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ABSTRACT Structured variational quantum algorithms such as the Quantum Approximate Optimisation
Algorithm (QAOA) have emerged as leading candidates for exploiting advantages of near-term quantum
hardware. They interlace classical computation, in particular optimisation of variational parameters, with
quantum-specific routines, and combine problem-specific advantages—sometimes even provable—with
adaptability to the constraints of noisy, intermediate-scale quantum (NISQ) devices. While circuit depth
can be parametrically increased and is known to improve performance in an ideal (noiseless) setting, on
realistic hardware greater depth exacerbates noise: The overall quality of results depends critically on
both, variational parameters and circuit depth. Although identifying optimal parameters is NP-hard, prior
work has suggested that they may exhibit regular, predictable patterns for increasingly deep circuits and
depending on the studied class of problems.
In this work, we systematically investigate the role of classical parameters in QAOA performance
through extensive numerical simulations and suggest a simple, yet effective heuristic scheme to find
good parameters for low-depth circuits. Our results demonstrate that: (i) optimal parameters often deviate
substantially from expected patterns; (ii) QAOA performance becomes progressively less sensitive to
specific parameter choices as depth increases; and (iii) iterative component-wise fixing performs on par
with, and at shallow depth may even outperform, several established parameter-selection strategies. We
identify conditions under which structured parameter patterns emerge, and when deviations from the
patterns warrant further consideration. These insights for low-depth circuits may inform more robust
pathways to harnessing QAOA in realistic quantum compute scenarios.

INDEX TERMS Combinatorial Optimisation, Heuristics, Parametrisation, QAOA, Quantum Computing

I. INTRODUCTION

Despite progress towards error-corrected quantum comput-
ers [1], noise and imperfections remain dominant in NISQ
devices [3, 16]. Moreover, algorithms with proven quantum
advantage [23] are impractical at current qubit scales. Over
the past decade, research has centred on hybrid quan-
tum–classical algorithms adapted to restricted hardware.
These methods replace full coherent quantum evolution with
iterative classical protocols that invoke quantum subrou-
tines, thereby reducing qubit and gate requirements [35,
37]. This mitigation limits noise accumulation on small-
scale NISQ implementations. Such variational quantum
algorithms (VQAs) [9] include the variational quantum
eigensolver (VQE) [35] and the quantum approximate opti-
misation algorithm (QAOA) [11].

QAOA admits variable circuit depths by repeating
parametrised mixer and cost unitaries, that is, the number
of layers p. As the algorithm corresponds to a Trotterisa-
tion of adiabatic quantum evolution [3], the corresponding
dynamics are recovered in the limit p→∞ and yields the
optimal solution in the absence of noise.

Identifying optimal parameters for finite p is known to
be NP-hard [4]. Nonetheless, for small and modest depths,
both empirical and theoretical studies indicate that good
approximations are feasible for many problems [3, 8, 39,
38, 17]. While classical optimisation remains the most com-
mon strategy [5, 13, 29], alternative approaches have been
proposed that yield high-quality parameters at reasonable
computational cost [42, 14, 10, 44, 41, 25].

Several studies suggest the existence of discernible pat-

1

mailto:vincent.eichenseher@othr.de
mailto:maja.franz@othr.de


terns in optimal QAOA parameters [49, 28, 32]. Typically,
cost-unitary parameters are observed to increase smoothly
with depth, while mixer-unitary parameters decrease. Empir-
ical results further indicate that parameters at depth p differ
only slightly from those at p+1 [49]. This behaviour aligns
with the fact that larger p correspond to a more fine-grained
Trotterisation of adiabatic time evolution. In this work,
we re-examine the assumption that optimal parameters ad-
here to such patterns by systematically investigating the
cost landscapes of optimisation-free parameter initialisation
methods for the canonical NP-complete problems MaxCut,
VertexCover, and Max3SAT. In particular, we examine linear
ramp schedules [32] and compare their performance with
parameters obtained through classical optimisation and a
brute-force sequential method. Our analysis includes not
only parameters consistent with the established patterns, but
more importantly seeks systematic deviations, thereby ac-
counting for degenerate optima and relating varying degrees
of pattern-conformity to the expected solution quality. This
enables an assessment of the extent to which optimal param-
eters realistically follow proposed patterns. In contrast, prior
approaches typically focus solely on parameters identified
by optimisation routines or other selection methods, offering
no insight into the performance of neighbouring points in
the optimisation landscape dynamics [2]. In summary, our
main contributions are:

1) We replicate and confirm—using a comprehensive
open source reproduction package—results reported
in the literature, and further analyse the influence
of component-wise parameter adjustments on cor-
responding cost-landscapes. We employ large-scale
numerical simulations for deep circuits beyond 20
layers.

2) We examine the conformance of optimal QAOA pa-
rameters to patterns suggested in the literature, and
show that actually optimal parameters often fail to
follow these. We provide guidance on when such
patterns are likely to hold, as well as when and to what
degree deviations may arise. We identify possible
reasons, and uncover more accurate patterns.

3) We propose a novel sequential method for QAOA
parametrisation, and demonstrate that it yields, despite
its structural simplicity and little required computa-
tional effort, comparatively good results akin to more
complex schemes at low depths.

The rest of this article is structured as follows. Sec. II out-
lines the theoretical background and terminology. Related
work is reviewed in Sec. III, followed by the experimental
setup in Sec. IV. Results are presented in Sec. V, with
attention to symmetries, parameter concentration, and fixed-
parameter implications. Sec. VI considers the potential
of optimisation-free approaches and the role of parameter
patterns. We conclude in Sec. VII.

II. FOUNDATIONS
As QAOA [11] has been extensively studied and is well
known, suffice it to summarise its essential features here.
The heuristic approximates solutions to unconstrained opti-
misation problems by measuring the quantum state obtained
after applying p layers of alternating unitaries to the initial
state |s⟩ = |+⟩⊗n.

Each layer i ∈ [1, p] applies a phase-separation operator

HC =
∑
i,j

Jijσ
(i)
z σ(j)

z +
∑
i

hiσ
(i)
z , (1)

where Jij specifies interaction strengths and hi denotes local
energy offsets. Classical variables are encoded via σ

(i)
z . This

is followed by a mixer unitary UB(βi) = e−ıβiHB that
commutes with the phase-separation operator. When |s⟩ is a
product of σx eigenstates, the transverse-field Hamiltonian
HB =

∑n
i=0 σ

(i)
x is typically chosen for this purpose.

The repeated application of these layers results in the
parametrised quantum state

|γ, β⟩ = UB(βp)UC(γp) · · ·UB(β1)UC(γ1) |s⟩ , (2)

that depends on 2p real parameters γ⃗ = (γ1, γ2, · · · , γp)
and β⃗ = (β1, β2, · · · , βp). Parameter optimisation seeks
parameters γ⃗, β⃗ that minimise (or maximise) the expectation
value

Fp(γ⃗, β⃗) = ⟨γ⃗, β⃗|HC |γ⃗, β⃗⟩ (3)

that can be sampled from the quantum circuit implement-
ing Eq. 3. Optimisation is usually performed by classical
iterative methods that produce a sequence of gradually
improving choices for (γ⃗, β⃗).

In general, γ⃗ is 2π-periodic and β⃗ is π-periodic. The
expectation value is also invariant under time reversal,
Fp(γ⃗, β⃗) = Fp(−γ⃗,−β⃗), and problem-specific symmetries
may further restrict the parameter space. For MaxCut on
regular graphs, β ∈ [−π/4, π/4] and γ ∈ [−π/2, π/2],
whereas for non-regular graphs—or in general, other op-
timisation problems—only the general periodicity applies,
so γ ∈ [−π, π].

The expectation value in Eq. 3 can be decomposed into
a sum of terms that involve only qubits i and j:

Fp(γ⃗, β⃗) =
∑
i,j

Jij ⟨γ⃗, β⃗|σ(i)
z σ(j)

z |γ⃗, β⃗⟩ . (4)

The collection of terms involving qubits i or j consti-
tutes the reverse causal cone of their correlation function.
For each depth p, this cone contains only finitely many
terms [40], and its size depends solely on p, independent
of the instance size n.

III. RELATED WORK
QAOA was introduced by Farhi et al. in 2014, and has
since inspired numerous variants and extensions [18, 7, 47,
45, 42]. As simulating its output is classically intractable
even for depth p = 1 [12] given some widely accepted
complexity-theoretic assumptions, QAOA is frequently seen
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as indicator of quantum advantage. While the single-layer
case is well understood [25, 11, 7, 15], the behaviour of
deeper circuits remains less clear, notwithstanding a steadily
expanding body of results [49, 46, 48, 28, 27].

In particular, this includes the identification of patterns
across problem instances [40, 33], for instance through
machine learning [20], analytical considerations [25], or by
other approaches [49, 28]. Such patterns aim to provide
less computationally demanding alternatives than orthodox
optimisation to determine good parameters β⃗, γ⃗. In general,
standard approaches are costly and require multiple quantum
circuit evaluations, although the exact effort depends on
many details [34, 13, 43].

Zhou et al. [49] observed that optimal parameters exhibit
smooth trends, with γi increasing and βi decreasing as
functions of the layer index i ∈ [1, p]. Exploiting these
patterns, they proposed to let parameters obtained at low
depth serve as initial values for deeper circuits, either via in-
terpolation or through low-depth amplitudes in a frequency-
domain approximation. Both approaches were shown to
outperform random initialisation of QAOA. Brandão et
al. [6] demonstrated that parameters concentrate for related
problem instances (e.g., MaxCut on three-regular graphs),
with the variance of optimal parameters decreasing as in-
stance size increases. This suggests that either sufficiently
large instances or averages over many smaller instances are
necessary to identify a meaningful concentration point. By
formally considering infinite system size through restriction
to the reverse causal cone, Streif and Leib [40] further
showed that parameter concentration depends not on the
global problem size n, but rather on qubit correlations.

Refs. [24, 33, 32] suggest that parameters initialised via
linear ramp (LR) schedules, with γ increasing linearly and
β decreasing linearly, generalise effectively across different
problems and instances. Such schedules also provide robust
initialisations for subsequent optimisation [33].

IV. METHOD
In the following we present our sequential parameter ini-
tialisation method. Furthermore, we outline the considered
metrics and optimisation problems, as well as our experi-
mental setup.

A. SEQUENTIAL PARAMETER INITIALISATION
As a baseline for assessing alternative optimisation and
initialisation strategies, we propose a sequential parameter
optimisation scheme: QAOA parameters (β, γ) are sampled
from a uniform 32 × 32 grid over [−π

2 ,
π
2 ] × [−π, π],

or, where symmetry permits, over [−π
4 ,

π
4 ] × [−π

2 ,
π
2 ] (see

Sec. V-A). The procedure begins at depth p = 1, with all
322 grid points evaluated. At each depth p, the parameters
yielding the lowest energy expectation are fixed. The depth
is then incremented to p + 1, and the same parameter grid
is explored with previously fixed components held constant.
This process, which is illustrated in Fig. 1, continues until
the target depth ptarget is reached. This way, only a restricted

region of the optimisation landscape close to the chosen
fixed parameters, requires evaluation, leading to linear rather
than exponential scaling in the number of QAOA evaluations
with depth p. Although conceptually simple, fixing the best
available tuple (β, γ) at each stage may be suboptimal,
as the effect of additional layers on the energy landscape
remains uncertain.

The strategy of fixing lower-level QAOA parameters
while iteratively increasing circuit depth has precedent,
notably in Ref. [28]. There, parameter selection is guided by
an optimiser rather than grid evaluation, and all components
of (β, γ) are re-optimised at each iteration, in contrast to our
approach, which fixes only the highest-depth components.

B. METRICS
We assess the performance of a given parameter set (γ⃗, β⃗)
using the energy expectation value Fp(γ⃗, β⃗) (cf. Eq. 3). To
enable comparison across problem instances, we employ the
residual energy

r =
F (β, γ)− E0

Emax − E0
, (5)

as metric, where E0 and Emax denote the ground- and
maximum-excited-state energies of the problem Hamilto-
nian HC . For multiple instances, we compute the mean
residual energy r̄ and its standard deviation σr. While
broadly consistent with other quality measures, such as
the energy approximation ratio, the residual energy is par-
ticularly suited to evaluating states that are good but not
optimal [40].

C. COMBINATORIAL PROBLEMS
We consider three seminal NP-complete problems: MaxCut,
VertexCover and Max3SAT.

• MaxCut seeks a partition of a graph that maximises
the number of crossing edges [22]. Our study considers
three-regular graphs, consistent with the QAOA liter-
ature, where d-regular graphs are standard [49, 6, 13,
48, 46, 11]. We evaluated 40 instances in total: ten each
of orders 10, 12, 14, and 16.

• VertexCover seeks a minimal set of nodes such that
every edge is adjacent to at least one node in the
set [22]. For our experiments, we employ the same
three-regular graph instances as in the MaxCut study:
ten each of orders 10, 12, 14, and 16.

• Max3SAT involves assigning Boolean variables in a
conjunctive normal form (CNF) formula (with three
Boolean variables per clause, 3-CNF) so as to max-
imise the number of satisfied clauses [22, 31]. Instances
are characterised by the clause-to-variable ratio α =
|Clauses|/|Variables|. For small α, formulas are typi-
cally under-constrained with many solutions; for large
α, they become over-constrained and unsatisfiable.
Hard instances concentrate in α ∈ (3.5, 4.9], where
satisfiability occurs with a probability of about 50%.
The critical point shifts with formula size, converging
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Uniformly spaced n× n grid over parameter domain.

p = 2p = 1 p++

Uniformly spaced n× n grid over parameter domain for the p level component
with fixed parameters β

(p−1)
b , γ

(p−1)
b .

FIGURE 1: Proposed sequential parameter initialisation method.

near α ≈ 4.25 for large systems [31, 26]. In our study,
instances with α ∈ (3.5, 4.9] are designated “hard”,
and those outside this range “easy”. We evaluate ten
instances each, comprising 14–24 qubits (a CNF for-
mula with n variables and m clauses is represented by
n+m qubits).

D. EXPERIMENTAL SETUP
Additionally to the sequential method, we also explore the
optimisation landscapes of the following parameter selection
strategies:

• In the LR-QAOA scheme, parameters are set according
to linear ramp (LR) schedules, following Montañez-
Barrera and Michielsen [32]. The ramps are parame-
terised by circuit depth p and slopes (∆β,∆γ), cor-
responding to the mixer and phase operators, respec-
tively. Given differing implementations of mixers in the
QAOA literature (e.g. Refs. [18, 19]), we consider two
cases: (1) Both ramp parameters ∆β,∆γ are positive,
denoted as LR+β , and the evolution uses UB(βj)
as defined in Sec. II. (2) One parameter is negative
−∆β,∆γ, denoted as LR−β . This case is also applied
in Ref. [32], likely as it aligns the mixer with the initial
state |x⟩. Previous work indicates that QAOA performs
better when the initial state coincides with the mixer’s
ground state [19]. For both cases, we use ∆γ = 0.6
and |∆β| = 0.3 as suggested by the authors.

• As a classical optimiser, we employ the gradient-free
optimiser COBYLA [36] to optimise parameters. Initial
values are obtained using sequential, LR−β and LR+β

parameters for MaxCut, VertexCover and Max3SAT,
respectively. These varied initialisations ensure suffi-
ciently distinct starting points, allowing us to assess
how the choice of initialisation influences optimiser
convergence and final parameter quality.

To probe the parameter landscape of LR and classical
optimisation methods, we first obtain parameters for the tar-
get depth ptarget using the method of interest. Similar to the
sequential method, for each p ∈ [1, ptarget], parameters from
for the depth p−1 are fixed, while the parameters at level p

are specified by a uniformly spaced grid. However, unlike in
the sequential method, these grid evaluations merely serve
as an assessment tool and do not influence the method’s
chosen parameters. This procedure enables an organised
assessment of parameter quality and allows comparison of
parameters given by the subject initialisation methods with
nearby alternatives in the optimisation landscape. Further
details on this landscape scan procedure are described in
Appendix A.

For all problem instances, we set ptarget = 7. Additionally,
for MaxCut, we examine the ptarget = 21 landscapes for
the same instances, incrementing p by 2 in each iteration.
When optimising the ptarget = 21 instances, the parameters
are initially set to the best values identified in the LR+β

p = 21 landscape.
To eliminate detrimental influence of imperfections in

actual quantum systems, all experiments were conducted
using ideal simulations with Qiskit 1.0.2 [21]. The results
are fully reproducible [30] via our reproduction package
(link in PDF).

V. RESULTS
We now commence to discussing details of our numerical
simulations, in particular with respect to properties of the
parameter optimisation landscapes, as well as variations in
and quality of results. Note that we postpone discussing
interpretation and consequences to Sec. VI, and concentrate
on the empirical observations in the following.

A. QAOA PARAMETER SYMMETRIES
Our initial set of experiments aims to provide an intuitive
visual understanding of symmetries that are inherent to the
properties of QAOA (cf. Sec. II), restrict the input domain
and simplify numerical simulation. Restricted symmetries
for MaxCut on 3-regular graphs and general symmetries are
illustrated in Fig. 2.

The periodicity of the energy landscape can be observed
in both parts of the figure, with period π

2 for β and π for γ,
resulting in two horizontal identical sections in the general
case; for the case of MaxCut this results in four horizontal
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FIGURE 2: Symmetries specific to MaxCut (lhs) and general QAOA (rhs) illustrated by a single 16-vertex, 3-regular instance
of MaxCut and a single 16 qubit Max3SAT instance with α = 4.3. Top rows: Overall optimisation landscape Fp(γ, β) with
γ, β ∈ [−π, π] and symmetry axes marked in orange. Bottom rows: Restriction to the subset γ ∈ [−π

2 ,
π
2 ], β ∈ [−π

4 ,
π
4 ]

for MaxCut and γ ∈ [−π, π], β ∈ [−π
2 ,

π
2 ] in general that captures all information. The landscapes are obtained by the

sequential method.

and two vertical ([−π
2 ,

π
2 ] range vs. [π2 , π] and [−π,−π

2 ]
ranges) identical sections, respectively. If we account for the
symmetries and eliminate the corresponding degeneracies,
the landscape can be restricted to the subset shown in the
lower part of of the figure.

Additionally, QAOA parameters are invariant under time
reversal, which is visualised by the fact that in the p =
1 landscapes, quadrants (−β,−γ) and (β, γ), as well as
quadrants(−β, γ) and (β,−γ) are point symmetric. Notable,
for p > 1, time reversal symmetry may not always be visible
in the plots, since we are only viewing a small part of the
entire optimisation landscape given by all components of
γ⃗, β⃗.

B. MAXCUT
Figures 3 and 4 show average residual energy r̄ and standard
deviation σr for our MaxCut instances. Each plot facet
corresponds to the optimisation landscape of β⃗(p), γ⃗(p) with
β
(p)
i , γ

(p)
i (0 ≤ i < p) components fixed to parameters of

interest. Columns vary depth p, and different rows cor-
respond to different parameter initialisation methods. The
average quality of the results produced by the parameters
fixed at each layer by these methods is shown in Fig. 5.
For comparison, the results for one individual instance are
shown in the appendix in Sec. C-A.

a: Average Residual Energy Landscapes
The parameter landscapes obtained with the sequential
method, COBYLA, and LR−β share common features: the
optimal absolute value of β decreases with increasing p,
while the optimal absolute value of γ, which grows at
shallow depth, becomes effectively arbitrary at larger p once
β ≈ 0 (see Fig. 3). In other words, the average residual
energy landscapes given by the individual components of

β, γ become increasingly invariant under γ as β approaches
zero. This suggests that as β approaches zero, the system
state is left unchanged by further temporal propagation
under the cost Hamiltonian, while propagation under the
mixer Hamiltonian still induces dynamics. Intuitively, if the
system sufficiently approximates an energy eigenstate of
the cost Hamiltonian, then adding an additional layer of
cost and mixer operators leaves the state invariant under
the cost Hamiltonian. In this regime, all choices of γ are
therefore equally effective. Conversely, further propagation
under the mixer Hamiltonian will change the state, so
parameters β need to be close (or equal) to zero for the
best results. Accordingly, if the depth is sufficient for a
QAOA circuit with a given set of parameters to adequately
approximate one of the eigenstates of HC , we can expect
the landscape of the highest depth components of γ, β to
converge to such a landscape. In contrast, the landscapes
around the LR+β parameters show the opposite of these
convergence properties, with a choice of a small absolute
value for β leading to a high r̄, and the optimal choice of β
tends towards high values with increasing p. This suggests
that, rather than converging towards the ground state, the
system approaches an excited state, which is natural, since
a positive ∆β corresponds to a positive mixer with |+⟩ as its
maximally excited state. and with ∆γ > 0, this corresponds
to maximising HC .

The sequential method is comparatively the fastest to
converge towards a landscape, where the energy is invariant
under γ, which reaches such a state at a depth of p = 4.
Fixing β at (or very close to) zero (cf. Fig. 15) at higher
depths p ≥ 4 results in neither an increase nor decrease
in r̄ and no noticeable change in the landscapes. When
optimising the parameters using COBYLA, this transition
between landscapes takes longer, reaching a landscape
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FIGURE 3: Average residual energy r̄ for 40 3-regular MaxCut instances of sizes 10 to 16, with γ, β set to sequentially
fixed parameters (top row), optimised parameters using COBYLA starting from the sequential parameters (second row),
LR−β parameters with ∆β = −0.3,∆γ = 0.6 (third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6 (bottom row).
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FIGURE 4: Standard deviation of the residual energy r̄ in Fig. 3 over 40 MaxCut instances.

similar to the p = 4 sequential landscape at p = 7,
with more intermediate transition steps. The resulting r̄
is higher than that of the sequential method at low depth
(p < 4), but starts outperforming the sequential method as
the depth increases (p > 4). Unlike the sequential method,
the quality keeps improving throughout all layers up to
p = 7 when optimising (see Fig. 5). The LR−β parameters
take the longest to converge to a state that is invariant
under the phase operator, and in fact do not quite reach
this point within p = 7 with the given ∆β,∆γ. As shown in
Fig. 5, the average residual energy consistently improves at a

similar rate to the optimised parameters, with the optimised
parameters performing slightly better at all depths. At p ≥ 6,
The LR−β parameters outperform the sequential parameters.
The average residual energy given by the LR+β parameters
changes inversely to the LR−β , albeit the landscapes of these
methods are not an inverse of each other, with the individual
LR+β landscapes differing less from preceding ones than for
the LR−β parameters.
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FIGURE 5: Average and standard deviation of the approx-
imation quality for 40 3-regular MaxCut instances of sizes
10 to 16 when fixing parameters at each layer p according
to the considered methods.

b: Convergence to γ Invariance at β = 0

Another notable observation from Fig. 3 is that the maxima
seem to shift in accordance with the changes in γ and β with
increasing p: (1) the maxima shift towards the top/bottom
of the landscape (i.e., the symmetry boundary of β) and
gradually diminish, while minima shift towards β = 0; and
(2) the maximal/minimal regions, which are duplicated due
to time-reversal symmetry, broaden diagonally and merge
into a single maximal/minimal region.

For LR−β , higher depths correspond to a high γ relative
to β and lower depths to a low γ relative to β. Comparing
theses ranges illustrates that the minima/maxima shifts are
consistent with the changes in β, γ: At low depth (p < 4),
where γ is (near) zero, property (2) is more pronounced than
property (1), with the position of the extrema barely chang-
ing. Only the width of the minimal/maximal region increases
along the diagonal between duplicate minima/maxima. At
higher depths (p > 4), as γ increases (and β approaches
zero), property (1) becomes more pronounced. The sequen-
tial method fixes non-zero values for both β and γ at p = 1
and subsequently, at p = 2, reaches a landscape similar
to the p = 6 LR−β parameters showing both properties
(1) and (2). The lower depth (p < 4) scans show that the
COBYLA optimiser has a tendency to chose higher values
of β and lower values of γ than the sequential method
(cf. Fig. 15). Furthermore, property (2) is more pronounced
for the sequential parameters than those obtained with
COBYLA, which at low depth have a longer propagation
under β relative to the chosen γ. This indicates that for
COBYLA property (1) becomes more pronounced as β
decreases, relative to γ.

c: Residual Energy Standard Deviation Landscapes
At p = 1, the standard deviation (see Fig. 4) from r̄ is low
(σr ≤ 0.05) across the entire landscape, with areas of almost
zero σr in parts of the landscape where β ≈ ±π

8 , γ ≈ ±π
4 .

The parts of the landscape which correspond to the minima
in the p = 1 r̄ landscape in Fig. 3 result in σr not signif-
icantly different from the rest of the landscape (≤ 0.05).

At p = 2 to p = 4, for the sequential method, there
are some areas of moderate standard deviation (σr ≤ 0.1)
that correspond to a long propagation under β ≈ ±π

4 and
specific values of γ. In the corresponding r̄ landscapes of
Fig. 3, these regions of moderate σr contain maxima or
medium r̄. At p > 4, σr is more uniform across the entire
landscape, with the overall magnitude σr decreasing with
increasing p, but with higher σr as in the p = 1 landscape.
When optimising the sequential parameters using COBYLA,
σr is comparatively higher (0.1 ≤ σr ≤ 0.15 in some
areas of the landscapes between p = 3 and p = 6) and
less uniformly distributed. There are some narrow regions
where σr is lower than the rest of the landscape, namely
in the areas where β = 0 or β = ±π

4 and in areas where
γ ≈ ±π

4 (the exact γ seems to vary slightly), making the
landscape appear segmented into areas of high σr. Both LR
parameters result in landscapes with low, uniform σr that
barely differ from the p = 1 landscape, with σr only slightly
decreasing in some areas and slightly increasing in others.
For the LR−β parameters, the areas in the middle of the
landscape increase in σr, while for the LR+β parameters
the σr decreases in these areas. For the areas at the edges
of the plot, the inverse of this applies.

C. MAXCUT: HIGHER DEPTHS
To examine the parameter landscapes at higher depths we
further evaluate the same MaxCut instances up to ptarget =
21. The results of these experiments are shown in Figures
6 and 7, respectively corresponding to the average residual
energy r̄ and the standard deviation σr. The landscape is
evaluated in intervals of two layers for COBYLA and the
LR parameters, omitting every second landscape, to save
computation time due to the increased number of circuit
evaluations and circuit depths. The average quality of the
energies produced by the parameters fixed at each layer
by these methods is shown in Fig. 8. The results for one
individual instance are shown in Sec. C-A.

a: Average Residual Energy Landscapes
At higher depths, the landscape around the sequential pa-
rameters (top row of Fig. 6) does not change in a noticeable
way compared to the ptarget = 7 landscape, with the lowest
energy values occurring at β = 0 and arbitrary γ. As
with the lower depth experiments (Sec. V-B), from p = 4
onwards, the sequential method consistently fixes β = 0
(cf. Fig. 15), that is, no further temporal propagation under
the mixer occurs at higher depths, and since any propagation
under the phase operator leaves the system in its state,
the residual energy also remains constant (cf. Fig. 8). This
behaviour aligns with our expectations, since the sequential
method always chooses the best available parameters at each
p without modifying previously fixed parameters. So, once
it has reached a landscape where further propagation under
β only results in higher energies and the choice of γ is
arbitrary, there is no further propagation under the mixer at
higher depths.
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FIGURE 6: Average residual energy r̄ for the same 40 MaxCut instances of sizes 10 to 16 shown in Fig. 3 with ptarget = 21,
with γ, β set to sequentially fixed parameters (top row), optimised parameters using COBYLA starting from the sequential
parameters (second row), LR−β parameters with ∆β = −0.3,∆γ = 0.6 (third row), and LR+β parameters with ∆β =
0.3,∆γ = 0.6 (bottom row).
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FIGURE 7: Standard deviation of the residual energy r̄ in Fig. 6 over 40 MaxCut instances, where ptarget = 21.

The landscapes around the LR−β parameters (lower-
middle row of Fig. 6) progress similarly to the landscapes
in the lower depth experiments, but at an overall slower
rate. This is natural, as the slope of the linear ramp is
∆
p , and using a higher p with the same ∆ corresponds
to a more gradual slope, which in turn corresponds to
more gradual changes in the variational parameters. The
higher depth landscape at p > 7 continues to converge to
a landscape that is dependant on β and invariant under γ,
and unlike the lower depth case, there is no more variation
in r̄ depending on γ at p = 21. The performance of the
higher depth LR−β parameters (see Fig. 8) at low depth
p < 13 is worse than the low depth LR−β parameters
(compare Fig. 5), but after p = 13, the higher depth LR−β

parameters start outperforming the lower depth variant, as
well as the sequential parameters. At p ≥ 17 a lower r̄ can
be achieved than the best-performing optimised parameters
at lower depth (cf. Fig. 5).

The LR+β landscape (bottom row of Fig. 6) similarly
progresses at a slower rate compared to to the respective
lower depth landscapes. The final landscape is invariant
under γ close to β = 0, albeit there is some variation in
r̄ close to β = ±π

4 depending on γ.

When using COBYLA to optimise the LR+β parameters,
the resulting landscapes are distinct from the case, where
we initialised the optimiser with sequential parameters at
ptarget = 7. The landscapes mainly consist of rather average
r̄ and the maxima and minima of the individual landscapes
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FIGURE 8: Average and standard deviation of the approx-
imation quality for 40 3-regular MaxCut instances of sizes
10 to 16 when fixing parameters at each layer p according
to the considered methods, where ptarget = 21.

are less pronounced, with convergence patterns becoming
less discernable as p increases. At p ≤ 11, the landscapes
progress similarly to the LR+β landscapes. However at
p > 11, the maxima become less pronounced, compared to
the the LR+β parameters, and the minima shift horizontally
towards the corners of the landscape at p = 21, which
corresponds to a long propagation under both β and γ.
Overall, the optimiser performs worse than the sequential
parameters and the LR−β parameters (see Fig. 8), as well
as the optimised sequential parameters in the lower depth
case (cf. Fig. 5).

b: Residual Energy Standard Deviation Landscapes
The standard deviation of these landscapes (see Fig. 7) at
higher depths behaves similarly to the ptarget = 7 experi-
ments: The sequential parameters and the LR−β parameters
both result in a low standard deviation across the entire
landscape, with σr < 0.1 and σr ≤ 0.05, respectively. LR+β

parameters also result in a similar σr as the lower depth case
(cf. Fig. 4), but with slightly higher σr < 0.1 occurring
in the landscape where β is non-zero. The landscapes of
COBYLA initialised with LR+β parameters have the highest
σr < 0.2, across a large part of the landscape, with the
highest σr generally occurring in the part of the landscape
that corresponds to a short propagation under the mixer, that
is, where β is close to zero. This indicates that there is a
relatively high variation in the cost landscape across MaxCut
instances when optimising LR+β parameters. Notably, there
are no areas of low σr at specific values of γ or β, such
that the σr landscape is divided into segments, as was ob-
served in the lower depth experiments, where COBYLA was
initialised with the sequential parameters (see Sec. V-B).

D. VERTEXCOVER
Figures 9 and 10 respectively show the average residual
energy r̄ and the standard deviation σr of the VertexCover
instances on the 40 3-regular graph instances used in Sec-
tions V-B and V-C, up to ptarget = 7. The average quality of
the energies produced by the parameters using the described

methods is shown in Fig. 11. The results for a single instance
are shown in Sec. C-B. Aside from the fact that here we
initialise COBYLA with LR−β parameters, the figures use
the same methods and follow the same structures as the
MaxCut experiments (cf. Sec. V-B).

a: Average Residual Energy Landscapes
In comparison to MaxCut, the p = 1 landscape for Ver-
texCover exhibits a higher density of local minima and
maxima. A possible reason for this is that there are more
computational basis states corresponding to invalid solutions
for VertexCover than for MaxCut. A slight variation to the
parameters may cause a transition from a valid solution
state to an invalid solution state, leading to irregularities in
the surface of the optimisation landscape. Furthermore, as
discussed in Sec. V-A, the range in which γ, β are periodic
is different to MaxCut, as only general symmetries apply for
VertexCover. Nevertheless, the p = 1 VertexCover landscape
shares some general properties with the p = 1 MaxCut
landscape, such as time-reversal symmetry. Additionally, the
landscape follows the general structure, with the lower left
and upper right quadrants in general containing lower values
of r̄ than the lower right and upper left quadrants.

As p increases, the sequential method quickly converges
to a landscape with a smoother surface, where r̄ is invariant
under γ when β = 0 or β = ±π

2 , at p ≥ 2. However, unlike
in the MaxCut experiments, there is no examined depth,
where the landscape is entirely invariant under γ for any
choice of β. From p ≥ 3 onwards, the sequential method
fixes β close to zero (cf. Fig. 15) and r̄ remains constant
(cf. Fig. 11), but the location and magnitude of the maxima
at the edges of the landscape still change depending on the
chosen γ. This suggests that the system is in a state, in which
further propagation under the phase operator will leave the
system in the state, if there is no propagation under the
mixer. Evolution under the mixer in turn may change the
state depending on the magnitude of both γ and β, indicating
that the propagated state no longer closely approximates an
eigenstate of HC . In short, the effect of propagation under β
is more pronounced than for the MaxCut experiments (see
Sec. V-B and Sec. V-C).

In the LR−β landscape (third row of Fig. 9) at p ≥ 2
the minima also shift towards the center of the plot, but
in comparison to the landscape of the sequential method,
it is overall less smooth and the minima and maxima are
less extensive. Furthermore, while the parts of the landscape
where β = 0 contain similarly low values of r̄, the landscape
is never completely invariant under γ in these regions,
suggesting that the LR−β fail to converge to a state which
closely approximates an eigenstate of HC . This landscape
barely changes at higher depths p ≥ 3.

When optimising the LR−β parameters using COBYLA
(upper-middle row of Fig. 9), the p = 2 and p = 3
landscapes are similar to the LR−β landscapes for the same
p. However, as p increases further, the landscapes converge
to a state that is invariant under γ at β = 0. Compared
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FIGURE 9: Average residual energy r̄ for 40 VertexCover instances of sizes 10 to 16, with γ, β set to sequentially fixed
parameters (top row), optimised parameters using COBYLA starting from the sequential parameters (second row), LR−β

parameters with ∆β = −0.3,∆γ = 0.6 (third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6 (bottom row).
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FIGURE 10: Standard deviation of the residual energy r̄ in Fig. 9 over 40 VertexCover instances.

to the landscapes of the sequential method, the optimiser
landscapes are less smooth and the minimum is narrower in
β, with less pronounced maxima up to p = 7. Fig. 11 also
shows a similar performance of the COBYLA and sequential
method at p = 7.

The LR+β parameters (bottom row of Fig. 9), converge
towards the inverse of the other landscapes, and similar to
the LR−β , do not reach a landscape which is invariant under
γ when β = 0, instead only reaching a landscape with low
variance under γ at β = 0. Unlike the LR−β parameters, the
r̄ of the LR+β keeps changing with increasing p, towards

higher values of r̄ (see Fig. 11). Notably, at p = 2 with
γ slightly below zero, there is a relatively high maximum
for negative β and a relatively low minimum for positive β.
These extrema are mirrored in β at p = 3, suggesting that
some specific combinations of γ, β at varying depth lead to
opposite behaviours.

b: Convergence to γ Invariance at β = 0

As with MaxCut, the maxima and minima in the landscapes
seem to shift and broaden depending on the magnitude
of γ, β, although this is less evident due to the dense
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FIGURE 11: Average and standard deviation of the approx-
imation quality for 40 VertexCover instances of sizes 10 to
16 when fixing parameters at each layer p according to the
considered methods.

local minima/maxima in the landscape. The most notable
example here is evident in the sequential method, for which
β quickly decreases to zero within p ≤ 3 (cf. Fig. 15), as
the maximal/minimal regions quickly merge accordingly. As
the state is further propagated under γ, the maxima become
diminished and tend towards the vertical extremes of the
landscape while the minima become narrower around β = 0.

c: Residual Energy Standard Deviation Landscapes

The standard deviation landscape (cf. Fig. 10) at p = 1
shows a relatively high σr in the upper left and lower right
quadrants, which tend to contain higher values of r̄ in the
average landscapes (cf. Fig. 9). In the other quadrants, which
tend to contain lower r̄, σr is medium in magnitude. In
the areas, in which β = 0 and β = ±π

2 with medium
r̄, or in areas with pronounced maxima and minima of r̄,
σr is close to zero. At higher depths, for the sequential
method σr is close to zero in the regions where β is (near)
zero, and r̄ is minimal. The standard deviation is higher
and more variable in the areas where β is closer to ±π

2 and
r̄ is higher. Notably, the landscapes, which the sequential
method converges against, lie in areas of low σr close to
γ = ±π

2 for p = 5 and p = 6, though this effect is
less recognizable at p = 7. The LR parameters result in
landscapes where middling and higher values of σr are dis-
tributed more uniformly across the landscape, with frequent
narrow areas of low standard deviation occurring in irregular
intervals of γ. In general, for the LR−β parameters, higher
σr lie in areas corresponding to a high r̄, and more middling
σr in areas with low r̄. The areas with low σr are rather
uneven, partly corresponding to more pronounced extrema
and partly to a medium r̄. The LR+β parameters result in
landscapes where areas of low σr seem to appear more
regularly at low p near β = 0 and in areas with pronounced
extrema of r̄, as well as at high p, in areas of the where
β = ±π

2 . However, overall high values of σr tend to occur
more frequently and to a greater extent than in the LR−β

landscapes. When optimising the LR−β parameters with
COBYLA, the standard deviation of the resulting landscapes

increases noticeably and is spread more uniformly across
the entire landscape as p increases. Notably, after fixing
p = 6 optimised parameters, a transition occurs in the σr

landscape, causing the p = 7 landscape to be more similar
to that of the sequential parameters at p = 7, with low σr

in the region where β is near 0, and higher σr where β is
closer to ±π

2 .

E. MAX3SAT
Figures 12 and 13 show the average residual energy r̄ and
the standard deviation for 10 “hard” Max3SAT instances
with α ∈ (3.5; 4.9] [31], up to ptarget = 7. The average
quality of the energies produced by the parameters fixed at
each layer is shown in Fig. 11. The results for a single
instance are shown in Sec. C-C. Apart from initialising
the COBYLA optimiser with LR+β parameters, the figures
use the same methods and follow the same structures
as the previous experiments (cf. Sec. V-B or Sec. V-D).
Additionally, we evaluated 10 Max3SAT instances from the
easy range, α /∈ (3.5; 4.9], which gave qualitatively similar
results, as we describe in Appendix B.

a: Average Residual Energy Landscapes
The resulting landscapes resemble those of MaxCut, but
exhibit key differences: As discussed in Sec. V-A, the
MaxCut specific symmetries do not apply for Max3SAT;
only the general β-symmetry and time reversal symmetry
applies. Compared to MaxCut, the Max3SAT landscapes
contain fewer regions of intermediate r̄, dominated instead
by high and low values. At higher p, the maxima are
larger, whereas for MaxCut the highest r̄ decrease with
depth (cf. Sec. V-B). Overall, all methods perform worse
than in previous experiments, generally yielding higher (or
lower for LR+β) r̄ (cf. Fig. 14 and Fig. 5, also cf. Fig. 8
and Fig. 11). This suggests that for Max3SAT, inadequate
temporal propagation (i.e., the system evolves away from
the target state) at higher depth result in higher r̄ than for
inadequately propagated QAOA in MaxCut and Vertexcover
at the same depths. The sequential method landscape (top
row of Fig. 25) progresses similarly to prior experiments,
approaching a γ-invariant and β-periodic structure, with
minima at β = 0 and maxima at β = ±π

2 . Unlike
other cases, the sequential method’s average r̄ continues to
decrease up to p = 7, though the improvement becomes
negligible beyond p = 5 (cf. Fig. 14). Analogously, the LR
landscapes evolve more slowly, showing intermediate r̄ as
p increases. At p = 7, neither the LR−β nor the LR+β have
converged to γ-invariance at β = 0: For LR−β , the best
parameters occur near β ≈ π

8 , γ ≈ −π or β ≈ −π
8 , γ ≈ π

3 ;
for LR+β the extrema appear at the corresponding inverted-
sign regions. The COBYLA optimiser, initialised with the
LR+β parameters, produces increasingly, but intermediate
r̄, and weaker extrema as p increases.

None of the methods closely approximates the true
ground state energy (cf. Fig. 14). The sequential method
performs best, saturating beyond p = 5; LR−β ranks second
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FIGURE 12: Average residual energy r̄ for 10 Max3SAT instances of sizes 14 to 24, with α ∈ (3.5; 4.9] and γ, β set
to sequentially fixed parameters (top row), optimised parameters using COBYLA starting from the sequential parameters
(second row), LR−β parameters with ∆β = −0.3,∆γ = 0.6 (third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6
(bottom row).
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FIGURE 13: Standard deviation of the residual energy r̄ in Fig. 12 over 10 Max3SAT instances.

for p < 7, improving comparatively to the sequential
method up to p = 4 but starting from a worse r̄ at
p = 1. COBYLA, initialised with energy maximising LR+β

parameters, performs similarly to LR−β at p ≤ 2, worse
from p = 3 to p = 6, and substantially better at p = 7,
surpassing LR−β , but performing worse than the sequential
method.

b: Convergence to γ Invariance at β = 0

As in Sec. V-B, V-C and V-D, landscape extrema shift
and broaden with increasing γ and decreasing β. The LR
parameters illustrate this gradual transition: At p = 2, for
high β and small γ, the landscape resembles that of p = 1.
With increasing p, duplicate extrema broaden diagonally and
merge. Whether minima or maxima merge across the central
diagonal depends on the β ramp sign: minima merge for
negative β, maxima for positive β. For p ≥ 4, as β → 0 and
γ increases, extrema shift vertically, with minima moving
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FIGURE 14: Average and standard deviation of the approx-
imation quality for 10 Max3SAT instances of sizes 14 to 24
with α ∈ (3.5; 4.9] when fixing parameters at each layer p
according to the considered methods.

inward and maxima outward for negative β, with the reverse
for positive β. These shifts intensify as γ approaches ∆γ .

c: Residual Energy Standard Deviation Landscapes
At p = 1, the standard deviation (cf. Fig. 13) is generally
relative low, but slightly higher than for p = 1 MaxCut
(cf. Sec. V-B,V-C) and lower than for p = 1 VertexCover
(cf. V-D). The largest σr appear near γ = ±π and β = ±π

4 ,
coinciding with the extrema of the p = 1 r̄ landscape
(cf. Fig. 12). Regions near β = 0 or γ = 0 show nearly zero
σr, segmenting the landscape into high- and low-variance
zones. As p increases, the sequential method’s landscape
becomes more uniform: peak σr remains stable up to p = 4
and decreases slightly from p ≥ 5. The LR landscapes,
homogenise more slowly; the LR−β landscapes change
minimally up to p = 3, while LR+β landscapes transition
slightly faster at p = 2, but then plateau. Overall, LR+β

exhibits higher σr than LR+β . For COBYLA initialised with
LR+β parameters, higher-depth (p ≥ 2) landscapes contain
high σr, approaching ≈ 0.35 as p increases. Low-variance
regions (σr ≤ 0.1) near β = ±π

4 become progressively
less dependant on γ, so that by p = 7 σr varies little
with γ. This suggests that higher-depth runs with β = ±π

4
yield r-values closely clustered around r̄. However, this does
not necessarily indicate that an eigenstate of HC is being
approximated as r̄ is still γ-dependant.

F. (NON-)PATTERNS IN QAOA PARAMETERS
To assess how well the examined parameters conform to
the patterns described in the literature, Fig. 15 shows the
parameters determined by the sequential method (left) and
COBYLA (right). The LR ramps are omitted, as they follow
a linear pattern by construction.

For the sequential method, the β parameters follow the
expected pattern, decreasing (non-linearly), rapidly at low
p and gradually at higher p. The γ parameters adhere to
literature trends only for low depth (p ≤ 3 for MaxCut,
p ≤ 2 for Max3SAT). At higher depth and for p ≥ 1
VertexCover, γ varies irregularly, often fixed to ±π for

larger p ≥ 2 Max3SAT instances. These deviations likely
arise because the sequential method quickly converges to
a γ-invariant state when β = 0 (cf. Sec. V-B, V-C, V-D
and V-E), rendering γ arbitrary at high p. For VertexCover,
inconsistencies at low depth stem from β = 0 being fixed
from p = 2 onward; since the landscape is then γ-invariant
(cf. Sec. V-D), γ becomes arbitrary and no clear parameter
pattern emerges.

When COBYLA is initialised with the sequential param-
eters (top row), the resulting optimised parameters show
similar behaviour, deviating only moderately, but with less
smooth changes in β, γ. Initialisation with LR−β (third
row) leads to greater deviations, generally breaking the
patterns in both β and γ, except in 10 qubit instances where
patterns persist in β and in γ up to p ≤ 3. Initialisation
with LR+β (second and bottom rows), which corresponds
to maximising HC and thus a disadvantageous starting
point, produces deviations larger than with the sequential
initialisation. The largest discrepancies occur in the first
and last β, γ components. For Max3SAT, optimisation from
the LR+β parameters yields slightly greater deviations for
smaller instances than in than for ptarget = 21 MaxCut,
though less than when initialised with LR−β . Since these
optimised parameters generally yield intermediate average
residual energy (cf. Sec. V-C and V-E), and vary little for
larger instances, the optimiser is more likely to getting stuck
in a local optimum of the entire optimisation landscape,
that is, the landscape given by all p components of β, γ.
Combined with the observation that large β and γ values
are typically fixed for the final layer (cf. Sec. V-C, V-E), this
suggests that the optimiser converges to one of the minima
located at the edges of the final landscapes.

VI. DISCUSSION
Our results paint a nuanced picture about advantages and
disadvantages of QAOA variants: Despite known uniform,
generic and instance-independent characteristics of QAOA
at unit depth p = 1 [25, 40], we find higher circuit depths
exhibit an influence of both, the combinatorial problem,
and the specific instance. Nevertheless, commonalities are
still observable for deeper circuits, particularly when fixing
lower-depth parameters to certain initial values.

Most notably, parameters resulting in low residual en-
ergies at every depth lead to a converging landscape that
is invariant under γ and periodic in β with a minimum
at β = 0 and maxima towards the top and bottom of the
symmetry range. As p increases, the choice of γ becomes
effectively arbitrary, yielding equivalent energies across all
values at large depth. Conversely, the optimal choice of
β approaches zero as p increases. The number of steps
required for the landscapes to converge to such a state
depends on the relative magnitudes of β, γ: For instance,
linear ramps with decreasing β and increasing γ starting
from 0 converge slower than methods starting with a non-
zero γ ≥ β (e.g. the sequential method, or COBYLA
using favourable initial parameters). These “faster” methods
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FIGURE 15: Parameter components of γ⃗, β⃗ at each p determined by our sequential method and the COBYLA optimiser for
each instance of the considered optimisation problems. Colour denotes number of qubits n for each problem instance. For
each problem different parameters were used to initialise COBYLA: sequential parameters for ptarget = 7 MaxCut (top row),
LR+β parameters for ptarget = 21 MaxCut (second row) and Max3Sat (bottom row), and LR−β parameters for VertexCover
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also achieve a better residual energy at lower depth, but
may be outperformed by some of the “slower” converging
parameters at higher depth. This indicates that faster con-
vergence does not necessarily mean better performance. Our
proposed sequential method converges most rapidly to a γ-
invariant state. Once reached, however, the residual energy
remains fixed across subsequent depths, rendering additional
QAOA layers ineffective. By contrast, COBYLA initialised
with sequential parameters attains a γ-invariant landscape
only at ptarget, thereby enabling lower residual energies. For
linear-ramp parameters, the optimisation landscape does not
converge to a γ-invariant form at low depth (ptarget = 7 in
our experiments), but does so at higher depth (ptarget = 21),
thereby achieving lower residual energies than the sequential
method. This behaviour indicates that slower convergence at
greater depth can yield superior results. Hence, the optimal
convergence rate depends on the available circuit depth and
should be chosen to ensure that convergence coincides with
the final QAOA layer.

The rate of change in the optimisation landscape for a
given set of parameters depends not only on the absolute
values of γ and β, but also on their ratio. We observe

that a gradually increasing γ induces a more pronounced
vertical shift of the minima towards the region β = 0 than
when γ is initially large and continues to increase. With
slowly increasing γ, the extrema broaden more gradually in
the horizontal direction of the parameter landscape when β
decreases slowly towards zero. In other words: (i) the rate
of propagation under the phase operator governs the speed
at which the minima converge towards the centre of the
landscape, and (ii) the rate of decrease in β determines the
speed at which the landscape becomes horizontally uniform
(i.e., γ-invariant).

Across methods, the sequential approach performs com-
parably to, and in some cases better than, alternative strate-
gies, depending on problem and circuit depth. Its drawback
lies in the diminishing rate of improvement in residual
energy as p increases: At large depth, it is surpassed
by methods such as linear ramps that continue to yield
improvements throughout the available depths.

In contrast, linear ramps underperform at shallow depth
but continue to improve up to the target depth, with the
following exceptions: For some problems, notably Vertex-
Cover, linear-ramp parameters may fail to yield improve-
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ments as p increases. Moreover, for linear ramps to drive
the system towards a low-energy state, the mixer ramp must
be aligned with both the initial state and the implementation
of HC . In our setting this requires the initial state |+⟩ and
a problem Hamiltonian HC whose minimal eigenvalue en-
codes the optimum. This corresponds to a negative ∆β (i.e.,
the LR−β method), since |+⟩ is the ground state of −UM .
In contrast, a positive ∆β (i.e., the LR+β method) corre-
sponds to UM , for which |+⟩ is the maximum eigenstate,
thereby propagating the system towards a high-energy state.
COBYLA performance is highly sensitive to the choice of
initialisation: parameters that steer the system towards low-
energy states provide a favourable starting point, whereas
unfavourable choices, such as the LR+β ramp, are less
effective. At shallow depth and for small problem sizes,
the optimiser may still identify reasonably good parameters,
typically by adjusting mainly the lowest- and highest-depth
components of β and γ. At greater depth, however, poor
initialisation can prevent convergence to low energies. Al-
though COBYLA results often exhibit substantial variance,
at the target depth the residual energies across instances
are generally consistent—except in cases of unfavourable
initialisation, where performance can deteriorate.

For the problems considered in this paper, the best
identified parameters frequently deviate from the patterns
reported in the literature. This observation is consistent with
the convergence behaviour of the optimisation landscape: As
the residual energy becomes increasingly invariant under γ
when β approaches zero, larger deviations from the expected
γ-patterns can be tolerated without loss in residual energy.
If parameters exist for a given p that follow the patterns
and approximate an eigenstate of HC within that depth,
which renders the landscape γ-invariant at higher depths,
then many other parameter choices may perform comparably
well despite substantial deviations from the patterns in their
higher-depth components. Furthermore, since the adiabatic
condition (i.e., propagation is sufficiently slow so as not
to disturb adiabatic dynamics) is most restrictive near the
minimum spectral gap, parameters may also deviate substan-
tially from the expected patterns in the low- or intermediate-
depth components. Deviations in regions where the spectral
gap is large may allow for faster propagation towards the
target state without degrading performance. However, since
such parameters still require non-arbitrary values of β and
γ to drive the system towards a low-energy state, they are
unlikely to deviate as strongly from the patterns as the
higher-depth, γ-invariant components. Rather, we expect
deviations to arise in the smoothness of the increase or
decrease, rather than in the overall continuity of the slope
of the parameters.

VII. CONCLUSION
We conducted a systematic empirical study of different
parametrisation methods in QAOA and their impact on the
corresponding optimisation landscapes. Our results chal-
lenge the prevailing assumption that optimal parameters

consistently follow smooth trends, with β monotonically
decreasing and γ monotonically increasing with circuit
depth. We find that such patterns are pronounced only
at shallow depth. As p increases and β approaches zero,
deviations in the higher-depth components of γ become
increasingly inconsequential, until in the limit β = 0 the
choice of γ is effectively arbitrary. Iterative parameter fixing
yielded consistent performance across all instances, despite
not optimising over all components of β, γ instead of the full
2p. While its effectiveness saturates once β approaches 0,
the reduced optimisation complexity and strong low-depth
performance render it a practical baseline for comparison
with more advanced parameter-selection strategies, particu-
larly as we only need to tune 2 variational parameters in
each iteration.

While we could reproduce some observations of previous
work concerning the performance of different parameter
selection methods, we could identify circumstances under
which these methods may fail: (1) Linear ramps generally
achieve comparable performance across problem instances
at high depths, but can be outperformed by alternative
methods at shallow depths. Instance-independent ramps
may lead to marked reductions in solution quality relative
to iteratively fixed or optimised parameters. If ramps are
misaligned with the initial state or with the implementa-
tion of the mixer and phase unitaries, they approximate
the solution of the inverse problem (e.g., maximisation
instead of minimisation). (2) Exhaustively optimised QAOA
parameters achieve best performance among the methods
considered, but exhibit substantially higher computational
cost than fixed parameters or linear ramps. Results exhibit
considerable variance and are highly sensitive to the choice
of initialisation. Poor initial conditions often hinder match-
ing the performance of ramps or iterative fixing. Iteratively
fixed parameters provide a reliable initialisation strategy.

Our results suggest several promising avenues for im-
proving QAOA. The characteristics outlined in Sec. VI
may inform the design of optimiser constraints or motivate
variants that iteratively fix parameters with increasing depth.
Another direction is to devise fixed linear-ramp methods
that adapt to specific problem instances, for example by
tuning ∆β,∆γ through an optimiser or heuristic rather than
assuming complete instance independence.
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APPENDIX A. LANDSCAPE EVALUATION ALGORITHM

Algorithm 1 Landscape scan with iteratively increasing
depth

Input: P = {problem type, problem size, graph degree,
clause to variable ratio, seed} - parameters for problem
specification;
S = {resolution,β bounds, γ bounds} - parameters for
scan grid specification;
I = {pstart, ptarget, pstep} - parameters for iteration loop
specification;
γ⃗init, β⃗init - optional set of parameters which will be fixed
instead of the best found values;
opt - optimal optimiser with which to optimise γ⃗init, β⃗init
before starting the scan;

Output: E - List of grids of expectation values correspond-
ing to each Gp evaluated at each iteration
ĤC ← mapProblemToIsing(P)
if γ⃗init, β⃗init, opt ̸= None then
res← QAOA(ĤC , ptarget, γ⃗init, β⃗init, opt)
res← .computeMinimumEigenvalue()
γ⃗init, β⃗init ← res.opt_parameters

end if
γ⃗b, β⃗b ← None
E ← List()
p← pstart
while p ≤ ptarget do
ansatz ← QAOAAnsatz(ĤC , p)
Gp ← makeGridofParams(S, p, γ⃗b, β⃗b)
Ge ← Estimator(ansatz,Gp, shots = None)
if γ⃗init, β⃗init ̸= None then
γ⃗b, β⃗b ← γ⃗init[0 : p], β⃗init[0 : p]

else
x, y ← getIndex(min(Ge))
γ⃗b, β⃗b ← Gp[x][y]

end if
E.append(Ge)
p← p+ pstep

end while

Algorithm 1 lists the procedure for scanning the optimisa-
tion landscapes using different parameter selection methods.
The scan starts by initialising the problem and, in the case
that an optimiser has been set, optimises parameters for the
target ptarget starting from given initial parameters. In the
case that no optimiser has been set, this step is skipped.
Then, starting from the given start depth, lower depth pa-
rameters are fixed to those of the previous best parameters,
the initial parameters for LR, or the optimised parameters if
an optimiser is used. A grid of parameters within the given
bounds is then created using Algorithm 2. Subsequently, a
QAOA ansatz from the cost operator and current depth is
created. We then pass the ansatz, cost operator and the grid

of parameters to the Qiskit Estimator. The Estimator
then binds each of the parameter sets in the grid to a copy
of the ansatz and calculates the expectation value of the cost
operator in the state prepared by this circuit. As a result we
get a grid of expectation values of the same dimensions as
out grid of parameter sets, which we can plot as a landscape.
The best expectation values for each p are used to compute
the approximation value plots.

Algorithm 2 makeGridofParams

Input: n - resolution of grid;
B{upper, lower}({β, γ}) - {upper,lower} bound on {β,γ};
p - circuit depth/length of parameter-vectors in the grid;
γ⃗f - the γ parameters to be fixed at lower depths;
β⃗f - the β parameters to be fixed at lower depths;

Output: Gp - Grid of size n × n with the points in the
grid corresponding to a tuple of parameter-vectors (γ⃗, β⃗)
where each parameter-vector has length p
Gp ← List(shape = (n, n)
intervalsβ ← Bupper(β) − i

n (Bupper(β) −
Blower(β)) for i in range(n)
intervalsγ ← Bupper(γ) − i

n (Bupper(γ) −
Blower(γ)) for i in range(n)
i← 0
while i ≤ n do

j ← 0
while j ≤ 0 do
βij ← β⃗f + intervalsβ [i]
γij ← γ⃗f + intervalsγ [j]
Gp[i][j]← (βij , γij)
j ← j + 1

end while
i← i+ 1

end while

APPENDIX B. MAX3SAT – “EASY” INSTANCES
In order to determine how the landscape changes when when
we choose a different clause to variable ratio, which is not in
the range generally considered as hard (α ∈ (3.5; 4.9]), we
determined the landscapes resulting from QAOA applied to
10 Max3SAT instances with α /∈ (3.5; 4.9], which we will
refer to as “easy” instances. The r̄ landscape is shown in
Fig. 16 and the σr landscape is shown in Fig. 17. In both
figures, the facets corresponding to the different methods
are arranged in the same way as for the hard instance plots
(Fig. 12 and Fig. 13). The average approximation quality
of the energies produced by the parameters given by these
methods is shown in Fig. 18.

The r̄ landscapes produced by the different methods (see
Fig. 16) progress similarly to those of the hard instances, but
with a generally lower σr (see Fig. 17), especially for the
landscapes given by the parameters optimised by COBYLA
(initialised with LR+β).

Notably, all methods perform similarly as in the case
where we chose instances from the (hard) range α ∈
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FIGURE 16: Average residual energy r̄ for 10 Max3SAT instances of sizes 14 to 24, with α /∈ (3.5; 4.9] and γ, β set
to sequentially fixed parameters (top row), optimised parameters using COBYLA starting from the sequential parameters
(second row), LR−β parameters with ∆β = −0.3,∆γ = 0.6 (third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6
(bottom row).
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FIGURE 17: Standard deviation of the residual energy r̄ in Fig. 16 over 10 Max3SAT instances.

(3.5; 4.9], the main difference is the magnitude of σr.

APPENDIX C. TYPICAL SINGLE INSTANCE SCANS AND
PARAMETER SHAPE

In Sec. V we focus on the average and standard devia-
tion of the residual energy over multiple instances. This
appendix supplements the corresponding plots for typical
single instances of problems examined in that section, to
provide a frame of reference for those results. For the
energy landscape scans, we plot the energy expectation

value Fp(γ, β).

A. MAXCUT

Fig. 19 and Fig. 20 show the results for one of the MaxCut
instances examined in Sec. V-B. The results for the same
MaxCut instance, but at a higher depth (i.e., ptarget = 21)
and incrementing p in steps of 2, are shown in Fig. 21 and
Fig. 22.

19



optimal
0.00

0.25

0.50

0.75

1.00

2 4 6
p

A
ve

ra
ge

R
es

id
ua

l
E

ne
rg

y
r̄ Method LR+β LR−β Sequential COBYLA

FIGURE 18: Average and standard deviation of the approx-
imation quality for 10 Max3SAT instances of sizes 14 to 24
with α /∈ (3.5; 4.9] when fixing parameters at each layer p
according to the considered methods.
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FIGURE 19: Energy expectation landscapes for one MaxCut
instance on a 3-regular 16-vertex graph with γ, β set to
sequentially fixed parameters (top row), optimised parame-
ters using COBYLA starting from the sequential parameters
(second row), LR−β parameters with ∆β = −0.3,∆γ = 0.6
(third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6
(bottom row).

B. VERTEXCOVER
Fig. 23 and Fig. 24 correspond to a single instance of the
VertexCover problem examined in Sec. V-D. Notably, the
density of local minima in the p = 1 landscape is even
more pronounced than in the average landscape shown in
Fig. 9.

C. MAX3SAT
Fig. 25 and Fig. 26 show the results for a typical Max3SAT
instance from the "hard" range examined in Sec. V-E.
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FIGURE 20: Approximation quality and arrangement of
the parameters fixed at each QAOA layer for the MaxCut
instance and methods shown in Fig. 19.
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fixed parameters (top row), optimised parameters using COBYLA starting from the sequential parameters (second row), LR−β
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FIGURE 22: Approximation quality and arrangement of
the parameters fixed at each QAOA layer for the MaxCut
instance and methods shown in Fig. 21.
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FIGURE 23: Energy landscapes for one VertexCover in-
stance on a 3-regular 16-vertex graph with γ, β set to se-
quentially fixed parameters (top row), optimised parameters
using COBYLA starting from the sequential parameters
(second row), LR−β parameters with ∆β = −0.3,∆γ = 0.6
(third row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6
(bottom row).
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FIGURE 24: Approximation quality and arrangement of the
parameters fixed at each QAOA layer for the VertexCover
instance and methods shown in Fig. 23.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

Sequential
C

O
B

Y
L

A
L

R
−
β

L
R
+
β

−π 0 π−π 0 π−π 0 π−π 0 π−π 0 π−π 0 π−π 0 π

−π
2

0

π
2

−π
2

0

π
2

−π
2

0

π
2

−π
2

0

π
2

γ

β

Fp(γ, β) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FIGURE 25: Energy landscapes for one 21-qubit Max3SAT
instance with α = 4.25 ∈ (3.5; 4.9] and γ, β set to sequen-
tially fixed parameters (top row), optimised parameters using
COBYLA starting from the sequential parameters (second
row), LR−β parameters with ∆β = −0.3,∆γ = 0.6 (third
row), and LR+β parameters with ∆β = 0.3,∆γ = 0.6
(bottom row).
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FIGURE 26: Approximation quality and arrangement of the
parameters fixed at each QAOA layer for the Max3SAT
instance and methods shown in Fig. 25.
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