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Abstract
Quantum simulation is a leading candidate for demonstrating prac-
tical quantum advantage over classical computation, as it is believed
to provide exponentially more compute power than any classical
system. It offers new means of studying the behaviour of complex
physical systems, for which conventionally software-intensive sim-
ulation codes based on numerical high-performance computing
are used. Instead, quantum simulations map properties and charac-
teristics of subject systems, for instance chemical molecules, onto
quantum devices that then mimic the system under study.

Currently, the use of these techniques is largely limited to funda-
mental science, as the overall approach remains tailored for specific
problems: We lack infrastructure and modelling abstractions that
are provided by the software engineering (SE) community for other
computational domains.

In this paper, we identify critical gaps in the quantum simula-
tion software stack – particularly the absence of general-purpose
frameworks for model specification, Hamiltonian construction,
and hardware-aware mappings. We advocate for a modular model-
driven engineering (MDE) approach that supports different types of
quantum simulation (digital and analogue), and facilitates automa-
tion, performance evaluation, and reusability. Through an example
from high-energy physics, we outline a vision for a quantum sim-
ulation framework capable of supporting scalable, cross-platform
simulation workflows.
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1 Introduction
Quantum simulation is widely regarded as one of the most promis-
ing near-term applications of quantum computing [3, 20, 1, 12]. Con-
ceptionally, quantum simulation is similar to a small-scale model of
an aircraft in a wind tunnel: instead of utilising intricate algorithms
and numerically solving the fluid-dynamical equations of motion,
the model itself experiences the phenomena under study [14]. Sim-
ilarly, utilising the dynamical capabilities of a programmable quan-
tum system (in other words, a quantum computer) to learn about
the dynamics of an appropriately mapped subject system, offers a
path to tackle problems that are classically intractable [19, 29].

However, the software infrastructure and modelling frameworks
required to systematically develop, deploy, and analyse these simu-
lations remain significantly underdeveloped, as we discuss in this
work. The state-of-the-art of quantum simulation is largely model-
based: A subject Hamiltonian, which describes the dynamics of
a physical target system gets mapped onto quantum computers

by manually constructing models to approximate the target dy-
namics (see, e.g., Refs. [30, 33]). This approach is not only central
to physics-oriented applications but also underpins the potential
for exponential quantum advantage in a broad class of algorith-
mic primitives based on quantum singular value transformation
(QSVT) [10]. However, in contrast to quantum optimisation or quan-
tum machine learning, where well-established algebraic modelling
techniques and domain-specific modelling languages (DSMLs) en-
able automated transformation into quantum-executable for-
mats [18, 28, 26, 25], the process of preparing a quantum simulation
remains largely manual, problem-specific, and hardware-dependent.
The absence of a generic software stack severely limits the abil-
ity to explore the space of quantum simulation strategies, which
makes it difficult to generalise implementations, quantify trade-
offs between alternative mappings, or benchmark against classical
methods. Additionally, the challenges are exacerbated by intricacies
of quantum hardware that require substantial customisation [3].

Furthermore, when considering classical simulations of phys-
ical systems, empirical benchmarking and performance analysis
are routine practices [8]. However, for quantum systems such as-
sessments are hindered by the lack of robust simulation and
benchmarking tooling. Existing classical methods such as Monte
Carlo simulations face challenges like the sign problem [29], yet
they benefit from decades of software development. In contrast,
quantum simulations – though theoretically immune to certain
classical limitations – often lack the practical scaffolding to exploit
this advantage meaningfully.

To move beyond isolated demonstrations, the field must adopt
a more systematic and modular approach to simulation design.
Specifically, it is necessary to: (1) formalise the construction of effec-
tive model Hamiltonians from physical theories [19], (2) automate
the mapping of these models to quantum hardware representations,
and (3) develop standardised simulation workflows that allow for
scalable execution, validation, and performance estimation. Build-
ing on the general quantum SE roadmap presented in Ref. [21], this
work outlines the initial stages of developing a quantum simulation
software framework, an area that has received limited attention in
previous studies. We identify key stages in a simulation pipeline,
from model specification and Hamiltonian design to hardware com-
pilation, and explore open challenges in the pathway to systematic
software support. Ultimately, enabling a software stack for quan-
tum simulation – including domain-specific abstractions, modelling
languages, and tooling for mapping and optimisation – is critical
for unlocking the full potential of this physics-driven quantum ap-
proach. In the following, we outline the fundamentals of quantum
simulation in Sec. 2. Sec. 3 then describes our vision of a general
quantum simulation framework at an example from the high-energy
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physics domain, which aims at a MDE [11] approach to quantum
simulations. Sec. 4 lists open challenges.

2 Quantum Simulation
The (classically hard to solve) time evolution of (quantum) sys-
tems (e.g., wind tunnel, electron interactions) is governed by a
Hamiltonian 𝐻̂sys that contains all information about the physics
of that system. Starting at the systems initial state, configurable
quantum simulators (i.e., quantum “computers”) can mimic this
time evolution [16, 31], expressed by the unitary operator𝑈sys (𝑡) =
exp

(
−𝑖

∫ 𝑡

0 𝐻̂sys (𝑡)d𝑡
)
. Importantly, the equation connects unitary

gates𝑈sys, the usual objects of study in quantum computing, with
Hamiltonians 𝐻̂sys (see left part of Fig. 1). We discuss two principal
approaches (i.e., digital and analogue) that realise this time evolu-
tion in the following (see Daley et al. [8] for a detailed discussion).

0 𝑡

𝑈sys

0 𝑡

𝐻̂sys 𝐻̂≈

𝑈1 𝑈2 𝑈3 𝑈𝑛
. . .

𝐻̂10 𝑡
𝑛 𝐻̂20 𝑡

𝑛 𝐻̂30 𝑡
𝑛 𝐻̂𝑛0 𝑡

𝑛

≈

Trotterisation

Figure 1: Continuous vs. discrete (Trotterised) time evolution.
Left: The continuous dynamic of a physical systems is de-
scribed by the Hamiltonian 𝐻̂sys starting at an initial state at
time 0, which then evolves under the corresponding unitary
𝑈sys to a target state at time 𝑡 . Right: Continuous time evolu-
tion is discretised (Trotterised) into local one- and two-qubit
gates that can be executed on universal, gate-based quantum
hardware, yet in the general case results in a time evolution
under an approximated Hamiltonian 𝐻̂≈.

2.1 Digital Quantum Simulation
For many physical systems, 𝐻̂sys can be expressed as a sum of (non-
commuting) 𝑘 𝑗 -local interaction terms: 𝐻̂sys =

∑
𝑗 𝐻̂ 𝑗 . To address

the non-commutativity in 𝐻̂ 𝑗 , a Trotterisation applies the 𝑘 𝑗 -local
unitaries𝑈 𝑗 = 𝑒−𝑖𝐻̂ 𝑗 (𝑡/𝑛) 𝑛 times over time slices 𝑡/𝑛:

𝑈sys (𝑡) = 𝑒−𝑖
∑

𝑗 𝐻̂ 𝑗 (𝑡 ) =

(∏
𝑗

𝑒−𝑖𝐻̂ 𝑗 (𝑡/𝑛)
)𝑛

︸               ︷︷               ︸
𝑈̂≈ (𝑡 )=exp(−𝑖

∫ 𝑡

0 𝐻̂≈ (𝑡 )d𝑡 )

+ O
(
𝑡2

𝑛

)
,︸   ︷︷   ︸

Approximation

error

(1)

where 𝑈≈ approximates time evolution under an implicit Hamil-
tonian 𝐻̂≈ (right part of Fig. 1). This decouples executing hardware
from simulated dynamics for error-corrected systems, and can im-
plement a large class of Hamiltonians, although discretisation leads
to approximation errors and poorer scalability. Digital quantum sim-
ulation is universal as it allows for approximating arbitrary single-
and two-qubit gates to arbitrary accuracy. This enables simulating
the dynamics of quantum systems that may be fundamentally dif-
ferent from the simulating hardware. The resulting unitary gate

instructions can be formulated using existing DSMLs [7, 23, 6] that
can be executed on gate-based quantum computers. As is common
in the circuit model, a large number of high-fidelity qubits and deep
circuits are typically required. Error mitigation techniques allow
for limited execution on noisy intermediate-scale quantum (NISQ)
machines, but not yet at scale and precision needed for practical
relevance [16].

2.2 Analogue Quantum Simulation
In contrast to digital simulation, analogue quantum simulation [14]
aims to closely mimic the characteristics of the simulated quantum
model by evolving under a simulator Hamiltonian 𝐻̂sim that is simi-
lar to the simulated system Hamiltonian 𝐻̂sys. By directly mapping
𝐻̂sys ↦→ 𝐻̂sim the time evolution proceeds under the natural Hamil-
tonian evolution of the simulator Hamiltonian and corresponding
hardware. In particular in the context of physics-related questions,
such as applications from high-energy physics and cosmology, ana-
logue quantum simulation seen as proof of (often exponential)
quantum advantages over the best known classical techniques [4,
8, 20]. The direct implementation of 𝐻̂sim on a quantum system is
promising in terms of scalability, but also entails limitations due to
physical restrictions and non-universality of operations [31] that
restrict flexibility. When 𝐻̂sys is structurally similar to 𝐻̂sim, effi-
cient mappings can be determined comparatively easily, while it
remains a major challenge for more general problems. Although
efforts in digital simulation have started to explore general algo-
rithmic approaches [27], analogue simulations still rely heavily on
problem-specific mappings that are hard to scale or reuse. Analogue
simulation lacks modelling tools and formal abstractions that have
accelerated progress in other areas, typically based on ideas from
software engineering.

Lamata et al. [16] suggest a mixed approach where analogue
blocks provide scalability by reducing gate-counts and hence sources
of noise, while digital steps amplify the variety of possible oper-
ations. This may be useful on the way towards error-correcting
codes to achieve usable results before perfect hardware is available.

3 Vision: Quantum Simulation Framework
Current quantum simulations often require manual processes for
translating models into executable programs on quantum hardware.
Instead, we propose a MDE [11] approach to quantum simulation,
where high-level, abstract models guide automated transformations
from theory to implementation. Using a concrete example, in which
a theory from high-energy physics is simulated in an analogue
mode, we highlight both the demands on quantum software and
the deficiencies in today’s tooling. As an instance of the software
stack presented in Ref. [2], Fig. 2 illustrates our envisioned quan-
tum simulation stack, tracing the transformation from the physical
model to its realisation on configurable quantum hardware.

3.1 Example: Simulating a Lattice Gauge Theory
In our example we demonstrate the software requirements for
simulating a U(1) Lattice Gauge Theory (LGT) [27], using an array
of neutral atoms in an optical lattice as a simulation platform. This
follows the simulation methodologies developed in [30, 33].
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Figure 2: Envisioned quantum simulation framework illus-
trated for one-dimensional quantum electrodynamics (left),
and suggested software abstraction layers (right).

A mathematical description of the target physical system, the
theoretical model, captures the physical processes governing the
system. In our case, a one-dimensional U(1) gauge theory serves as
effective toy model for quantum electrodynamics (QED). While we
cannot provide comprehensive physical details (see, e.g., Ref. [27]),
suffice it to say the Hamiltonian 𝐻̂sys (cf. Fig. 2) comprises (a) matter
field operators 𝜑 (†)

𝑙
, where 𝜑†

𝑙
creates a Fermion and 𝜑𝑙 annihilates

one at lattice site 𝑙 with mass𝑚, and (b) gauge fields described by
spin- 12 operators 𝑆

+(−)
𝑙,𝑙+1 on the links between neighbouring sites. Lo-

cal Gauss law constraints, enforced via coupling 𝜅 , ensure physical
constraints.

All ingredients are tied to the underlying physics, and share little
commonality with computer science thinking.

For execution, Hamiltonian 𝐻̂sys is mapped to Hamiltonian 𝐻̂sim
(cf. Fig. 2) governed by a hardware model (i.e., in this case the
Bose-Hubbard model), which can experimentally be realised with an
array of neutral atoms. Term 𝐽 in 𝐻̂sim describes the “hopping” or
tunnelling of atoms between adjacent lattice sites: 𝑏 𝑗+1 removes an
atom at site 𝑗 +1, and 𝑏†

𝑗
creates one at site 𝑗 . The term leading with

𝑈 represents the strength of the on-site interaction with 𝑛̂ 𝑗 = 𝑏
†
𝑗
𝑏 𝑗

, which is relevant when more than one atom is located on a single
site. The 𝜀 𝑗 term represents a energy offset to represent lattice
potentials and suppress long-range tunnelling along the 1D chain.

In a neutral atom simulator model parameters can be tuned
through laser intensity or magnetic/optical fields [9], such that
the simulator Hamiltonian 𝐻̂sim closely approximates 𝐻̂sys, pre-
serving physical local constraints [30, 33]. A parity encoding can
map the target model onto the simulator (cf. lower left part of

Fig. 2): (1) even-indexed sites represent Fermionic matter fields 𝜑𝑙
and (2) odd ones gauge field links via spin operators. Hamiltonian
𝐻̂sim is the lowest level of abstraction from a user’s point of view,
but control parameters and pulses must be derived for execution.
While digital gates are firmly established in frameworks [23, 6,
7], pulse-level abstractions [22, 7, 17] remain evanescent, depend
on hardware-specifics, and are not widely supported by hardware
vendors. Work on analogue quantum simulation remains largely
experimental, and lacks intermediate representations of Hamiltoni-
ans that can be transformed into pulse-level representations [24].
This suggests direct access to executing systems is required in the
sense of individual experiments, rather than quantum computers.

Alternative Simulation Realisations. Analogue simulation is tightly
coupled to the experimental platform, and requires bespoke config-
uration of physical parameters without enjoying support from soft-
ware abstractions. Multiple mappings of the Bose-Hubbardmodel to
other platform have been proposed, for instance trapped ions [15] or
digital simulation via Trotterisation [27] that approximates contin-
uous dynamics using gate-based circuits. This highlights diversity
of platforms and methods, and the absence of a unified software
framework capable of targeting multiple backends from a single
high-level model. A corresponding interface and the integration
with programmable quantum simulators are open challenges.

3.2 Need for Automation and Abstraction
Translating theoretical building blocks into a quantum simulation
pipeline presents significant complexity and calls for automated,
reusable, and programmable solutions. This motivates the use of an
MDE approach and software abstractions that go beyond extensions
of traditional approaches like UML [32]. While the roadmap by
Murillo et al. [21] recognises the need for MDE in quantum SE,
it does not discuss quantum simulation. Following Carbonelli et
al. [5], we argue these challenges are particularly relevant in the
simulation domain, and see need to address the following:

Domain-specific abstractions of physical theories. To effectively
model quantum systems, it is essential to capture the underlying
physical theories—such as Hamiltonian dynamics or many-body in-
teractions—through high-level, domain-specific abstractions. These
abstractions serve as a bridge between theoretical formulations and
their executable representations, enabling automation and reuse.

Scalable, hardware-independent intermediate representations. A
key requirement for portability and scalability in quantum simu-
lation is the use of intermediate representations that decouple the
simulation logic from specific hardware architectures. These repre-
sentations must be expressive enough to encode complex quantum
operations while remaining amenable to optimization and analysis.

Code generation and hardware-specific mappings. Automated
code generation tools must translate abstract models into efficient,
hardware-compatible code, accounting for unique constraints and
capabilities of quantum backends. This involves optimising for gate
sets, qubit connectivity, and target hardware characteristics.

Methods for transforming between abstractions. Consistency across
abstraction levels requires formal, well-defined transformations to
ensure changes at one level propagate correctly to others, and
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preserve semantic integrity. We advocate for DSMLs as model rep-
resentations. Benefits extend beyond physics-centric domains, as
quantum simulation plays a role in other domains (e.g., wind tunnel
testing or computational fluid dynamics [13]).

4 Open Challenges
Quantum simulation workflows are often ad hoc, and tailored to
specific platforms. A significant gap remains in the systematic
translation of high-level theoretical models into executable inter-
mediate representations compatible with constraints and features
of quantum hardware. This hinders general-purpose solutions, and
raises research questions: Which intermediate representations
are required to capture the properties of a physical system,
yet allow for automatic transformations, optimisations, and
scheduling to target specific hardware constraints? and How
can noise models, error mitigation, and correction strategies
be formally integrated into quantum software toolchains,
such that their influence on performance can be systemat-
ically measured? Formal abstractions, intermediate representa-
tions for digital and analogue operations, and tools for automated
mapping and optimisation across hardware platforms are required.
Furthermore, quantum simulation spans a spectrum from fully
digital (gate-based) to fully analogue approaches. No systematic
framework to evaluate or compare different simulation strategies
along this continuum is available. This lack of software support
limits the ability to make informed choices about how to implement
a given simulation task. We therefore ask: How can software ar-
chitecture and patterns help select among digital, analogue,
and hybrid simulation strategies based on the characteristics
of the model and available hardware? and What benchmark-
ing tools and performance models are needed to evaluate
quantum simulation implementations–including trade-offs
between quantum and classical backends, and across the
digital-analogue spectrum?Addressing these challenges requires
not only new benchmarking methodologies but also software that
can model, simulate, and optimise across the full design space.
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