynamic programming. Representatives of this category include
the conventional DPSizemethod by Selinger et al. [33], as well as the
more efficient DPHyp algorithm by Moerkotte and Neumann [22]
assessed in our empirical analysis, in addition to a series of further
methods proposed in the literature [9, 19, 21, 22, 41]. While such
join ordering approaches provide formal guarantees on solution
quality, the challenging growth of the join ordering solution space
restricts their use to queries of small and moderate sizes. We have
empirically shown their limits in our analysis, demonstrating the
need for suitable alternatives for large-scale join order optimisation.
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To efficiently process larger queries, query optimisers switch
from exhaustive search to heuristic methods, which constitute
the second broad category of join ordering approaches. They in-
clude a large variety of methods, such as greedy algorithms [6, 24,
35], genetic algorithms [12, 34] and more general probabilistic ap-
proaches [43], among others [2, 14, 36, 39]. While heuristic methods
can maintain algorithmic efficiency even for large-sized queries, the
quality of heuristic solutions tends to degrade as queries grow in
size, as outlined by our experimental results. This prompts highly
sub-optimal plans, whose costs exceed optimal solution costs by
orders of magnitude, resulting in large computational overheads
during query execution. Thus, more robust methods are required
to address large-scale queries.

A prominent technique to reduce the exploration complexity is
given by solution space pruning, as applied by the conventional
IKKBZ method [13, 15]. By restricting the search to the subset of
linear join ordering solutions, the polynomial-time IKKBZ method
efficiently yields optimal linear solutions. Yet, the restriction to
linear join trees frequently yields highly sub-optimal solutions
compared to general bushy join trees. To improve the solution
quality in such cases, Neumann and Radke [25] have proposed a
search space linearisation technique that transforms linear IKKBZ
solutions into bushy trees via dynamic programming. However,
linearised plans remain costly if the linearisation technique fails to
approximate the ideal tree structure, prompting highly sub-optimal
worst-case behaviour as observed in our empirical analysis.

Similar limitations apply to the existing MILP method for join
order optimisation proposed by Trummer and Koch [40]: As their
model only explores a left-deep solution space, plan costs can sub-
stantially exceed optimal solutions. In contrast, we have proposed
a novel MILP encoding capable of exploring bushy tree structures
as defined by an arbitrary tree template. By selecting suitable tem-
plates, and by combining our MILP method with complementary
join ordering methods, our method overcomes the limitations of
the existing left-deep MILP approach, and avoids the worst-case be-
haviour of other join ordering algorithms discussed above. Our ap-
proach connects to a series of special-purpose optimisationmethods
recently proposed for query optimisation, which not only include
the existing MILP method [40], but also further constraint optim-
isation approaches of varying kinds. They include, for instance,
methods relying on quantum computing devices [7, 23, 28, 29, 32],
which requires optimisationmodels where constraints are implicitly
encoded into a unified cost formula [8, 27]. While contemporary
quantum systems are mere prototypes [10, 26], and hence incapable
of large-scale optimisation, Schönberger et al. have demonstrated
the use of quantum-inspired high-performance systems like the
Fujitsu Digital Annealer on larger queries [30, 31]. Yet, similarly to
the existing MILP method by Trummer and Koch [40], their method
is limited to a left-deep solution space, which degrades plan quality
in many scenarios.

7 DISCUSSION AND CONCLUSION
Join order optimisation remains one of the most relevant problems
in query optimisation, and the broader domain of data management.
While query optimisers can rely on exhaustive search to obtain ideal
join trees for small queries, such methods become infeasible for

larger problems, given the extreme growth of join ordering solution
spaces. Yet, large queries have become increasingly frequent in real-
world scenarios, and require adequate means of processing.

Despite decades of research, finding optimal solutions for large
query loads remains challenging, as shown by our empirical ana-
lysis: The quality of plans produced by typical heuristics (such as
greedy optimisation, probabilistic methods, or genetic algorithms)
worsens with growing queries, with heuristic plan costs exceeding
optimal solution costs by orders of magnitude. While search space
linearisation techniques achieve more robust performance by refin-
ing optimal linear solutions into bushy trees, their solution quality
degrades for queries where the linearisation fails to capture the
truly optimal bushy tree structures, resulting in highly suboptimal
worst-case behaviour across all analysed query classes.

To address limitations of these approaches, we developed a novel
join ordering method that relies on highly efficient MILP solvers,
which have matured over decades. Despite their remarkable per-
formance in a wide range of domains, they remain underutilised
in query optimisation. Improving over the existing MILP model
proposed for join ordering, which was restricted to left-deep join
trees, we have derived a novel MILP encoding that allows the op-
timisation of arbitrary join tree structures. By embedding our MILP
method into a hybrid framework, we apply MILP solvers precisely
where they provide the biggest advantage over competing methods,
while switching to more efficient, yet less exploratory join ordering
methods for the remaining solution portions.

Among the wide range of join ordering methods assessed in our
paper, our hybrid MILP approach thereby achieves the most robust
performance for large-scale join order optimisation: Our method
consistently obtains optimal or near-optimal solutions for NP-hard
tree queries joining up to 100 relations, which far exceeds typical
query sizes. By relying on optimised MILP solvers, our method
avoids highly suboptimal plans resulting from the worst-case beha-
viour of competitors, and thus constitutes a novel, highly robust
alternative for large-scale join order optimisation. Our results out-
line the potential of special-purpose solvers for query optimisation,
and prompt the further exploration of MILP and further constraint
optimisation methods for still unconsidered problems in the data
management domain.
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