
BACHELORARBEIT

Vincent Eichenseher

Comparative Analysis of Parameter
Selection Heuristics for the Quantum
Approximate Optimization Algorithm

March 5, 2024

Faculty: Informatik und Mathematik
Study Programme: Informatik
Supervisor: Prof. Dr. Wolfgang Mauerer
Secondary Supervisor: Prof. Dr. Christian Wolff

Abstract

TheQuantumApproximate Optimization Algorithm (QAOA) is a variational quan-
tum algorithm for producing approximations to combinatorial optimization prob-
lems. In theory the quality of this approximate solution converges to 1.0, which
corresponds to an exact solution, as the circuit depth p goes towards infinity.
This circuit depth corresponds directly to the number of QAOA layers, which are
each parameterized by two a variational parameters α, β. In practice the quality
of the approximation produced on QAOA critically depends on finding good vari-
ational parameters for the resulting Ansatz (the parameterized trial state). For
this reason, a great amount of research regarding QAOA deals with approaches
for finding good variational parameters. This thesis examines two such strate-
gies, FOURIER and INTERP, given some optimal parameters at a certain depth,
exploit patterns in the distribution of these parameters to heuristically deter-
mine good initial parameters for higher depths. In order to assess the feasibil-
ity of using these strategies to improve the basic QAOA, a comparison between
heuristically optimized and randomly initialized QAOA was conducted: First, a
detailed summary of the currently available research, which is relevant to this
work, is given. Second, the heuristic parameter selection strategies were imple-
mented and numerically simulated on random, non-regular instances of MAX-
CUT, a NP-hard problem, in order benchmark their performance and compare
them to the basic QAOA variant. This comparison showed that for the instances
that were examined, the FOURIER strategy produced good results with a con-
siderably greater consistency than INTERP and the basic (random initialization)
QAOA method, both of which performed similarly. Moreover, the results indi-
cate that all variants are less sensitive to changes in the problem graph order
than to changes in the problem graph size, which leads to a noticeable decrease
in solution quality consistency as it increases; further experiments showed that
this decrease in consistency may not only be due to the graph size, but instead
is affected to a greater extent by other factors, such as high node connectivity,
which becomes more probable as the graph size grows. In Summary, the results
substantiate the speculation that the FOURIER strategy is a feasible augmen-
tation to the standard QAOA protocol and may be especially advantageous for
realistic near term implementations. Conversely, the results do not support such
a supposition for the INTERP strategy.

I

Contents

1. Introduction 1

2. Background onQuantumComputing and Combinatorial Optimiza-
tion 4
2.1. Background on Quantum Computing 4

2.1.1. Qubits and Quantum States 4
2.1.2. Multiple Qubit Systems and Entanglement 6
2.1.3. Quantum Operators and Gate-based Quantum Computation . 8
2.1.4. Expectation Value and Measurement of Quantum States . . . 10
2.1.5. Problem encoding and the Ising Model 11

2.2. Background on Combinatorial Optimization 13
2.2.1. Combinatorial Optimization and NP-Hard Problems 13
2.2.2. QUBO formulation . 15
2.2.3. Graph theory fundamentals 16

3. Background on the QuantumApproximate Optimization Algorithm
and Related Work 19
3.1. QAOA . 19

3.1.1. Algorithm . 20
3.1.2. Known Performance Guarantees and Limitations 23

3.2. Parameter Selection Heuristics for QAOA 25
3.2.1. INTERP . 26
3.2.2. FOURIER . 27

3.3. On the Transferability of Optimal QAOA Parameters between Prob-
lem Instances . 30

4. Method 33
4.1. Problem instance generation . 33

4.1.1. MAXCUT . 33
4.1.2. Generating Graphs by Density 35

4.2. Benchmarking the different strategies 36
4.2.1. Benchmarking Framework . 36
4.2.2. Implementation of the Application, Mapping and Solver . . . 37
4.2.3. Experimental Setup . 40

5. Results 43
5.1. Plotting the Data . 43
5.2. Solution Quality with an increasing Number of Nodes 45

II

5.3. Effect of different Graph Densities 47
5.3.1. Solution Quality with increasing Graph Density 47
5.3.2. How Different Edge Assignments Affect the Solution Quality 50

5.4. Solution Quality Starting with an Intermediate Initial p 52

6. Discussion 55

7. Conclusion and Outlook 59

A. FOURIER method with random perturbations 61

B. Comparison to the Goemans-Willamson Optimizer 63
B.1. Results for the Problem Instances with Increasing Order 63
B.2. Results for the Problem Instances with Increasing Size 64

Bibliography 66

III

1. Introduction

In recent years, there has been increasing interest in Quantum Computing,
likely due to advances in both quantum hardware and our understanding of the
possible applications of the Noisy Intermediate Scale Quantum (NISQ) devices
we have access to in the near-term. Many of the most well known quantum
algorithms, which have been shown to outperform the best known classical al-
gorithms, such as Shor’s factoring algorithm [1] or Grover’s search algorithm
[2], not only require a considerable number of qubits to be applicable to prob-
lem instances that are actually challenging, but also a high number of gates,
which will inevitably accumulate a large amount of of errors on NISQ devices,
leading to a lower fidelity. We can use quantum error correction to counteract
the noise (for an example see [3]; for a more general introduction to error-
mitigation see Chapter 10 of [4]), however often this will require extra qubits,
scaling the the required resources up to an impractical quantity. Due to this lim-
itation of near term devices, currently the focus lies on finding algorithms which
can efficiently solve useful problems on near term devices without requiring a
high depth (which would necessitate extensive error correction) and/or a high
number of qubits.

One of the most promising group of algorithms, which potentially fulfill these
criteria, are Variational Quantum Algorithms (VQA) [5], which make use of a
classical optimization routine to iteratively optimize a parameterized trial solu-
tion (also commonly referred to as Ansatz), thus utilizing the avaliable quantum
resources in a systematic way which allows for the possibility of configuring the
number of qubits and the circuit depth to a certain degree, which can be advan-
tageous for computation on NISQ-devices1
Two of the best known VQAs are the Variational Quantum Eigensolver (VQE)
[6], the first VQA that was proposed, which has been successfully applied to
quantum chemistry problems, where it has an inherent advantage over classi-
cal hardware due to the complexity of the Hamiltonians involved [7], and the
Quantum Approximate Optimization Algorithm (QAOA, sometimes also referred
to as Quantum Alternating Operators Ansatz, see [8], [9]), which was first pro-
posed in 2014 by Farhi et al. [10], and produces an approximate solution for
combinatorial optimization problems, where both the depth of the circuit and
the quality of the approximation are dependent on a parameter p. While QAOA
1Since we can configure the algorithm in such a manner that the depth of the resulting circuit
is as shallow as possible; in this way we can reduce the number of gates, which operate
imperfectly in NISQ-devices, and consequently the capacity for errors, which arise from the
flawed operations these gates perform.

1

can be considered an extension of VQE, the key difference is that for QAOA, a
computational eigenstate, that is, a quantum state that corresponds to a classi-
cal state and that we can physically distinguish from other states, encodes the
problem solution.

QAOA is a compelling research subject, because it has been proven to not be
efficiently simulatable by classical computers [11], and is an interesting algo-
rithm for exploring the possibility of speedups using near-term quantum devices
(as opposed to classical hardware): Seeing that the cost Hamiltonian2 encodes
a classical cost function, we can make a better comparison to known classi-
cal algorithms, and thus learn more about the performance of NISQ devices on
problems where there is no clear quantum advantage.
For specific problem instances, non trivial performance guarantees can bemade
at low p (see [10], [12]–[15]), in other words for instances with a low circuit-
depth. For a high circuit-depth however, the performance of the algorithm de-
pends on choosing good parameters for the variational circuit [16]. Finding
optimal parameters is NP-Hard [17]; due to this limiting factor, there has been
a a considerable amount of research regarding strategies for finding parame-
ters which can serve as a good starting-point for optimization of a QAOA circuit
of arbitrary depth p [10], [16], [18], [19].

This thesis focuses on a comparative analysis of two such strategies, INTERP
and FOURIER [18], which take a heuristic approach to selecting good initial
parameters for the QAOA Ansatz. Both of these approaches utilize existing pat-
terns in the distribution of optimal parameters, in order to make an educated
guess of good initial parameters for QAOA of level p. The thesis provides a
general overview of these parameter selection strategies and benchmarks their
performance on the NP-hard MAXCUT optimization problem for instances of un-
weighted non-regular random graphs using numerical simulations with varying
problem sizes and orders. A comparison to the standard QAOA variant is con-
ducted in order to assess the feasibility of running these parameter selection
strategies on near-term devices.

The information presented in this thesis is organized in the following way: First,
in Chapter 2, the necessary background on quantum computation and combina-
torial optimization, which is required for understanding the concepts discussed
in this work, is presented (it is assumed that the reader is familiar with linear
algebra, and has some basic knowledge of calculus). Next, Chapter 3 gives an
overview of the related work most relevant to the purposes of this thesis. In the
course of this we will cover QAOA and the parameter selection heuristics, which
are the primary focus of this thesis. Following this, in Chapter 4, an outline of
the numerical symulations, which were conducted in order to benchmark the
heuristic strategies and the Basic QAOA variant, as well as the considerations

2For the purposes of this introduction the cost Hamiltonian can be considered to be an operator
which describes the dynamics of a cost function, a more rigorous definition will be given in
Subsection 2.1.5.

2

that went into the experimental setup, is put forward. Subsequently, the out-
come of these experiments and the main observations we can draw from these
results are shown in Chapter 5. Given the above, in Chapter 6 these results are
discussed in order to make a comparison of the QAOA variants studied in this
work and to evaluate how feasible heuristic optimization of QAOA might be in
practice. Finally, in Chapter 7, a summary of the conclusions resulting from the
research and experiments conducted for this thesis is presented; furthermore
an outlook on considerations for future works concerning this topic is given in
this section.

3

2. Background on Quantum
Computing and Combinatorial
Optimization

Before giving background information on QAOA and introducing the related lit-
erature most relevant to this thesis, an overview over the basic fundamentals
required to understand the concepts presented in this work is presented in this
chapter. If the reader is already familiar with the basics of quantum comput-
ing (introduced here in Section 2.1) and combinatorial optimization (introduced
here in Section 2.2) , this chapter can be skipped or be referenced as necessary
while reading the main text.

2.1. Background on Quantum Computing

This section gives an overview of the basics of quantum computing: Subsec-
tion 2.1.1 introduces qubits and the concept of quantum states and superposi-
tions. Following this, in Subsection 2.1.2, the idea of multiple qubit systems and
quantum entanglement is presented. Subsequently, Subsection 2.1.3 explains
the gate based model of quantum computation and how quantum operations
are defined in this model. Next, in Subsection 2.1.4 we examine how to extract
information from the quantum states produced by a quantum circuit. Finally, in
Subsection 2.1.5 a concise overview of how optimization problems can be repre-
sented in the context of quantum computing is given. Unless an explicit citation
is given in the text, the source for the statements made throughout Section 2.1
are [4].

2.1.1. Qubits and Quantum States

Similarly to how bits are the fundamental components used in classical compu-
tation for storing information about the classical state the system is in, quantum
computing uses quantum bits, qubits for short, to store information about the
quantum state of the quantum system. For classical bits, the representation of
the state is conceptually simple, as they can only take one of the values 0 or 1,
and for multiple bits, the the extent of the possible states the system can be in is

4

limited to the 2n possible permutations of 1 and 0 for system size n. For qubits
on the other hand, the concept of the system state is less simple: While qubits
can exist in the states |0⟩ and |1⟩, which correspond to the classical states 0 and
1, the quantum state can also take other values; a qubit can exist in a continuum
of states between |0⟩ and |1⟩, until it is observed and determined to be either in
the state |0⟩ or the state |1⟩. These two states form the orthonormal basis for the
vector space, which the state of the qubit can inhabit, and are often referred to
as the computational basis states. They are typically defined as follows1:

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
(2.1)

Quantum states that take other values can be written as a linear combination of
these computational basis states, that is, as a so called superposition of states:

|ψ⟩ =
[
α
β

]
= α|0⟩+ β|1⟩,where α, β ∈ C and |α|2 + |β|2 = 1 (2.2)

As we can see in Equation 2.2, the quantum state is dictated by the complex-
valued coefficients α and β, which are often referred to as the amplitudes cor-
responding to the computational basis states. Furthermore, since the condition
|α|2 + |β|2 = 1 applies, the vector representing the quantum state, sometimes
referred to as statevector, is normalized to be of unit length.
A notable property of qubits is that the value of these amplitudes cannot be ac-
cessed directly, instead we can only determine restriced information about the
state throughmeasurement: Whenmeasuring the state that a qubit is in, we will
obtain the result 0 with probability |α|2 and 1 with probability |β|2. The concept
of a measurement changing the quantum state from a pre-measurement super-
position of states to a specific computational basis state post-measurement is
referred to as the collapse of the superposition2. More details on Measurement
will be given in Subsection 2.1.4. When the probabilities of sampling each com-
putational basis state are equal (in other words: the amplitudes corresponding
to the computational basis states are the same), we call this an equal superpo-
sition (also sometimes called a balanced superposition):

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩, |−⟩ = 1√

2
|0⟩ − 1√

2
|1⟩ (2.3)

Note that both of the equal superposition states given in Equation 2.3 will yield
the state 0 or 1 with probability 1/2, since | 1√

2
|2 = 1/2 regardless of the relative

1The definition in Equation 2.1 follows the conventional indexing of matrix elements in linear
algebra. It would be possible to set up the orthonormal basis such that the definitions of |0⟩
and |1⟩ are inverted, however, when doing this we would also have to redefine the quantum
operators accordingly. For the purpose of this thesis, when referring to the computational
basis states, the definition given in Equation 2.1 applies.

2More formally in Quantum Mechanics this is referred to as the collapse of the wavefunction.

5

phase of the amplitudes; we cannot physically tell these two states apart through
measurement. However, we still distinguish between these two states, since
operations made on a quantum state may still be affected by the relative phase,
even if it has no effect on measurement.
Another way to mathematically represent the amplitudes of a quantum state is
by using spherical polar coordinates (r, θ, φ) (where r is the radial distance, θ is
the azimuthal angle and φ is the polar angle). Since the quantum state vector
is normalized to be of unit length, r = 1 and we can formulate Equation 2.2
depending only on the real-valued angles (θ, φ):

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφsin

θ

2
|1⟩

)
,where γ, θ, φ ∈ R (2.4)

Note that aside from θ and φ, the parameter γ appears3 in Equation 2.4, however
since the term eiγ is a global phase factor, which has no observable effects on
the quantum state, this factor can be ignored, thus making Equation 2.4 only
dependent on θ and φ. The unit 2-sphere on which the points provided by the
spherical polar coordinate formulation lie is called the Bloch sphere.

2.1.2. Multiple Qubit Systems and Entanglement

For a system with more than one qubit, we will need more amplitudes to repre-
sent the system state. This is due to the fact that each computational basis state
has an amplitude, which determines the probability of sampling this basis state
when measuring the system, corresponding to it; as such number of possible
computational basis states increases with the system size.
For expressing quantum states of multiple-qubit systems, we use the tensor
product: If V andW are vector spaces, which correspond to the sets of possible
states |v⟩ ∈ V, |w⟩ ∈ W of two different single qubit systems, we can combine
these vector spaces to form a larger vector space, denoted V ⊗ W which has
linear combinations |v⟩ ⊗ |w⟩ as its elements, and |i⟩ ⊗ |j⟩ as its orthonormal ba-
sis, where |i⟩, |j⟩ are the orthonormal bases of V andW respectively. The tensor
product is often abbreviated as |v⟩ ⊗ |w⟩ = |v, w⟩ = |vw⟩.
Consider for example a system of 2 qubits:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, where αij ∈ C (i, j ∈ {0, 1}) (2.5)

As can be seen in Equation 2.5, we need 22 = 4 amplitudes to represent the
quantum state of a two qubit system. Also note that since the normalization
3This is due to the fact that both of the amplitudes are complex-valued; A complex number
of the form x + iy (where x, y ∈ R) is represented in polar form as reiφ = r(cosφ + isinφ),
thus we set α = r(cosγ + isinγ) and β = r(cosφ + isinφ). Taking into consideration the
normalization condition given in Equation 2.2 and the pythagorean trigonometric identity
(sin(x)2 + cos(x)2 = 1) into consideration, we arrive at the formula given in Equation 2.4.

6

condition given in Equation 2.2 applies, the squared amplitudes |aij|2 must sum
to 1. In order to represent a quantum state of a systemwith n qubits, the number
of complex-valued amplitudes we need is 2n, which, when scaling up the system
size, increases considerably faster than the n real valued binary numbers we
need to represent a classical state. Consequently, the amount of information
associated with a quantum state is far greater than the amount of information
contained in a classical state. According to Nielsen and Chuang, for a system
with 500 qubits, the number of amplitudes is larger than the estimated number
of atoms in the universe; saving all the complex numbers, which describe these
amplitudes, on a classical computer would be infeasible. Quantum computing
aims at making use of the potential computational power that comes with this
high information volume, in order to possibly gain an advantage over classical
computers.

Another phenomenon, that Quantum computing makes use of, is quantum en-
tanglement, which is a resource unique to quantum computation that is an es-
sential part of most quantum algorithms. When qubits are entangled with each
other, their measurement outcomes are correlated, that is, measuring one qubit
affects the measurement outcome of the other qubit(s):
Consider for example a two qubit system which is in an equal superposition of
two of the four possible computational basis states:

1√
2
|00⟩+ 1√

2
|11⟩ (2.6)

An interesting property of the state given in Equation 2.6 is that when measur-
ing one qubit, we know that the other qubit must be in the same state, without
actually measuring it. That is, if the first qubit is measured, there are two pos-
sible outcomes, 0 and 1, but for the second qubit there is only one possible
outcome, which depends on what state we determined the first qubit to be in:
since the quantum state in Equation 2.6 can only collapse into the computa-
tional basis states |00⟩ and |11⟩, if we measure the first qubit to be 0, the only
possible outcome with the first qubit being 0 is 00, where the second qubit is
also 0; analogously, if we measure the first qubit to be 1, the only possible mea-
surement outcome is 11, where the second qubit is also 1. Thus, whatever we
measure the first qubit to be will also be the outcome of the second qubit; their
outcomes are correlated.
The quantum state shown in Equation 2.6 is one of the so-called Bell states, also
known as EPR pairs, which are the four distinct two-qubit states that arise from
entangling4 the qubits in systems which are initially in one of the four computa-
tional basis states; The initial computational basis state corresponding the state
in Equation 2.6 is |00⟩.

4The procedure for entangeling two qubits is as follows: The first qubit is put into a superpo-
sition and then a controlled-NOT gate, with the control on the first qubit, is applied to the
system. The concept of quantum gates will be elaborated on in Subsection 2.1.3.

7

2.1.3. Quantum Operators and Gate-based Quantum
Computation

In order to manipulate the quantum information, so that we can actually per-
form meaningful computations, we will have to apply operations, which modify
the amplitudes in coherent way, to the quantum state. A well-known model
for representing these operations is the circuit model of quantum computation:
Analogously to how a classical computer uses a logic circuit comprised of logic
gates to perform logical operations on a classical state, a quantum computer
uses quantum circuit composed of quantum gates to apply operations to a quan-
tum state. Since we represent quantum states with vectors in a complex vector
space, the most obvious way of performing a transformation on the amplitudes
of the state is by applying a matrix. Thus we can represent the action of a gate
U that transforms the state |ψ⟩ to the state |ϕ⟩ as:

|ϕ⟩ = U |ψ⟩, where U †U = 1 (2.7)

Note that for the matrix to be a valid transformation of the quantum state, a
constraint (U †U = 1) applies, meaning not all matrices are valid quantum op-
erations. Remember the normalization condition given in Equation 2.2: due to
the fact that the squared amplitudes of the quantum state must sum to 1, the
matrix must preserve this property when transforming the statevector |ψ⟩ to |ϕ⟩.
The appropriate condition for ensuring that only valid state transformations are
made, is that matrix U has to be unitary; in other words U matrix-multiplied with
U †, which is the conjugate transpose of U , must yield the identity-matrix 1.

The most commonly used single qubit gates are the so-called Pauli gates, which
correspond to the sigma pauli matrices:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
(2.8)

It can easily be verified that these matrices are unitary by checking if the con-
dition given in Equation 2.7. Furthermore, these operators are not only unitary,
but also Hermitian, meaning that they are equal to their conjugate transpose:
U = U † (and so U †U = U2 = 1). As for the specific operations performed by
these gates: The X gate acts in a analogous way to how a classical NOT gate
performs a negation of classical bits, by taking the state |0⟩ to |1⟩ and vice versa.
The Z gate gate adds a relative phase of π to the amplitude corresponding to
the |1⟩ basis state, in this way "flipping" the relative phase by transforming |1⟩
to −|1⟩ and leaving the amplitude of |0⟩ unchanged. Finally, the Y gate both
performs a bit flip and a phase flip on the state.

The matrix-exponentiation of these Pauli matrices induces a family of unitary
single qubit gates that can be used to rotate the statevector around the x, y or z

8

axes (depending on which Pauli matrix was exponentiated) of the Bloch sphere
representation. These rotational gates are defined as

Rx(θ) = e−iθX/2 =

[
cos θ

2
−isin θ

2

−isin θ
2

cos θ
2

]
Ry(θ) = e−iθY/2 =

[
cos θ

2
sin θ

2

sin θ
2

cos θ
2

]
Rz(θ) = e−iθZ/2 =

[
e−iθ/2 0
0 eiθ/2

]
,

(2.9)

where the parameter θ dictates what the angle, by which we rotate the stat-
evector around an axis, should be. Due to the fact that these gates are parame-
terized, the rotational gates are especially useful for creating a parameterized
quantum trial state (also known as Ansatz); these trial states are used by VQEs
and QAOA, the latter of which will be explained in detail in Section 3.1, in order
to solve combinatorial optimization problems, by optimizing θ such that a mea-
surement of the circuit gives a optimal solution (or for QAOA an approximation
of this solution).

Another important single qubit gate is theHadamard gate, which is also unitary
and Hermitian, defined as follows:

H =

[
1 1
1 −1

]
(2.10)

This gate is often used for creating superpositions, as it transforms the |0⟩ state
to the |+⟩ state and the the |1⟩ state to the |−⟩ state (for the definition of these
states see Equation 2.3).

One of the most important two-qubit gates is the controlled-NOT or CNOT gate,
which, among other things, can be used to entangle two qubits, and is given by
the following matrix:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.11)

Since the first two columns of this matrix determine how the states |00⟩ and |01⟩
are transformed, we can see that if the first qubit is in the state |0⟩, the identity
matrix gets applied (in other words we do not change the state). The last two
columns correspond to the transformations of the states |10⟩ and |11⟩, where
first qubit is |1⟩: if this is the case, a bit-flip is applied to the second bit. We call
the fist qubit the control qubit, since its value determines whether or not the
second qubit, which we refer to as the target qubit, will be negated. In general,

9

we can turn any unitary single qubit gate into a multiple qubit controlled gate by
using control qubits to only apply this single-qubit gate when the control qubits
are in the state |1⟩.
The CNOT gate together with the single qubit gates is universal5 for quantum
computation.

2.1.4. Expectation Value and Measurement of Quantum
States

As we already saw in Subsection 2.1.1, the probability of the measurement out-
come resulting in a specific computational basis state6 is given by the squared
amplitude corresponding to that basis state. So we can think about measure-
ment as sampling from the probability distribution given by all amplitudes of
the quantum state we are measuring, returning a single sample from this dis-
tribution each time we measure.
There are different ways of describing a measurement, however we will only
focus on the most well-known, measurements made by projecting the quantum
state onto the basis vectors |0⟩, |1⟩. This so-called projective measurement is
characterized by an observable M , which is a Hermitian operator that acts on
the vectorspace of the system that is being measured and has the spectral de-
composition

M =
∑
m

mPm, (2.12)

where Pm is the orthogonal projecton-matrix (a projection matrix is a matrix,
which fulfills the condition that P 2 = P = P †) onto the eigenspace of M with
eigenvalues m. When applying this projective measurement to a normalized
quantum state ψ, the probability of the eigenvalue m being sampled, that is,
p(m), is given by

p(m) = ⟨ψ|Pm|ψ⟩ (2.13)

and the quantum state after measurement is

Pm|ψ⟩√
p(m)

, (2.14)

where the term ⟨ψ| in equation Equation 2.13 is the conjugate transpose of |ψ⟩.
5Meaning that with this set of gates, we can construct any possible quantum circuit.
6It is assumed that the measurement is performed with regard to the computational basis, we
can also measure in other bases like |+⟩, |−⟩, however for the purpose of this explanation we
will only consider Z-measurement (measurement in the computational basis).

10

A useful property of projective measurements is that calculating average values
of projective measurements is relatively straightforward; The resulting expec-
tation value, which we refer to as ⟨M⟩, is described by:

⟨M⟩ = ⟨ψ|M |ψ⟩, (2.15)

which follows trivially from the definition of the average value (the mean) and
the spectral decomposition of M given in Equation 2.12.
Note that since we only sample one value from the distribution each time we
measure, we will have to run the quantum circuit that produces the state |ψ⟩
multiple times in order to be able to estimate ⟨M⟩.

2.1.5. Problem encoding and the Ising Model

In Subsection 2.1.1 and Subsection 2.1.2 we looked at how we can represent a
quantum state and in Subsection 2.1.3 explained how to apply transformations
to these states. When performing such operations on an arbitrary initial state,
it would be convenient to describe the way in which the system changes, that
is, how the system evolves under these operations. In other words, given an
initial state, what is the state of the system at some other time/position? (more
generally: at some other stage in the evolution of the system). We can describe
the relationship between the rate of change of a system and its state at a certain
time using differential equations. The reader may already be familiar with the
notion of describing system dynamics with differential equations from classical
mechanics, where we can describe the evolution of physical systems in this way.
Analogously, in quantum mechanics, the evolution of a closed quantum system
is described by the Schrödinger equation,

iℏ
d|ψ⟩
dt

= H|ψ⟩, (2.16)

where ℏ is the Plank’s constant, a physical constant that has to be experimentally
determined, andH is theHamiltonian, a fixed hermitian operator that describes
the energy dynamics of the system, meaning H|ψ⟩ is the energy of the system in
the state |ψ⟩. if H and ℏ is known to us, in principal we understand the system
dynamics completely, and given some initial state we can predict the state of
the system at an arbitrary time t.
Due to the fact the Hamiltonian is Hermitian, its spectral decomposition is

H =
∑
E

E|E⟩⟨E|, (2.17)

where the normalized eigenvectors |E⟩ are the energy eigenstates of the Hamili-
tonian and their associated eigenvalues E correspond to the energy value of

11

these eigenstates. We call the lowest energy value the ground state energy and
the corresponding energy eigenstate the ground state. many quantum algo-
rithms designed for solving optimization problems, such VQE and QAOA, aim at
finding this ground state of a given Hamiltonian. The reasoning behind this is,
that since the ground state is by definition the eigenstate with the lowest energy,
finding this state is equivalent to finding the state thatminimizes the expectation
value ⟨H⟩. We can use this property for solving optimization problems: consider
an optimization problem where we want to find the optimal input x ∈ X (where
X is any set of viable inputs for the optimization problem; in other words, X
is the domain of feasible points), which yields the lowest value for some cost
function c. Then we can construct a Hamiltonian where the energy eigenstates
correspond to to the possible inputs x and where the energy values are associ-
ated with the cost c(x) for this input. In other words, following Equation 2.17,
the spectral decomposition for this so called cost Hamiltonian is

H =
∑
x∈X

c(x)|x⟩⟨x| (2.18)

In this way, the ground state of this Hamiltonian corresponds to the input for
which the cost-function is minimal, and thus the solution to the optimization
problem. If c(x) is a classical cost function, which takes binary strings x ∈ {0, 1}n
(where n is the string length) as input, The cost Hamiltonian acts diagonally in
the computational basis, since H|x⟩ = c(x)|x⟩ for each x (see [9]). Thus, the
eigenbasis of H is the computational basis, and one of the computational eigen-
states corresponds to each of the energy eigenstates of the Hamiltonian.
However, as we can see from Equation 2.18, the Hamiltonian will be a diagonal
matrix with |X|n by |X|n elements; in the case that the cost function takes binary
strings as inputs this would produce a 2n by 2n matrix. As such, taking a naive
approach to constructing a Hamiltonian, which corresponds to an optimization
problem (as in: the ground state of the constructed Hamiltonian encodes the so-
lution to the optimization problem), is a hard task that scales exponentially with
the problem size. A more systematic way of encoding optimization problems is
using efficient constructions of the cost Hamiltonian, which exist for many prob-
lem classes. One such efficiently constructed Hamiltonian is the Ising model,
which is used to solve optimization problems in statistical physics, and can be
used to encode NP-hard optimization problems and NP-complete decision prob-
lems with a polynomial number of spins [20]. The definition of the classical Ising
model given in [20] is

H(s1, · · · , sn) = −
∑
i<j

Jijsisj −
n∑

i=1

hisi, (2.19)

where the Hamiltonian is formulated as a quadratic function of a set of N spins
si = ±1, which are enumerated by the indices i, j; the constants Jij and hi are

12

real numbers specific to the problem instance7.
In order to adapt this model to encode a problem on a quantum computer, we
simply replace the spin variables in Equation 2.19 with pauli Z gates:

H(Z1, · · · , Zn) = −
∑
i<j

JijZiZj −
N∑
i=1

hiZi, (2.20)

where the subscript i of a pauli operator Zi indicates the index of the qubit that
this gate is acting on.

Now that we have a method for mapping classical optimization problems to a
Hamiltonian (more specifically the Ising model) in the next section we will give
some background on combinatorial optimization and look at how to formulate
such classical optimization problems.

2.2. Background on Combinatorial Optimization

In this section a short overview of combinatorial optimization, with a focus on
the concepts relevant to this thesis, is presented: Subsection 2.2.1 provides a
general introduction to combinatorial optimization and NP-hard problems. Sub-
sequently, Subsection 2.2.2 explains how to formulate quadratic binary uncon-
strained optimization problems, and their relation to the Ising model. Finally,
due to the fact that graphs are a fundamental combinatorial structure that we
can use to define and visualize many combinatorial optimization problems, in
Subsection 2.2.3 the basics of graph theory are covered. The main source for
the information presented in this section is [21], with the exception of Sub-
section 2.2.3, for which the main source used is [22]. Statements that do not
reference either of these works will be accompanied by an explicit citation.

2.2.1. Combinatorial Optimization and NP-Hard Problems

As previously stated in Subsection 2.1.5, the goal of optimization is to find the
optimal input x ∈ X which yields the optimal value for some cost function c.
More formally, we can say an optimization problem is a set of optimization prob-
lem instances which can be defined as a pair (X, c), where X is the domain of
feasible inputs which the cost function c takes, mapping

c : x→ R1 (2.21)
7We can interpret these terms as follows: Jij is a weight describing the how correlated si and
sj are (i.e describing if si = sj or si ̸= sj). The weight hi determines if si is +1 or −1.

13

The optimization problem associated with these optimization problem instances
is finding an xopt ∈ X for which

c(xopt) ≥ c(x) for all x ∈ X (2.22)

Such a point xopt is called globally optimal.
On the other hand, if we find a point xloc ∈ X, which fulfills the condition in
Equation 2.22 only for x ∈ N(xloc), where N(xloc) is the neighborhood of xloc,
which contains points x which are close to xloc in some sense8, then we call xloc
a local optimum. A metric for describing how close an arbitrary point x is to the
global optimum, is the approximation ratio, which is defined as ratio of the cost
for x and the cost for xopt:

c(x)

c(xopt)
(2.23)

We can divide optimization problems into two categories: continuous optimiza-
tion, where the variables x are continuous, and combinatorial optimization,
where the variables are discrete. In continuous optimization, the solution we
are looking for is a set of real numbers or a function, while in combinatorial
optimization we are looking for an element (e.g an integer, set, permutation or
graph) from a finite, or countably infinite9, set.
Formany combinatorial optimization problems a polynomial-time algorithm (that
is, an algorithm where the number of operations needed to grows polynomially
with the size of the input) exists for solving these problems on a deterministic
Turing machine, and we call the complexity class, which contains these prob-
lems, P. However, there are some problems for which no polynomial-time algo-
rithms are known. This gives rise to the complexity classNP10, where instead of
requiring that a algorithm running on a deterministic Turing machine can solve
a given problem instance in polynomial time, we require that the algorithm can
verify the answer to the decision problem, given a candidate solution for this
problem instance, in polynomial time. If we want to solve such a problem in
polynomial time, we would have to use a non-deterministic Turing machine in-
stead. In other words, a decision problem is a problem that asks whether a input
x fulfills some condition11, yielding either "yes" or "no" as an answer; given an
8More accurately: a point is close to xloc if it is within some fixed euclidean distance of xloc.
How we set this distance depends on the structure of X.

9That is: a set which is not finite, but denumerable (the elements in the set have a one-to-one
correspondence to the set of natural numbers), in other words we can give instructions for
identifying any element in the set by specifying an integer that corresponds to it.

10NP stands for nondeterministic polynomial.
11For example, this condition could be "given an input x and a problem instance (X, c), c(x) is

greater than or equal to c(y) where y ∈ X" or, in other words, "given a candidate solution
for a problem instance this solution is globally optimal". Note that the condition does not
necessarily need to be global optimality, any condition that can be answered with either
"yes" or "no" is sufficient.

14

optimization problem, we can formulate a closely related decision problem that
is no harder than the original optimization problem.
If a decision problem can be reduced to any other decision problem in NP (i.e.
we can use a polynomial number of calls to this problem to simulate any other
decision problem in NP) we call this problem NP-complete; analogously we call
an optimization problem NP-hard if there is a polynomial time reduction from
any optimization problem in NP to this problem; in other words, solving an NP-
hard problem is at least as hard as solving any other problem in NP. Despite
numerous efforts, no polynomial time algorithms for solving NP-complete or
NP-hard problems are known. Algorithms which exactly solve these problems
require an exponential amount of operations on a deterministic Turing machine
in the worst case, making these infeasible for anything but small problem in-
stances. Due to this fact, many existing algorithms for solving these problems
settle for producing an approximation instead of an exact solution, or only ne-
cessitate that the time requirements are polynomial formost problem instances
(or problem instances which underlie certain constraints).

2.2.2. QUBO formulation

One way of formulating NP-hard problems is as a Quadratic Unconstrained Bi-
nary Optimization (QUBO) model, which is a mathematical formulation for rep-
resenting combinatorial optimization problems. According to [23], the QUBO
model first emerged from research in the fields of quantum annealing and digital
annealing, and has also become a subject of study in neuromorphic computing.
As given in [23], the QUBO model is expressed as the optimization problem

y = argmin
x
xTQx, (2.24)

where x is a vector of binary decision variables and Q is a square matrix, where
each element qij is a real valued constant; xT is the transpose of x. Note that
while the optimization problem in Equation 2.24 is a minimization problem, we
could also maximize y instead (depending on what we want the optimization to
achieve).

Consider for instance an optimization problem where the cost function is

c(x1, x2) = −ax1 − bx2 + cx1x2, (2.25)

where the variables xi are binary variables and a, b and c are real numbers.
This cost function is a quadratic function with a linear part (−ax1 − bx2) and a
quadratic part (cx1x2). Since binary variables satisfy the condition xi = x2i = xixi,
we can write the linear part as −ax1x1− bx2x2, and thus the real factors a, b give
the diagonal elements in the matrixQ (since the diagonal entries are of the form

15

qii which corresponds to xixi in the cost function). As described in [23], we can
then represent the optimization problem as

argmin y =
[
x1 x2

] [−a c/2
c/2 −b

] [
x1
x2

]
, (2.26)

using the quadratic part of the cost function given in Equation 2.25 to obtain
the non-diagonal elements. This formulation is equivalent to the notation used
in Equation 2.24. Other than the variables being binary variables, there are no
constraints affecting the QUBOmodel, since all problem data is contained in the
Q matrix. For this reason, the QUBO model is a useful framework for modeling
combinatorial optimization problems.

Furthermore, as explained in [20], the QUBO model is equivalent to the Ising
model (see Subsection 2.1.5), since the spin variables used there can be inter-
preted as pseudo boolean variables, which allows for a straightforward trans-
formation between the two models (by replacing the spin variables with binary
variables or vice versa). In this way we can construct an Ising Hamiltonian
from any QUBO formulation, allowing us to solve combinatorial optimization
problems on a quantum computer.

2.2.3. Graph theory fundamentals

We define a graph as a pair of setsG = (V,E), where V is a finite set of vertices or
nodes (these terms are often used interchangably), andE is a set of edges, where
the elements of E are subsets of V . We call the cardinality of V (in other words,
the number of nodes) the order of the graph, and the cardinality of E (in other
words, the number of edges) the size of the graph. An edge e that connects two
vertices v1 and v2 is referred to as being incident to these vertices, and we say
that v1 and v2 are adjacent to each other. The number of edges that are incident
to a vertex (in other words, the number of edges that contain this vertex) are
what we refer to as the degree or valency of the vertex. The maximum degree
of a graph is the maximum value in the degrees of its vertices (for the purposes
of this work, we will simply refer to the maximum degree as the "degree of the
graph"). A walk on a graph G(V,E) is a sequence of edges e ∈ E that connect a
sequence of vertices v ∈ V . If all edges e are distinct, we call this walk a trail. If
all nodes in a walk are distinct (and thus all edges are also distinct) we refer to
this as a path. A cycle12 in a graph is a non-trivial (non-empty) trail where only
the first and last vertices are equal (non-distinct). If the number of vertices in
the cycle is even, we call this an even cycle, otherwise we denote this an odd
cycle. A graph is connected if there is a path between any two nodes in V .
12Cycles are also sometimes referred to as "simple circuits" (a circuit in the context of graph

theory is a walk where the first and last nodes are equal), however for the purpose of this
work they will be referred to as cycles, as not to confuse these with circuits in the context of
computation.

16

We call a graph S = (Vs, Es) a subgraph of the graph G = (V,E), if its vertex set
Vs is a subset of V , and its edge set Es is a subset of E; more formally, if Vs ⊆ V
and Es ⊆ E. For a visual representation of this concept, see Figure 1.

1 4

2 3

1 4

2

Figure 1.: A visualization of two graphs. In this example the graph the left can be for-
malized as G(V,E), where V = {1, 2, 3, 4} and E = {(1, 2), (1, 4), (2, 3), (3, 4)}.
The graph on the right can be notated as G′(V ′, E′), where V ′ = {1, 2, 3}
and E′ = {(1, 2), (1, 4)}. Note that since G′ only contains vertices and edges
which are also present in G, we can say the V ′ is a subset of V and E′ is a
subset of E. Thus G′ is a subgraph of G

In graph theory, we distinguish between different types of graphs; In the remain-
der of this section we will define some specific graph types which are referred
to in the main text of this work:

d-regular graphs A regular graph is a graph where each vertex has the same
degree. Often we further specify this shared degree by referring to regular
graphs as d-regular graphs, where d is the degree (e.g. if every vertex of a given
graph has three edges incident to it, we call this graph a 3-regular graph).

Complete graphs A complete graph is a graph is a regular graph with degree
n − 1, where n is the order of the graph. In other words, a complete graph
is a graph were every vertex is connected to every other vertex, that is, it is
maximally connected.

Bipartite graphs A bipartite graph is a graph where the vertex set V can be
divided into two disjoint sets A,B such that every edge must connect a vertex
in A to a vertex in B. This condition holds if (and only if) the graph has no odd
cycles. Often bipartite graphs are notated as a tuple of the disjoint sets and the
edge set, G = (A,B,E), instead of the standard graph notation G = (V,E).

17

k-tree graphs a k-tree graph is induced by repeatedly adding vertices to a
complete graph of order k+1, such that each added vertex has exactly k neigh-
bors (neighbors in this context are vertices that are adjacent to one another,
that is, they are directly connected by an edge), and each added vertex, together
with its k neighbors, forms a clique (a clique is a subset of vertices where every
vertex is adjacent to every other vertex in this subset).

18

3. Background on the Quantum
Approximate Optimization
Algorithm and Related Work

This chapter aims at giving an overview of the concepts relevant to this thesis
and the related literature that provides the basis for this work.
In Section 3.1 a high level overview over the basic QAOA is presented, consisting
of a short explanation of the procedure, which the algorithm follows, in Subsec-
tion 3.1.1 and a short outline of research regarding known performance guaran-
tees and limitations of QAOA under specific conditions (or for certain problem
instances) is put forth in Subsection 3.1.2. The paper by Zhou et al. [18], which
serves as the cornerstone of this work, is examined in Section 3.2, where Sub-
section 3.2.1 gives a summary of the INTERP-Strategy while Subsection 3.2.2
covers of the FOURIER-Strategy and its variants. Finally, Section 3.3 gives a
concise recapitulation of research concerning the extent to which optimal QAOA
parameters can be transferred between problem instances, and what conditions
apply to those findings.

3.1. QAOA

TheQuantumApproximate Optimization Algorithmwas proposed by Farhi, Gold-
stone and Gutmann in 2014 [10]. The motivation for this algorithmwas finding a
good approximate solution to an optimization problem, as an alternative to the
Quantum Adiabatic Algorithm (QAA) [24], which is designed to determine an
optimal solution given enough time, by interpolating between an initial Hamil-
tonian, which is trivial to construct, and a final Hamiltonian, where the ground
state corresponds the solution of the problem.
QAOA obtains a Trotterized1 approximation of this adiabatic evolution by alter-
nating between the unitary operators Uc(γ) and Uc(β), where the sum of all an-
gles γ, β is equivalent to the total time evolution of the adiabatic algorithm [24].
In this way QAOA allows for quicker evolution to the target states of otherwise
1A Trotterized approximation is an approximation using the Suzuki-Trotter decomposition to
approximate the time evolution of the Hamiltonian. This decomposition for arbitrary opera-
torsA,B with a commutation-relation [A,B] ̸= 0 is defined in [25] as: exAexB = ex(A+B)+O(x2),
where x is a parameter and O is a correction-term of second order of x (as shown in [25],
this can be gereralized to higher order correction terms).

19

slow adiabatic dynamics. For the purpose of obtaining a good approximation,
γ and β must be small, and since we want to the sum of these to equate to a
long run QAA time (so as to assure success), this necessitates p, the number
of alternations, to be large. As p approaches infinity, QAOA produces an exact
solution, since this corresponds to approximating QAA with unlimited run time.
Simply put, we can find an approximation arbitrarily close to the optimal solu-
tion by choosing p and angles γ, β accordingly, and the approximation improves
as p increases.

In 2017, the original QAOA algorithm was generalized through consideration of
general parameterized families of unitaries (rather than only MAXCUT-specific
Hamiltonians) and applied to diverse set of optimization problems by Hadfield
et al. [8], who also coined the term "Quantum Alternating Operators Ansatz" as
an alternative interpretation of the QAOA acronym (in order to avoid confusion
in contexts other than approximate optimization).
Later in 2021, Hadfield et al. [9] studied the behaviour of QAOA not only for
p = 1, but also for general depth p, by formulating QAOA circuits according
to the Heisenberg picture, where quantum circuits can be seen as acting on
quantum observables by conjugation (rather than acting on a quantum state
by matrix multiplication). The results they show in this paper will be further
elaborated on in Subsection 3.1.2.

3.1.1. Algorithm

QAOA produces an approximation of the solution for combinatorial optimiza-
tion problems by first creating an initial state |s⟩, which is the superposition of
all feasible states, and then applying p layers of alternating unitary operators to
this state: Each layer first applies a parameterized unitary phase-separation op-
erator HC(γ), which is diagonal in the computational basis and depends on the
problem’s cost-/objective-function C(x), before applying a parameterized uni-
tary probability amplitude mixing-operator UM(β), which depends on the initial
state 2 and does not commute with the with the phase-separation operator.
As a result of the parameterization of the alternating operators, this creates the
parameterized quantum state |γ, β⟩ which depends on the 2p real parameters
γ = γ1, γ2, · · · , γp and β = β1, β2, · · · , βp:

|γ, β⟩ = UM(βp)UC(γp) · · ·UM(β1)UC(γ1)|s⟩ = e−iβpHM e−iβpHC · · · e−iβ1HM e−iβ1HC |s⟩
(3.1)

2Mixing-operators are in general required to 1) preserve the feasible subspace (i.e. for all β,
the unitary UM takes feasible states to feasible states), and 2) provide transitions between
all pairs of states corresponding to feasible points/solutions (i.e. for two states a and b that
correspond to feasible bitstrings in the computational basis state, there is a β that takes a to
b). Due to these requirements, the mixing operator depends on the initial state |s⟩ and there
are multiple different mixers we could choose for each initial state. For more information,
see Chapter 3 of [8].

20

Subsequently, we assign parameters γ and β randomly3 and sample the quantum
state by repeatedly running the circuit and making measurements in the com-
putational basis, resulting in Fp(γ, β), the expectation value of the cost-function
C in the state produced by the parameterized quantum state given in Equa-
tion 3.1:

Fp(γ, β) = ⟨γ, β|C|γ, β⟩, (3.2)

where C is the cost-function defined as the number of satisfied clauses (that is,
boolean expressions).

The result of this measurement is evaluated by a (classical) optimization routine,
which determines new parameters γ∗ and β∗, in order to maximize4 Fp for the
next pass though the circuit:

(γ∗, β∗) = argmin
γ,β

Fp(γ, β) (3.3)

This process is then repeated. A sufficient number of repetitions will yield a good
approximation of the solution to the optimization-problem; the quality of this
approximation improves as the circuit depth p increases. This general protocol
is illustrated in Figure 2.

In the original formulation of the QAOA, the initial state is |s⟩, the uniform su-
perposition of all 2n computational basis states (where n is the problem size):

|s⟩ = |+⟩⊗n (3.4)

The unitary phase-separation operator UC is defined by the Cost-Hamiltonian
HC (more generally referred to as the phase-Hamiltonian, e.g in [8], [9]), which
encodes the cost-function C and acts diagonally in the computational basis. For
the original algorithm this unitary operation is defined as:

HC = e−iγC =
m

2
I − 1

2

m∑
(i,j)∈E

ZiZj (3.5)

for theMAXCUT-problem on a graphG = (V,E) of order n and sizem (i.e. |V | = n
nodes and |E| = m edges).

The unitary mixing operator UM is defined as the transverse-field Hamiltonian,
which is the sum of single bit Pauli X operators applied to every qubit in the
system:

HM =
n∑

i=1

Xi (3.6)

3This can be done randomly or based on an educated guess/known good parameters, however
for the purpose of this thesis, random initialization will be assumed as the default.

4Instead of maximizing Fp, we can also minimize −Fp, and this is frequently done in practice,
since most numerical optimizers have minimization as their default behaviour.

21

UC(γp) UM(βp)

p

Initial Parameters γ, β

Compute
Expectation

Value

⟨γ, β|HC |γ, β⟩

Classical
optimizerNew Parameters γ∗, β∗

q0

q1

q2

qn

Expectation value of
the Cost-function C in
the State |γ, β⟩:

Fp(γ, β) = ⟨γ, β|C|γ, β⟩

H

H

H

H

Figure 2.: Basic QAOA Circuit. Note that here the initial state |s⟩ is the superposi-
tion of all possible states (see Equation 3.4), as is the case for the original
QAOA method [10] as well as multiple other QAOA variants [8]. Due to this
circumstance, mixing operator UM would likely be set to be the transverse
field Hamiltonian (see Equation 3.6) for this circuit, assuming measurement
is performed in the Z-basis.

This mixing Hamiltonian is not only used for the original algorithm proposed by
Farhi et al., but also most other versions of QAOA that have the equal superpo-
sition of all possible states as initial state [8].

An important observation here is as follows:

By inserting Equation 3.1 into Equation 3.2 and noting that the the total cost
C equals the sum of the cost of each edge Cij, over m where (i, j) ∈ E (see
Equation 3.5), the expectation Fp(γ, β) can be formulated as

Fp(γ, β) =
m∑
jk

⟨s|U †
C(γ1)U

†
M(β1) · · ·U †

C(γp)U
†
M(βp)|Cij|

UM(βp)UC(γp) · · ·UM(β1)UC(γ1)|s⟩,
(3.7)

where Cij =
1
2
(−Zi, Zj + 1).

Since the initial state |s⟩ is the product of Pauli X eigenstates (|+⟩⊗n), we can
conclude that each term in the sum in Equation 3.7 depends exclusively on the
subgraph containing qubit i and j as well as adjacent qubits no further than p
away from i or j. Therefore each edge (i, j) is related to the subgraph g(i, j) and
contributes

22

fg(γ, β) = ⟨s, g(i, j)|U †
Cg(i,j)

(γ1) · · ·U †
Mg(i,j)

(βp)|Cij|UMg(i,j)(βp) · · ·UCg(i,j)(γ1)|s, g(i, j)⟩
(3.8)

to the total expectation Fp(γ, β). If two edges induce isomorphic5 subgraphs,
then the functions of (γ, β) that relate to these contributions are the same, and
thus we can represent Equation 3.7 as a weighted sum of subgraphs:

Fp(γ, β) =
∑
g

wgfg(γ, β), (3.9)

where wg is the number of occurences of a subgraph of type g in Equation 3.7.

Since there are finitely many subgraphs for each p, and the only dependence on
n and m arises through the weights wg. Farhi et al. come to the conclusion that
for a fixed p, there exists an efficient classical algorithm capable of evaluating
Equation 3.9 [10]. However, as Farhi et. al concede in the conclusion of their
paper, this "efficient" algorithm could require space exponential in p. For this
reason, the use of an optimization routine which makes repeated calls to the
parameterized quantum circuit (in order to evaluate Fp(γ, β) and update the
parameters accordingly) has proven itself to be the more practical option6.

Furthermore, the formulation of the expectation value in Equation 3.9 as a
weighted sum of the expectation value of unique subgraphs is the basis for
some of the arguments made in the literature regarding known performance
guarantees and limitations of QAOA (see Subsection 3.1.2).

3.1.2. Known Performance Guarantees and Limitations

Few performance guarantees have been made for QAOA, and most of them only
concern QAOA at a low depth and/or are restricted to certain groups of prob-
lem instances. This is likely due to the fact that if we want to make analytical
statements about the performance of the algorithm, we need to be able to un-
derstand what outcomes that are possible and be able to identify cases that
yield the worst/best possible performance; this becomes exceedingly difficult
at high p. This section aims at giving an overview of some of the performance
guarantees that were presented so far, with a focus on QAOA for the MAXCUT
problem.

The earliest lower bounds for QAOAwere put forward by Farhi et al. in the origi-
nal QAOA paper [10]: The first class of problems they considered was MAXCUT
5Two graphs are isomorphic if they have the same structure, that is, they are equivalent.
6Another option proposed by Farhi et al. is to try values in a grid on the compact set [0, π]p ×
[0, π]p, for which the number of points is only polynomial in n and m. This is only feasible if p
does not grow with n, and as we will see in Subsection 3.1.2, in many cases we will have to
increase p with greater n in order to exceed a certain approximation ratio.

23

on connected, 2-regular graphs (i.e. cyclic graphs, sometimes referred to as
rings or), due to the fact that the simplicity of these problem instances facili-
tates a straightforward analysis. They found that for every p, the only possible
subgraph for these instances is a line graph of length 2p+ 2 with the weight in
the sum of subgraphs (i.e. the number of occurrences of this subgraph in the
expectation given in Equation 3.8) being n, the number of vertices. Maximizing
the function in Equation 3.9, it was deduced that the QAOA applied to these
graphs always finds a cut of n(2p + 1)/(2p + 2) − 1 or higher for any depth p.
They applied similar reasoning to the case of connected 3-regular graphs: For
p = 1 the maximum of Equation 3.9 was formulated as a function dependent
on the number of vertices, isolated triangles7 and crossed squares8. evaluating
this function numerically, it was found that the minimum value (i.e the worst
case approximation) is 0.6924 and occurs when there are no isolated triangles
or crossed squares present. A similar approach9 was taken to analyze the per-
formance at depth p = 2, which showed that the worst case approximation ratio
in this case is 0.7559 in the limit of large n.

A comparable approach was taken by Wurtz & Love [14] in 2021, who also an-
alyzed the expectation value of p-level QAOA for MAXCUT on 3-regular graphs
formulated as a weighted sum of the expectation value of subgraphs. The differ-
ence here is that they not only considered finding the worst possible combina-
tions of subgraphs, but also conjectured that classes of graphs with cycles of a
length less than 2p+2 are the worst case problem instances. Using this so-called
large loop conjecture, the authors were able to analytically validate the lower
bound of 0.7559 for p = 2 that was given by Farhi et al. and determined that the
worst approximation ratio for p = 3 is 0.7924, and this worst case occurs when
the graph is a 3-tree with no loops less than length 8.
Wurtz & Love also conjecture that when fixing the parameters to be optimal for
the worst case instances (instead of optimizing them each time), these lower
bounds will also hold for any other 3-regular graph instance. In the same year,
Wurtz & Lykov [15] provided numerical evidence for this (fixed parameter) con-
jecture for p < 12. They also were able to show that under these assumptions
(i.e. if QAOA really performs at least as good as the worst case lower bound for
every 3-regular graph), QAOA outperforms the Goemans-Williamson (GW) algo-
rithm [26], which is the best currently know classical algorithm for MAXCUT,
for p ≥ 11.

An analysis of QAOA for the Maximum Independent Set (MIS) problem10, con-
ducted by Farhi et al. [13] in 2020 and using the Overlap Gap Property11 as a
7Subgraphs of the form G = (V,E) where V = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 3)}.
8Subgraphs of the form G = (V,E) where V = {1, 2, 3, 4} and E =
{(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}.

9The main difference here is that at p = 2 the subgraphs in the sum in Equation 3.9 can also
contain pentagons; the minimum expectation value here occurs when the graph is bipartite.

10Another NP-hard problem, which consists of finding the biggest independent set in a graph.
An independent set in the context of graph theory is a set of vertices, where none of these
are adjacent to each other; thus we can think of an independant set as a "anti-clique".

11The Overlap Gap Property, as explained in [27], is a topological theory of algorithmic hardness

24

basis for their proof, found that for large problem instances and small values
of p, QAOA gives uncorrelated results: Since each qubit will have an influence
on dp other qubits, where d is the degree of the problem instance graph, and
qubits at distances larger than 2p will be uncorrelated in the output, the QAOA
depth p needs to be at least a degree-dependent constant times log n in order
to find an independent set at least 0.854 times the maximum possible set size
for large degrees d. For the purpose of most pairs of qubits having correlated
measurement outcomes, i.e. for QAOA to "cover" the whole graph (and thus
find a set bigger than the proposed lower bound), d2p has to be larger than n for
random graphs of fixed average degree (assuming a high d).
In another paper by Farhi et al. [12], that was published a month later, they
use similar reasoning to show that for MAXCUT on bipartite d-regular graphs,
QAOA cannot exceed an approximation ratio of 0.5 if (d−1)2p < nA for any A < 1
(i.e if (d− 1)2p is less than n).
These results indicate that QAOA needs to "see" the whole Graph to not have
its performance severely limited; considering that two d-regular graphs may
locally look the same if the depth p is low enough for QAOA to not cover the
whole graph, the algorithm will output the same expectation values for both
these graphs, even though one of them may potentially be a bipartite d-regular
graph which has a different objective value (than a general d-regular graph),
resulting in worse performance for this case.

To sum it up, a large amount of currently available research on the performance
guarantees and limitations of QAOA implies that the circuit depth p has to grow
with the problem size n if we want to account of worst-case problem instances
and be unaffected by the limitations that come with them.

3.2. Parameter Selection Heuristics for QAOA

In 2019, Zhou et al. [18] presented a new approach to carrying out the classical
outer optimization loop, alongside performance benchmarks of QAOA for MAX-
CUT on 3-regular graphs and comparisons to QAA, which were performed to
study the adiabatic mechanism of QAOA. In this new approach, existing patterns
in the distribution of optimal parameters12 of (p)-level QAOA are utilized to make
an educated guess of quasi-optimal parameters for (p+1)-level QAOA, based on

that is based on the disconnectivity of the overlaps of near-optimal solutions. This property
is useful, since it allows us to rule out classes of algorithms in a mathematically rigorous way.

12Zhou et al. observed that for QAOA for MAXCUT on 3-regular graphs, the shape of the optimal
parameters (γ⃗∗

(p+1), β⃗
∗
(p+1)) is similar to the shape of (γ⃗∗

(p), β⃗
∗
(p)), i.e they follow a smooth distri-

bution, with γi increasing smoothly while βi decreases smoothly with an increasing number
of alternating layers, where i is the index of the parameter (i.e the index of the unitary UC /UM

that the parameter corresponds to). This distribution can also be observed in [15], which
is discussed in Subsection 3.1.2 and proposes optimal angles for QAOA on 3-regular graphs
which account for the worst case graphs and will yield a performance above a certain lower
bound if the fixed angle conjecture is true.

25

the slowly varying continuous curve underlying γ, β. These quasi-optimal pa-
rameters can the serve as a good starting point for optimization. Zhou et al.
proposed two different strategies for heuristically optimizing the algorithm, IN-
TERP and FOURIER, which will be covered in the following sections.

3.2.1. INTERP

INTERP, the first of these strategies, uses linear interpolation of the known op-
timal parameters at the initial depth p for the purpose of finding good initial
parameters for depth p + 1. This process is then repeated, incrementing p in
steps of size 1, until the desired target depth is reached. This general protocol
is illustrated in Figure 3 and works as follows:

new p = current p+1

UC(γp) UM(βp)

p

Initial Parameters
γ, β for current p

Compute
Expectation

Value

⟨γ, β|HC |γ, β⟩

Classical
optimizer

New Parameters
γ∗, β∗ for current p

q0

q1

q2

qn

H

H

H

H

if Local Optimum
was found

Local Optimum

(γ⃗L
(p)

, β⃗L
(p)

)

Initial p

Use the INTERP-Strategy to
determine the initial parameters

for QAOA with depth p + 1

(see Equations 3.10 and 3.11)

Figure 3.: QAOA-INTERP Circuit: INTERP-Strategy applied to basic QAOA

The basic quantum circuit is identical to the default QAOA method13 outlined in
Section 3.1. Unlike the basic algorithm however, INTERP linearly interpolates
the initial parameters from the optimal parameters at a lesser depth. Begin-
ning an initial depth e.g. p = 1, either good known parameters for this initial p
are provided as a starting point, or the basic QAOA variant with random initial-
ization is run to determine suitable initial parameters for this depth14. To find
13This can be switched for any other QAOA variant, since the heuristic strategies only concern

the variational parameters, and do not require the phase-separation or mixer operators to
be of a specific family.

14That is, the strategy at this point is equivalent to running the basic QAOA variant.

26

good parameters for depth p+ 1, the optimal parameters of depth p are used to
interpolate initial parameters for p+ 1 according to:

[
γ(p+1)

]
i
=
i− 1

p

[
γ⃗L(p)

]
i−1

+
p− i+ 1

p

[
γ⃗L(p)

]
i

(3.10)[
β(p+1)

]
i
=
i− 1

p

[
β⃗L
(p)

]
i−1

+
p− i+ 1

p

[
β⃗L
(p)

]
i

(3.11)

The current depth p is then incremented by 1 and the parameters that were
obtained through interpolation in the previous step of the protocol are used as
initial parameters for QAOA of this new depth. This process is repeated iter-
atively until the target depth, at which the algorithm is intended to be run, is
reached.
According to Zhou et al., for MAXCUT on 3-regular graphs, quasi-optimal pa-
rameters can be determined efficiently in O(poly(p)) time. This is a significant
improvement compared to the default QAOA variant with random initialization,
which requires 2O(p) optimization runs to achieve similar performance. How-
ever there is still no guarantee that the parameters found are the best possible
ones. Overall, less attention was given to this strategy in the paper by Zhou et
al., since the FOURIER method, which will be covered in the next section, was
shown to be slightly better than INTERP for MAXCUT15.

3.2.2. FOURIER

Similarly to the INTERP-strategy, the FOURIER Strategy uses the optimal pa-
rameters at the initial depth p for the purpose of finding good initial parame-
ters for depth p + 1, with the difference being that instead of interpolation, the
p+1-level parameters are obtained by transforming the sequence of optimal pa-
rameters for level p to a frequency domain using the discrete sine/cosine trans-
formation, and then simply reusing the optimized amplitudes of this frequency
domain representation at depth p as the initial parameters for depth p+1, from
where we start optimizing said parameters until a local optimum is found. We
then repeat the aforementioned steps, iteratively increasing the current p until
the targeted depth is reached. This general protocol is illustrated in Figure 4
and works as follows:

Like the INTERP method, the FOURIER strategy leaves the actual quantum-
circuit unmodified, only acting on the parameters of the phase separation and
mixer operators. Thus for the FOURIER-strategy applied to the default QAOA
method the circuit matches the basic circuit defined in Section 3.1.
Analogously to how the INTERP method alters the classical outer loop as a
means to obtain good parameters to start optimization from, the FOURIER
15Zhou et al. showed that the FOURIER strategy augmented with random perturbations started

outperforming INTERP at p ≈ 20 for an example instance of a 14-vertex weighted 3-regular
graph; the performance of the basic FOURIER strategy did not differ from INTERP.

27

γ⃗L
(p)

β⃗L
(p)

new p = current p+1

UC(γp) UM(βp)

p

Initial Parameters
γ, β for current p

Compute
Expectation

Value

⟨γ, β|HC |γ, β⟩

Classical
optimizer

New Parameters
γ∗, β∗ for current p

q0

q1

q2

qn

H

H

H

H

if Local Optimum
was found

Local Optimum

(γ⃗L
(p)

, β⃗L
(p)

)

Initial p

Use the FOURIER-Strategy to
determine the initial parameters

for QAOA with depth p + 1

see Equations 3.12 and 3.13

Discrete Sine Transform

Discrete Cosine Transform

u⃗

v⃗

Figure 4.: QAOA-FOURIER Circuit: FOURIER-Strategy applied to basic QAOA

method also makes use of known optimal parameters at depth p to find appro-
priate initial parameters for a greater depth p + 1. Beginning with an initial
depth e.g. p = 1 and good known parameters for this depth, which have been
either determined beforehand or are identified by running the basic QAOA vari-
ant with random initialization at this initial depth. To find good parameters for
depth p + 1, the optimal parameters of depth p are transformed to a frequency
domain representation, where the 2p parameters (γ, β) are expressed as 2q pa-
rameters u = u1, u2, · · · , uq and v = v1, v2, · · · , vq, where the individual elements
of (γ, β), γi and βi, are specified as functions of (u, v)16. This is accomplished by
performing Discrete Sine and Cosine Transformations to γ and β respectively:

γi =

q∑
k=1

uk sin

[(
k − 1

2

)(
i− 1

2

)
π

p

]
(3.12)

βi =

q∑
k=1

vk cos

[(
k − 1

2

)(
i− 1

2

)
π

p

]
, (3.13)

where uk and vk can be read as the amplitude of the k-th frequency component of
(u, v)17. Initial parameters for depth p+ 1 are generated by reusing the optimal

16In essence, the discrete data points of the original sequence of parameters is converted to a
sum of sinusoid functions (sine/cosine) which oscillate at different frequencies; in this way a
periodic extension of the original domain is created, from which we can obtain data points
which lie outside the original parameter sequence.

17That is, the amplitude of the k-th frequency component of the frequency domain, which rep-

28

frequency domain parameters (u, v) of level p18.
The current depth p is then incremented by 1 and the parameters that were
obtained in the previous step of the protocol are used as initial parameters for
QAOA of this new depth. This process is repeated iteratively until the desired
target depth is reached.

Aside from introducing a new parameterization of the variational parameters
that control the operators of the quantum-circuit, the FOURIER method is char-
acterized by two new integer-value parameters, q and R, which affect the gener-
ation of initial points in the classical outer loop and give rise to different variants
of the FOURIER strategy:
The first parameter, q, gives a limit on the maximum frequency components we
allow in the (u, v) representation of the parameters (See Equations 3.12 and
3.13)19. If q ≥ p the frequency domain representation can describe all possible
QAOA protocols at level p. Thus we can use the full power of (p)-level QAOA
by setting q = p. The notation used to denote this version of the FOURIER-
Strategy is FOURIER[∞, 0] (in the context of this thesis it will also be referred
to as "FOURIER with unbounded q").
However, according to Zhou et al., the smoothness of the parameter-distribution
(γ, β) for increasing p implies that only the low-frequency components are impor-
tant. For this reason it can make sense to set a fixed q, independent of p, in order
to limit the number of parameters, even as the circuit depth p increases. The
motivation for restricting the number of parameters is that this may facilitate
an easier optimization-process, since the parameter-space that has the classi-
cal optimizer has to search over is far smaller than in the case q = p. Limiting
the maximum frequency component in this way constitutes another version of
FOURIER, denoted as FOURIER[q, 0]20, where q < p (the designation "FOURIER
with fixed q" will be used interchangeably to refer to this strategy within this
thesis).
Futhermore Zhou et al. noted that the basic FOURIER strategy with unbounded
q is liable to getting stuck in local optima, and considered an additional variant
of the FOURIER strategy, which is characterized by generating R+1 additional
parameter sets21 based on the optimum at depth p. Subsequently, the best of
these R + 2 parameter sets is selected and used as the initial parameters for
depth p + 1. R of these extra initial points are acquired by adding random per-

resents the parameter sequence γ and β respectively; or in simpler terms: The amplitude of
the k-th sinusoid function in the sum of sinusoid functions, which we converted the original
sequence of parameters to.

18Since the frequency domain representations (u, v) is a periodic extension of the original do-
mains, γ = γ1, γ2, · · · , γp and β = β1, β2, · · · , βp, the elements γp+1 and γp+1 can also be
expressed as functions of (u, v) using Equations 3.12 and 3.13.

19Essentially q determines how many different sinusoid functions we will use to represent the
original parameters as a frequency domain; i.e. the number of individual elements of u and
v.

20For example, if we were to restrict the number of frequency domain parameters in (u, v) to 10
(i.e. 5 parameters each for u and v respectively), we would call this version FOURIER[5, 0].

21In addition to the parameter set provided by the optimization-routine of the basic variant, thus
producing a total of R+ 2 initial points.

29

turbations to the optimum which was chosen for depth p, and one is obtained by
adding a perturbation of strength zero to the p-level optimum22. The motivation
for this procedure is that random perturbations of the optimal parameters have
been shown to improve the performance of QAOA, since this makes it possible to
"escape" from the local optima that cause problems for the basic FOURIER[∞, 0]
variant. Following the previously used nomenclature, this improved variant is
denoted as FOURIER[q, R], where q is fixed, or FOURIER[∞, R] for the case
where p is unbounded23 (In this thesis, this variant will sometimes be termed
"FOURIER with random perturbations"). The FOURIER variant with R > 0 is
described in detail in Appendix A.
Like the INTERP-strategy, for MAXCUT on 3-regular graphs, quasi-optimal pa-
rameters can be determined efficiently in O(poly(p)) time using the FOURIER-
strategy, which is a notable improvement compared to the basic QAOA variant,
but once again we have no guarantee that the parameters found using this strat-
egy are (globally) optimal.
While examining the difference in performance of the proposed strategies, Zhou
et al. found that the FOURIER[∞, 10] started outperforming the FOURIER[∞, 0]
and FOURIER[5, 10] variants at p ≈ 20. Moreover, in spite of having the total
number of frequency domain parameters restricted to 10, the FOURIER[5, 10]
variant was able to closely match the performance of the other strategies at low
depth and even outperform the FOURIER[∞, 0] variant at high depth.

3.3. On the Transferability of Optimal QAOA
Parameters between Problem Instances

An active area of research concerning QAOA that is of particular interest for
heuristic parameter selection strategies, is the transferability of optimal param-
eters between problem instances. As shown in Section 3.2, the FOURIER and
INTERP method produce good initial points for p+1 from the optimum at depth
p, which is either known beforehand or obtained by running the basic QAOA
protocol at this depth p. Since running extra evaluations of a quantum-circuit
can be a costly task, especially on NISQ-devices, the former would be the more
feasible approach for running heuristically optimized QAOA under such condi-
tions. This would however require a reliable method of obtaining good known
optima at a low depth; for this reason heuristic parameter selection strategies
would greatly benefit from the identification of problem instances classes for
which the parameters are transferable between instances without a significant

22Essentially this just duplicates the initial point found by the basic FOURIER[∞, 0] variant,
however, Zhou et al. found that keeping this initial point (i.e. having a total of R + 2 ini-
tial points where 2 of these points are equal to the unperturbed initial point) improved the
stability of this variant.

23For example, if R = 10 additional initial points should be generated while restricting the num-
ber of frequency domain parameters in (u, v) to 10, wewould call this version FOURIER[5, 10].

30

decrease in the approximation ratio. In the following an overview of current
results concerning this area of research is given:

In 2018, Brandao et al. [28] demonstrated that if the problem instances are
drawn from a reasonable distribution24, the objective function value is concen-
trated (in the sense that the objective value of any of these "typical" problem
instances closely matches that of the others), when the parameters are fixed val-
ues. For this the parameters do not have to be optimal, since the the whole cost-
landscape is equivalent for such instances (i.e. the cost-landscape is instance
independent, depending on the fixed instance distribution instead). These re-
sults are however subject to some further constraint: Brandao et al.’s hypothesis
for fixed p requires n to be large and the maximum degree not to grow with n.
Furthermore, their conjecture regarding p growing with n requires the assump-
tion, that the terms in the expectation value function F (formulated as a sum of
subgraphs, see Equation 3.9) are independent, for the argument to work.

Later in 2021, Lotshaw et al. [29] benchmarked the performance of QAOA with
depth p ≤ 3 for MAXCUT on every non-isomorphic unweighted graph instance
with a number of vertices n ≤ 9. Aside from exemplifying the potential of in-
termediate depth QAOA to outperform the GW algorithm25, they also were able
to identify consistent patterns in optimal parameters: For depth p = 1, they
found that generally for all n, optimal parameters concentrated around γ1 ≈ −π

6

and β1 ≈ −π
8
in a very limited range for almost all graphs. For p > 1 the ma-

jority of the (γ1, β1) parameters remained concentrated around this point, but
the distribution broadens. For second-layer parameters (γ2, β2) the parameters
concentrate around γ1 ≈ −π

4
and β1 ≈ − π

14
26, with some concentrations around

seemingly random points. These results indicate that at least for small p, op-
timal parameters are transferable at low depth p between small, unweighted
graphs (from the evidence given in this paper alone it cannot be known for cer-
tain if these results apply to larger p and n).
In the same year, Akshay et al. [30] took an analytical approach to assessing
parameter concentration for QAOA which focused on considering parameter
scaling as problem size increases. The outcome of this analysis suggests that
optimal parameters concentrate as an inverse polynomial in the problem size:
For the purpose of analytically calculating optimal parameters, the conditions
which have to apply to achieve zero gradient were evaluated for p = 1 and p = 2,
as well as in the limit of n → ∞. in this framework parameters can be said to
concentrate when for any optimal parameters γn, βn at problem size n, there
exists at least one set of parameters γn+1, βn+1 for problem size n + 1 which is

24For the results presented in the paper, Brandao et al. focused on MAXCUT and chose this
distribution to be over all 3-regular graphs, but also remarked that there are other reasonable
distributions, e.g. graphs where each edge is included with probability 3

(n−1) so the expected
average degree is 3.

25They found QAOA of depth p = 3 outperformed the Goemans-Williamson algorithm for most
instances.

26Comparing this point to the one at p = 1, this brings to mind the observation that γ increases
with p while β decreases.

31

polynomially close in n to γn, βn.27. The analysis (as well as numerical evidence
up to p = 5 and n = 17) suggests that the concentrations observed for the
optimal parameters scale as O(n−4), which may be an indication for a optimal
parameters having a limit as n→ ∞28.
Also in 2021, the paper by Wurtz & Lykov on the fixed angle conjecture [15],
which we previously discussed in Sections 3.1.2 and 3.2, was published. As
already stated in Subsection 3.1.2, the authors hypothesize that when using
fixed parameters, which are optimal for the worst case problem instances, the
lower bounds calculated for these instances will also hold for any other 3-regular
graph instance. In this way, parameters are transferable between instances
while maintaining a performance, which is greater or at worst equal to the
lower bound29. Wurtz & Lykov provided numerical evidence for this conjec-
ture for p < 12 on all 3-regular graphs with n ≤ 16 vertices, which firstly shows
that the fixed angle conjecture holds (at least for small graphs with n ≤ 16) and
secondly indicates that such fixed parameters yield good results for a majority
of 3-regular graphs, and serve as a good initial guess for optimizers.

All in all, current research implies that optimal parameters for QAOA are gen-
erally transferable between problem instances of certain families, however it is
not yet fully clear to which problem families this applies and to what extent the
QAOA performance is affected, especially at higher depths and problem sizes.

27More concretely, the authors formulate this definition of parameter concentration as ∃l :
∀γn, βn∃γn+1, βn+1 : |βn+1 − βn|2 + |γn+1 − γn|2 = O(1

nl).
28Akshay et al. comment that if the parameters concentrate as O(nl) where l ≤ 2, the optimal

parameters may not approach any limit, however the existance of instances with such a
scaling behaviour is not confirmed.

29Note that this differs from the other approaches presented thus far, which try to find parame-
ters which are transferable while maintaining the same performance (or at least maintaining
a performance that does not significantly deviate from the performance on other instances).

32

4. Method

This chapter covers the considerations made for the task of benchmarking the
parameter selection heuristics and comparing them with the default (random
initialization) QAOA method.
Section 4.1 gives an overview of the problem instances used for benchmarking
the algorithms, consisting of a brief summary of the MAXCUT problem in Sub-
section 4.1.1 and a short outline of the method used in this work for generating
problem instances, that are suitable for our experiments, is specified in Subsec-
tion 4.1.2. Following these definitions, Section 4.2 explains the components of
the setup for the actual benchmarking process: First, in Subsection 4.2.1 we
go over the framework used for running these benchmarks, as well as the some
of its dependencies which are of particular interest. After that a brief recapit-
ulation of the implementation of the heuristic strategies and their integration
into the framework is provided in Subsection 4.2.2. Finally, in Subsection 4.2.3,
a detailed description of the experiments (i.e details on the properties of the
problem instances used and how often the algorithms are run on a particular
problem instance) is presented.

4.1. Problem instance generation

For the purpose of benchmarking the default QAOA method and the heuristic
parameter selection strategies outlined in Section 3.2, the algorithms are run
for MAXCUT on random unweighted graphs of varying order (|V |) and size (|E|),
which are generated by setting a specific edge-density (as opposed to setting an
edge-probability, as is done for Erdös-Rényi graphs). The following two subsec-
tions give a more detailed description of generating problem instances for the
experiments conducted in this thesis and the reasoning behind these choices.

4.1.1. MAXCUT

The optimization problem instances, which are used for the experiments, are
instances of MAXCUT, a graph partitioning problem that is NP-hard to approxi-
mate to within a value better than 16/17 − ϵ, where ϵ > 0 (this is ≈ 0, 941 − ϵ in

33

decimal floating point representation) [31]1.
While MAXCUT is a difficult problem to solve, it is fairly simple to conceptualize:
The idea of MAXCUT is to partition a graph into two complementary sets, such
that the number of edges between these two sets is maximal. The resulting cut
is necessarily at least as big or bigger than any other possible cut (see Figure
5).

A B

1 4

2 3

1 4

3 2

CUT

MAXCUT

Figure 5.: An illustration of the MAXCUT problem, partitioning the graph on the right
into two complementary sets A and B; In this example the graph G(V,E),
where V = {1, 2, 3, 4} and E = {(1, 2), (1, 4), (2, 3), (3, 4)}, is partitioned into
sets A = {1, 3} and B = {4, 2}, thus yielding a cut of size 4, which is maximal
for G.

While MAXCUT does have a number of practical applications, such as circuit de-
sign/integration and solid-state physics [32], the primary reason why MAXCUT
was selected as the problem for benchmarking the different QAOA methods in
this work is due to its prevalence in the literature regarding QAOA (see Chap-
ter 3).
Since this work is mainly concerned with a basic comparison of QAOA and the
different heuristic parameter selection strategies, rather than identifying spe-
cific problem classes for which the heuristic methods outperform the basic vari-
ant, it reasonable for the optimization problem, on which we run the bench-
marks, to be correspondent to the problem most often considered in related
work.
Furthermore, most of the results presented in the paper by Zhou et al. [18],
which introduced the FOURIER and INTERP methods, were obtained by run-
ning the QAOA variants on MAXCUT. Consequently, by also using this problem,
we can compare the performance for the problem instances used in this work
(see Subsection 4.1.2 to the performance observed for the 3-regular graphs used
by Zhou et al.
1While the actual value given in [31] is 17/16 − ϵ, they defined the approximation value as
c(xopt)/c(x), which is the inverse of how we defined the approximation ratio in this thesis
(see Equation 2.23). For this reason we give the reciprocal of this value in the text.

34

Note that such comparisons are somewhat limited by the fact that in this the-
sis, a different classical optimization routine is used (see Subsection 4.2.3):
While Zhou et al. use the gradient-based BFGS optimizer, this work utilizes the
gradient-free COBYLA optimization method. Generally, gradient-based meth-
ods are more reliable at finding good parameters, but require the gradient of
the cost function to be known; gradient-free methods do not rely on gradients
to optimize the cost function, but may take longer to converge and (depending
on the method used), may lack strong convergence guarantees. Hence, when
comparing the results in this work to the results of Zhou et al. keep in mind
that the differences in performance observed in this thesis may possibly be less
pronounced when using gradient-based optimization, due to the fact that the
classical optimization routine may yield better results even for the default QAOA
variant in this case.

4.1.2. Generating Graphs by Density

The specific graph instances that MAXCUT optimization will be performed on
during the benchmarking process, were chosen to be random graphs, for the
reason that the performance of QAOA on such instances is not as well stud-
ied as QAOA on MAXCUT for 3-regular graphs (or d-regular graphs in general),
see Chapter 3. For this reason it may be more interesting to study the case
where the number of neighbors/degree of a vertex may differ between vertices,
since we can not necessarily assume that practically interesting problems will
be have regular graphs corresponding to them2. Another argument against us-
ing 3-regular graphs is that the results in the paper by Zhou et al. [18] concern
3-regular graphs, and it is not the goal of this thesis to simply try to reproduce
those results, since that would not produce new insights into the performance
of heuristically optimized parameter selection for QAOA.
For the purpose of generating random graphs, a density model G(n, d) is used,
where graphs are generated by specifying a number of nodes n and an edge
density d (a floating point number that describes the ratio of number of edges
to the maximum number of edges possible, i.e. d = |E|

max(|E|)). The graph is gen-
erated by first creating a list of all possible edges between the given nodes and
then randomly removing edges from this list and adding them to the graph until
the number of edges |E| is such that the given density d is satisfied. For the im-
plementation of this model, the corresponding function in the maxcut module
of the ARCS 2022 repository [33] was used.
The reasoning behind using a density model as opposed to the widely used
Erdös-Rényi model G(n, p) (where a random graph with n vertices is generated
2Some of the related literature suggests that certain results pertaining to 3-regular graphs
generalize to other graphs with small bounded degree [14], [28] (e.g for Erdös-Rényi graphs
with edge probability 3/(n−1) the expected average degree is 3, which, according to Brandao
et al [28], means that the parameter concentrations observed for 3-regular graphs also apply
to such graphs). However, this is yet another assumption about the graph structure that may
not always be true for practically interesting instances.

35

by adding an edge between two vertices with probability p), is that the size of
the Graph (|E|) will be invariant between individual instances when using the
density model3. In this way we can be sure that all graphs that share a density
factor also have an identical size, regardless of the sample size (in contrast to
this, for Erdös-Rényi graphs the true average will only approach the expected
average with an increasing sample size). Since this thesis will only examine a
small sample of problem instances (due to the high time and resource require-
ments for benchmarking the methods), the density model is a more appropriate
means of generating graphs for the purposes of this work.
Aside from specifying the number of vertices and the edge density, a numpy
random seed is set before generating the graph instances, in order to ensure
reproducability of the problem instance generation (the specific seeds used will
be covered in Subsection 4.2.3).

4.2. Benchmarking the different strategies

In order to actually run numerical simulations of the QAOA variants on these
problem instances, the open-source SDK Qiskit [34], which, aside from provid-
ing transpilers for running circuits on actual quantum devices4, also provides a
number of simulator backends that allow for ideal or noisy multi-shot execution
of quantum circuits, was used.
In addition, a framework for orchestrating the benchmarks, which ensures that
the different variants are run on the same problem instances with the same
initial conditions, is needed to make a fair comparison of these variants. The
Framework used for the purposes of this thesis will be elaborated upon in the
following section.

4.2.1. Benchmarking Framework

The setup used for Benchmarking the variants was the QUARK (QUantum com-
puting Application benchmaRK) framework [35]5, which can be used to run
benchmarks of industrally relevant applications on quantum devices. The frame-
work requires an application, an associated mapping, a solver and a device to
be specified. While the framework already provides some examples of these
3For Erdös-Rényi graphs, the average size can be expected to be

(
n
2

)
p, however the actual size

will vary between instances due to the fact that the probability of an edge being present is
independent of the number of edges already added.

4By "re-writing" (transpiling) the qiskit circuit formulation to yield a circuit that matches the
topology and gate-set of a specific quantum device.

5More specifically, the QUARK v1.0 is used; during the writing of this thesis the version 2.0
was released, which introduces a few extension to the framework, which are useful in the
the training and deployment of quantum generative models [36]. However, since this work
is not quantum machine learning related (thus the new features would go unused) no switch
was made from the v1.0 to the v2.0 version.

36

modular components, a usefull property of the kit, which was the motivation for
using it in this thesis, comes from the fact that it is easily extensible by providing
custom implementations of such components, allowing us to add solvers and/or
problems not present in the base package.
Since the framework only contains an implementation of the default QAOAmethod,
and no realization of the MAXCUT problem, we need to extend the Framework
by writing several components, in order to perform the desired numerical sim-
ulations:

1. A MAXCUT module which extends the MAXCUT class and allows for gen-
erating or importing suitable graph instances, as well as validating and
evaluating the solution supplied by the solver.

2. A mapping module which extends the Mapping class and maps the MAX-
CUT problem from a graph representation to an Ising model, which can be
used by Qiskit to create an Ansatz which encodes the problem for QAOA.

3. A QAOA module which extends the Solver class and allows for the use of
not only basic QAOA, but also QAOA using the parameter selection strate-
gies proposed by Zhou et al. [18].

4. A means for creating a quantum instance (i.e. a quantum device or stat-
evector simulator) that we will run the benchmark on; this can be done
by providing a module which extends the device class, but since we use a
Qiskit simulator backend, the functionality needed to create this quantum
instance is simple enough that it can be included in a utils module.

5. Amodule configuration file for dynamically importing these additional com-
ponents.

The specific details of these implementations are covered in the subsequent
section.

4.2.2. Implementation of the Application, Mapping and
Solver

For the Implementation of the necessary components, qiskit version 0.40.0 and
qiskit.optimization version 0.5.0 were used6, the specific implementation details
are as follows:

6These versions are also dependencies of the QUARK v1.0 Framework, so no modifications
were necessary in that regard.

37

Application The MAXCUT class extends the Application class and deals with
creating/importing problem instances as well as validating and evaluating solu-
tions to these problems. In order to generate a suitable problem, either graphs
can be generated using theG(n, p) Erdös-Rényi model, or existing graphs, which
were as a gpickle file can be imported directly by specifying a path to the di-
rectory, which contains these files (this is the method used for the experiments,
as we generate the graphs outside of QUARK from the density model outlined
in Subsection 4.1.2 instead of the using the Erdös-Rényi model). Once a prob-
lem has been created or imported, if the MAXCUT class has not seen this problem
instance before (the iteration number of the BenchmarkManager is used to keep
track of which instances were already seen), it is brute forced, evaluating all
possible assignments with the MAXCUT cost-function, to obtain the actual max-
imum possible Cut and objective value (cost). These results are then saved as
a pickle file, so they can be loaded the next time we deal with this particular
problem instead of brute forcing it again.
For the purpose of validating a solution, the MAXCUT class checks if the length of
the bitstring returned by the solver matches the number of vertices in the prob-
lem graph. In order to be a valid solution, the bitstring must assign a group (one
or zero) to each vertex. Aside from this, the MAXCUT class tests if all nodes are in
one group (i.e. if all bits in the bitstring are the same, e.g. all ones or all zeros).
If all vertices are in one group, the graph has not been cut at all, and thus this
does not constitute a valid solution. Anything else is considered a valid cut.
After validating the bitstring returned by the solver, the solution is evaluated:
The maximum objective value obtained by brute forcing the problem, c(xmax),
and the objective value of the solution which is to be evaluated, c(x), is used to
calculate the approximation ratio of this solution to the maximum value, that
is, c(x)

c(xmax)
. This approximation value is then saved with the other data about the

benchmark (time taken for problem generation, validation, evaluation etc.), and
used as the measure by which we judge the performance of the solver.

Mapping In order to formulate the problems given by the MAXCUT application
class in a way the solver can work with, an ISING class, which ectends the Map-
ping class was implemented in order to represent the problem in the Ising for-
mulation. This is done by utilizing the Maxcut class from the qiskit.optimization
module, which takes a graph and returns a GraphOptimizationApplication
object, which can be converted to a QuadraticProgram using one of the meth-
ods Qiskit provides for objects of this class. This QuadraticProgram is then
converted to a QUBO formulation and from there transformed to the Ising Map-
ping we need. The ISING class then returns a dictionary containing the Ising
model formulation and the time it took to map it.

Solver The QiskitQAOA_Param_Selection module extends the Solver class.
Aside from allowing for configuration of the measurement shot number, opti-
mizer method, maximum optimizer evaluations and QAOA depth, it also allows

38

for choosing a parameter selection strategy: If the "RI(default)" option is cho-
sen, the default Qiskit QAOA is run with the given configurations. However if
another option was chosen, starting from a starting depth with also is speci-
fied in the parameter options, the QiskitQAOA_Param_Selection class iterates
through lower depths until the selected depth is reached. In each iteration,
QAOA is run at this depth, and the results are used to heuristically determine
the initial parameters for the next depth p+1 (where p in this case is the depth of
the current iteration). The way in which these initial parameters are determined
depends on the option selected (either "INTERP", "FOURIER_q_unbounded" or
"FOURIER_q_fixed"; these options correspond to the methods with the same
name outlined in Section 3.2).
Furthermore, there are options for specifying the FOURIER hyper-parameters
q (the maximum frequency component allowed in the frequency domain param-
eters when using the fixed q FOURIER variant) and R (the number of random
permutations added in order to possibly escape local optima)7: in the case of
a q value being set, this value is passed to a function that determines the next
initial parameters, which will only add new higher frequency components until
q is reached. If q is bigger than the depth p in the current iteration, q is set to
be q = p. In the case that a R > 0 is chosen, the solver will iterate through R+1
additional permutations for every iteration of p between the starting depth and
the selected depth. At each of these nested iterations, a random permutation
is generated according to the Fourier strategy with random permutations (see
Appendix A), evaluated, and the initial parameters are saved if the resulting ob-
jective value is better than that of previous iterations8.
Finally, in order to control the sampling behavior of the statevector simulator,
there is an option to include a specific seed for the benchmarks thus allowing
the results to be reproducible. This seed is incremented with the iteration num-
ber, so different results may still be observed when running QAOA on a problem
instance multiple times, but we can still ensure that different QAOA variants
will have the identical starting conditions at matching iteration counts of the
same problem instance9
In addition to returning the bitstring that was sampled with the highest prob-
ability when running the the variants, the QiskitQAOA_Param_Selection class
outputs the final optimal parameters found, the estimated objective value at
this point, the number of cost function evaluations taken, the time taken by the
optimizer, and the total time taken by the solution process.

7This is explained in more detail in Subsection 3.2.2 and Appendix A.
8Note that this variant will not be benchmarked in this thesis due to considerations of scope.
9For example, we can ensure sure that the FOURIER method at iteration 5 of problem instance
1 will have the same conditions (that is, sampling behavior and random initial QAOA param-
eters for the first iteration at the starting depth) as the INTERP method at the same iteration
of this problem instance.

39

Device and Utils As mentioned in Section 4.2, since we will be using a Qiskit
simulator backend instead of an actual quantum device10, this functionality
doesn’t require a whole device class, and was included in a supplementary
QiskitQAOAUtils module. The simulator used was the Qiskit QasmSimulator
with the simulation option set to "statevector", that is, a dense statevector sim-
ulation which samples measurement outcomes from ideal (noiseless) quantum
circuits, and all measurements are made at end of the circuit.
Aside from the function for creating a quantum instance (in this case, creating
a QasmSimulator backend), a couple of other functions used by the Qiskit-
QAOA_Param_Selection class, most notably the functions for heuristically ob-
taining suitable initial parameters and generating random permutations, were
outsourced to this QiskitQAOAUtils module.

Module Configuration File In order to run QUARK with the components
described in this section, a module configuration file, which contains json-
formated data that communicates to the BenchmarkManager, which modules
should be dynamically imported and where these can be found.
When executing the benchmarks, this file can be included in the call to the
framework with the -m or --module flag.

4.2.3. Experimental Setup

In the numerical simulations that were run in order to benchmark the QAOA
variants the optimizer was chosen to be the COBYLA (Constrained Optimiza-
tion BY Linear Approximation) optimizer [37] for all variants. COBYLA is a gra-
dient free optimization method, which, similarly to the Nelder-Mead Optimizer,
doesn’t require the gradient to be computed. COBYLA instead uses a linear ap-
proximation of the function, restricted to the neighborhood of the current point,
to determine the next point to evaluate; when evaluating a point, COBYLA only
considers changes in the cost-landscape within a certain "trust region" around
the point. Due to these properties, COBYLA is particularly useful when the
cost function is non-differentiable or expensive to evaluate. Despite the name,
COBYLA can also solve unconstrained optimization problems [38].
The reason for this choice of optimizer is that the evaluation of a quantum cir-
cuit can be a expensive task, especially on imperfect NISQ era devices, and so
it would in practice be reasonable to use a gradient-free method, which makes
the most of a function evaluation. Another consideration when choosing the
optimization-routine was that, since the modifications the heuristic parameter-
selection strategies to QAOA occur on the classical side, using a more powerful
gradient-based optimization routine, such as BFGS, would mean we have to
simulate very high depths or large problem instances for the performance of
10So we can perform ideal numerical simulations, and in this way assess the performance of the

ideal, noiseless case.

40

the different variants to diverge (since QAOA will converge on an optimal so-
lution faster if the optimizer already produces near-optimal parameters, even
without parameter-selection heuristics), i.e. we would have to perform more
computationally expensive simulations to achieve a noticeable difference in ap-
proximation ratio11. Using the gradient-free COBYLA method, we may observe
differences in performance between the methods sooner (at a lower p and prob-
lem size/order), since COBYLA lacks strong theoretical convergence guaran-
tees [37], [38].
For the specific parameters of COBYLA, rhoberg, that is, the size of the "trust-
regions", was kept at the default of 1.0, while maxiter, that is, the maximum
number of function evaluations, was set to 100012.

For the choice of problem instances, which the simulations of the QAOA vari-
ants will be run on, the general idea is to examine how QAOA performance
varies with changes to two properties of the problem instances: The problem
instance order n (i.e the number of vertices) and the problem instance size d (i.e
the edge-density, see Subsection 4.1.2). Aside from this, the effect, that start-
ing the heuristic methods at different initial depths has on the performance, will
be explored by running the variants with varying initial p on problem instances
with a fixed order and size.
Given the above, three sets of experiments are to be run: First, for benchmark-
ing the performance on problem instances with an increasing number of vari-
ables, the different variants are run on graphs with increasing order. The spe-
cific vertex-counts that were used are 6, 8, 10, 12 and 14, each with a edge-density
of 0.513. Secondly, for assessing how changes in problem instance density affect
the performance, the variants were run on graphs with increasing density, start-
ing from d = 0.5 and going up to (and including) d = 0.9 in increments of 0.1,
while the vertex-count is fixed at 8. The case where d = 1.0 was not included
in the experiments, since in this case, any graph is a fully connected graph, for
which finding the maximum cut is trivial14. Lastly, for comparing the perfor-
mance of the variants when starting the heuristic methods with different initial
depths, graphs with a fixed order of n = 10 and a fixed edge-density of d = 0.5
were used, and the different initial depths of p = 1, 3 and 5 were simulated.
The variants that are to be benchmarked are:

1. The basic QAOA variant, which will serve as a baseline for comparing the
parameter selection heuristics to

11In the Paper by Zhou et al. [18], using the BFGS routine, divergence of the variants was only
observed at p ≈ 20 for a 14-vertex weighted 3-regular graph, which is outside of the scope
of the simulations made for this thesis.

12In practice, none of the problems simulated in this thesis took substantially more than 200
function evaluations.

13Initially it was planned to also run the methods on 16-vertex graphs, however this turned out
to be infeasible within the limited scope of this work.

14Since any balanced assignment of the vertices (i.e any assignment where the sizes of the sets,
which we divide the vertices into, is equal or as close to equal as possible) produces the
maximum cut.

41

2. The INTERP method, of which there is only one variant

3. The FOURIER[∞, 0] variant of the FOURIERmethod, that is, the unbounded
variant without random perturbations

4. The FOURIER[5, 0] variant of the FOURIER method, which is the fixed q
variant without random perturbations, where q = 5

For each of these methods, individual simulations are run for every depth 1 ≤
p ≤ 10. Unless explicitly stated otherwise, the initial starting depth for the
heuristic methods is by default set to 1.
For each of the different problem instance types (as in, types of graphs distin-
guished by their vertex-counts/edge-densities) examined in the experiments, 3
non-isomorphic graphs are generated, resulting in a total of 30 unique graphs
of different problem instance types, and each of the 4 variants is run 10 times on
each graph. For the generation of these graphs, the seeds 123456, 246912 and
370368 were used alongside the respective density and vertex-count parame-
ters15. For the 10 repetitions of each variant on each unique graph instance,
the initial statevector simulator seed was set to 123456+r, where r is the num-
ber of the current repetition (ranging from 1 to 30, since each variant is run on
3 graphs 10 times; at every depth p between 1 and 10, this totals 300 runs of
each QAOA variant per problem instance type in the set of experiments outlined
above).

During the evaluation of these simulations, an idea for further interesting exper-
iments arose from the results regarding graph density, the experimental setup
for these will be covered together with the presentation of the results of this
additional investigation in Subsection 5.3.2.

Finally, the GW algorithm was run on the problem instances that are specified
above, in order to give an idea of how well classical algorithms can perform on
these instances. The results of these experiments are reported in Appendix B.

15The only exception to this are the Graphs with n = 6, d = 0.5; for these the given seeds yielded
two graphs that were much too similar, differing only in one edge. For this reason, the seeds
123456, 123556 and 123656 were used instead for graphs of this type.

42

5. Results

In this chapter, the results of the experiments specified in Subsection 4.2.3 are
presented and described. First, in Section 5.1, an overview of the way in which
the data was plotted and how to interpret this visualization, is given. Next, in
Section 5.2, the results of the experiments with increasing graph order will be
presented, and subsequently Section 5.3 covers increasing graph density: this
section consists of the outcomes of experiments concerning increasing graph
density, given in Subsection 5.3.1, and the results of the experiments with an
increasing number of fully connected nodes, shown in Subsection 5.3.2. Finally,
Section 5.4 reports the results of the experiments starting at an intermediate
depths p.

5.1. Plotting the Data

As mentioned in Subsection 2.2.1, a way of describing the quality of a solution
to a combinatorial optimization problem is in terms of the ratio between the cost
of the solution and the cost of the global optimum, that is, the approximation
ratio. This metric is used in the literature discussed in Chapter 3 for evaluating
how well QAOA approximates the optimal solution, and will also be the criterion
used in this work to gauge the performance of the QAOA variants.
Due to this choice of solution quality metric, plotting the mean and confidence
intervals (or variance) would be ill-suited for visualizing the data in an non-
misleading way, since the upper bounds of the confidence interval and variance
would in some cases exceed a value of 1.01. Statistically, this is unproblematic2,
however conceptually it may be confusing, since the approximation ratio cannot
exceed 1.0 (in the context of maximization), as this would only be possible if the
cost of the solution is greater than the cost of the global optimum, which is, by
definition, the point with the highest cost (and thus, the cost of the solution can
at most be equal to the cost of the global optimum).
In order to prevent such confusion, the statistical measures chosen to describe
the data are themedian and various quantiles. The reasoning behind this is, that
1For example, if the mean is very close to 1.0 but there is still some standard deviation such
that adding 1.96 standard deviations to the mean (or, for the variance, squaring the standard
deviation) results in a value greater than one.

2Since the confidence interval will still contain the true mean with a probability given by the
confidence level, regardless of the fact that its range includes values which the mean cannot
take.

43

since quantiles partition the distribution into multiple subsets of equal sizes,
their upper bound cannot exceed the highest value that was observed in the
samples. Thus, quantiles will give ranges, which, in our case, have at most
1.0 as the upper limit (since no sample in our data exceeds the approximation
ratio of 1.0). The specific quantile ranges to be plotted are: First, the range
between the first and third quartile (which can also be regarded as being the
25th and 75th percentile), also known as the interquartile-range (IQR). Sec-
ond, the range between the 15th and 85th percentile, and lastly the 5th and
the 95th percentile. These ranges contain 50%,70% and 90% of the samples
respectively, and thus give a more accurate insight into the spread of the data
than the median alone provides. The quantiles were calculated using the quan-
tile function from the statsmodule in R [39], using the setting type = 8. This
settings specifies which method to use when calculating the quantiles; type 8
was chosen because it gives quantile estimates that are approximately median-
unbiased regardless of the distribution [40].
Given the above, we can interpret the plots given in the subsequent sections as
follows: Since the median value, represented in the plots by the black line, is
the value that seperates the upper and lower halves of the distribution, when
viewing a plot, we can infer that half of all QAOA runs resulted in an approxi-
mation ratio equal to or greater than the median, and half of all runs yielded an
approximation ratio equal to or less than the median; both halves contain 50%
of the samples. The dark gray shaded area is the IQR, ranging from the quar-
ter of the data, which contains the samples with the lowest approximation ratio
to the quarter with the highest approximation ratio, thus covering the 50% of
the samples that are closest to the median. The intermediate gray shaded area
ranges from the 15th to the 85th percentile, in other words from the partition
which is composed of the lowest valued 15% of the data to the partition that
consists of the highest valued 15%, and so this range contains of 70% of the
samples. In the same manner, the light gray shaded area is the range from the
5th to the 95th percentile, that is, the range between the best and worst per-
forming 5% of QAOA all runs; accordingly, this partition spans 90% of the data
points.
The median line, together with the shaded percentiles, can interpreted equiva-
lently to a collection of boxplots, where each boxplot corresponds to a certain
depth p: the median line and IQR range are consistent with the measures used
for plotting the box, and the 70% and 90% ranges correspond to the whiskers3
The reason why the data is plotted as a line with shaded areas, rather than as a
series of boxplots, is that if we were to plot an individual boxplot for every com-
bination of depth, QAOA variant and graph order/size would negatively impact
the readability of the plots, as the boxplots would have to be shrunken down by
a significant amount in order to fit the entire series into the plot.

3While in most boxplots the whiskers are defined as being±1.5 IQR from themedian, the choice
of these boundaries can vary between representations and is often specified explicitly; for the
purposes of this Thesis consider the case where there are two sets of whiskers, containing
50% and 70% of the samples respectively.

44

5.2. Solution Quality with an increasing Number
of Nodes

Shown in Figure 6 are the results for the set of experiments where the edge-
density of the problem instances is fixed to 0.5 the order increases from 6 to 14
with a step size of 2.

6 8 10 12 14

F
O

U
R

IE
R

[5,0]
F

O
U

R
IE

R
[∞

,0]
IN

T
E

R
P

R
I(default)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

depth p

A
pp

ro
xi

m
at

io
n

R
at

io

Median IQR / 25th to 75th percentile (50% of runs) 15th to 85th percentile (70% of runs) 5th to 95th percentile (90% of runs)

fixed Density: 0.5
Median approximation ratio and percentiles with increasing Node count

Figure 6.: Median approximation ratio and percentile ranges with increasing problem
instance order.

An interesting observation we can make is that in some cases the median so-
lution quality deteriorates with increasing p, which is counter-intuitive to the
definition of QAOA given in Section 3.1, where the quality of the approximation
improves as p increases. The most likely cause for this is that the number of
parameters, which describe the Ansatz, grows as 2p. This leads to a more ex-
pensive classical optimization, as the number of gradient components (or in the
case of COBYLA: approximations of gradient components) that have to be com-
puted is linearly dependent on the number of variables being optimized [41].
Consequently, the optimizer might get stuck in a local optimum more easily due
to the complexity of the gradient. There has been previous work which sug-
gests that that deep circuits result in exponentially vanishing gradient [42]–
[44], which may support this theory.

As can be seen in the figure, for a problem instances with an order of 6, the
median approximation ratio of all QAOA variants is 1.0 for every p tested, and
their spread is almost identical. No meaningful comparison between the differ-
ent methods can be drawn here, since solving problem instances of this order
is equally uncomplicated for all variants.

45

For problem instances with an order of 8 however, variants begin to diverge from
one another: While all variants first achieve a median approximation ratio of 1.0
at depth p = 2, the median of the basic QAOA variant and the INTERP strategy
begins to decrease starting at p = 8 and p = 9 respectively; this decrease is less
pronounced for INTERP. In contrast to this, both variants FOURIER variants
maintain the approximation ratio of 1.0 for every p > 2 they were tested for.
Furthermore, the spread of these strategies is confined to a considerably more
narrow range than basic QAOA and INTERP, and this range generally decreases
further with increasing p.
These differences in solution quality become more evident for a graph order of
10, following the trend we observed so far: Both the basic QAOA and INTERP
variants reach a median approximation ratio of 1.0 at p = 2, but fluctuate be-
tween this value and lower approximation ratios for higher p, with the individual
samples being distributed over a fairly large (compared to the case where the
order is 8) spread. The FOURIER variants yield an approximation ratio of 1.0
for depths 2 ≤ p ≤ 10, and have a comparatively low spread in relation to the
other variants. The range of the spread of the FOURIER variants generally de-
creases up until p = 6, where it increases slightly before continuing to decrease
as the depth goes towards p = 10; this decrease in spread is less pronounced
for the FOURIER[5, 0] strategy compared to the FOURIER[∞, 0] strategy at high
depths.
The results for problem instances of order 12 show that this trend of divergence
continues for higher p: While the range of the quantiles only increases slightly
compared to the case where the order is 10, the median of the basic QAOA and
INTERP variants is generally noticeably lower than than for that case. When
examining the FOURIER methods, we can observe that the range of the spread
narrows with increasing p up to p = 9, after which it broadens, more so for
the FOURIER[5, 0] strategy than the FOURIER[∞, 0] strategy; the difference
between these two variants is more noticeable than in the case with 10 nodes.
The most evident differences in solution quality can be observed for problem
instances of order 14, where for the first the basic QAOA and INTERP methods
fail to reach a median approximation ratio of 1.0 at any of the tested p and the
upper bound of the IQR is below 1.0 in some cases. As with the other problem
instances, for these two variants this median generally decreases and the range
of spread broadens with increasing p. The FOURIER strategies first reach a me-
dian approximation ratio of 1.0 at p = 5 and have an overall narrower range of
spread compared to the other two variants. This spread broadens somewhat
at higher depths, starting at p = 7 for the FOURIER[5, 0] variant and p = 9 the
FOURIER[∞, 0] strategy; aside from this fact, the magnitude of the range of
spread is comparable for both variants.

In summary, for MAXCUT on random non-regular graphs where the density is
fixed and the order increases, the median quality of the solution provided by ba-
sic QAOA generally decreases while the range of the spread increases and this
effect gets more pronounced with increasing p (possibly due to exponentially
vanishing gradients, see the observations made at the beginning of this sec-

46

tion. While INTERP does in some cases provide better solutions than the base
variant, this was often only a minor improvement in this set of experiments,
and due to the great variability in the solution quality achieved by INTERP, this
strategy often produced worse results than the basic QAOA variant. In compar-
ison to the two preceding variants, the FOURIER methods produced noticeably
better solutions: unlike the INTERP and base variants, the median approxima-
tion ratio did not decline, and while the range of spread broadens at higher p,
this effect is less pronounced and occurs later than for the other variants. In
general the FOURIER[5, 0] variant closely matches the solution quality of the
FOURIER[∞, 0] strategy, with quantile ranges that are slightly broader and/or
start to broaden earlier than the unbounded variant.

5.3. Effect of different Graph Densities

This section reports the results pertaining to the experiments with increasing
graph density, presented in Subsection 5.3.1 and further experiments that were
conducted to examine the effect of different edge assignments while keeping
the order and edge-density fixed, given in section Subsection 5.3.2.

5.3.1. Solution Quality with increasing Graph Density

Shown in Figure 7 are the results for the set of experiments where the order of
the problem instances is fixed to 8 and the graph-density increases from 0.5 to
0.9 in steps of 0.1.

Similarly to the set of experiments with increasing node count, we can observe
that in some cases the the median solution quality declines with increasing
QAOA Ansatz depth (see Section 5.2 for an explaination of a possible cause
for this behaviour); however, generally, this effect is less prominent and occurs
at higher depths compared to those experiments.

As illustrated in the figure, in the case where the graph-density of the problem
instances is 0.5, we get the same results as for the experiments for problem
instances of order 8 in Section 5.2; this is to be expected, as the edge-density
was fixed to 0.5 in that set of experiments and, as explained in Subsection 4.2.3,
we set seeds for statevector simulator and the generation of the graphs to en-
sure reproducibility. To quickly recapitulate the observations made for those
problem insances: All variants first achieve a median approximation ratio of 1.0
at p = 2, however, the median approximation ratio of the basic QAOA variant
and the INTERP strategy begins to decrease at high p while both FOURIER can
maintain this solution quality for a p they were tested for. Moreover, the range
of the spread of the FOURIER variants is narrower than the other strategies
and further decreases with increasing depth.

47

0.5 0.6 0.7 0.8 0.9

F
O

U
R

IE
R

[5,0]
F

O
U

R
IE

R
[∞

,0]
IN

T
E

R
P

R
I(default)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

depth p

A
pp

ro
xi

m
at

io
n

R
at

io

Median IQR / 25th to 75th percentile (50% of runs) 15th to 85th percentile (70% of runs) 5th to 95th percentile (90% of runs)

Node count: 8
Median approximation ratio and percentiles with increasing density

Figure 7.: Median approximation ratio and percentiles with increasing graph density.

For problem instances with a graph-density of 0.6, the results are very simi-
lar to the case where the instances have a graph-density of 0.5. Compared to
those instances, for graph density 0.6 all strategies start at a somewhat higher
median approximation ratio for p = 1, but have a slightly broader range of the
spread. At p = 2, all variants first reach a median approximation ratio of 1.0.
For higher depths p < 6 we can observe more noticeable differences between
the FOURIER variants: The range of the quantiles is somewhat broader for the
FOURIER[5, 0] than for the FOURIER[∞, 0] variant (however, all things consid-
ered, the FOURIER[5, 0] strategy still very closelymatches the spread in solution
quality of the unbounded variant).
When increasing the graph-density from 0.6 to 0.7, the differences between the
variants are far more distinct than for the increase from 0.5 to 0.6. For prob-
lem instances with a graph density of 0.7, the median approximation ratio is
considerably lower than for the previous densities and the range of spread is in
general broader. For all methods, the median approximation ratio starts at≈ 0.8
for p = 1. For basic QAOA, the median then increases to 1.0 at p = 2 before then
decreasing again as p increases, fluctuating between ≈ 0.93 and ≈ 0.8; at high p,
the median approximation ratio back at ≈ 0.8, which is the lowest out of all vari-
ants at these depths. Furthermore, unlike the other variants, for QAOA of level
p ≥ 9, the upper bound of the IQR is below 1.0. For INTERP, the median solution
quality increases somewhat at p = 2, reaching ≈ 0.93 and then stays like this
for higher depths, with the exception of p = 8, where it reverts to the starting
value of ≈ 0.8 before rising back to ≈ 0.93 for p > 8. The FOURIER variants still
generally yield better quality solutions than the other two variants, however the
amount by which the median solution quality differs from the other strategies

48

is far less than in the results that were discussed so far, and the range of the
the spread is comparable to that of the other methods. Out of both FOURIER
strategies, FOURIER[∞, 0] performed the best, with the median approximation
ratio increasing somewhat steadily (though not as smoothly as for the experi-
ments covered in Section 5.2), reaching 1.0 at p = 8, before then decreasing
somewhat for p ≥ 9. For depths 7 ≤ p ≤ 9 the unbounded FOURIER variant
achieves the highest median approximation ratios out of all variants, however,
for p = 10 the median is identical to the INTERP and FOURIER[5, 0] strategies.
The fixed q FOURIER variant performs slightly worse, closely matching the me-
dian solution quality produced by INTERP, with somewhat better median values
at p = 4 and p = 8.
Increasing the graph density even further, from 0.7 to 0.8, we can observe
changes in the spread of the quality of the approximation produced that are
similarly significant to those described in the preceding paragraph. For prob-
lem instances, the graphs of which have an edge-density of 0.8, the spread of the
solution quality is uniform for all of the tested QAOA strategies: They achieve
a median approximation ratio of ≈ 0.93, which stays constant for every depth p
tested. The range of spread is likewise similar for all strategies, with the upper
bound of the IQR fluctuating between 1.0 and the median value, especially for
the base QAOA variant, where this upper bound does not rise above the median
value for p ≥ 6; for the fixed q FOURIER variant the upper bound fails to exceed
the median starting somewhat later at p = 8. The FOURIER strategy with un-
bounded p performs the best in this regard, maintaining an IQR upper bound
of 1.0 for most of the tested depth (with the exception of p = 1, 3 and 7). Keep
in mind however that these differences in the range of spread are minor, and
it may be argued that spread of the solution quality is indistinguishable for the
problem instances with graph-density 0.8 that were tested.
Finally, setting the graph-density of the problem instances to 0.9, the perfor-
mance of the variants barely changes compared to the previous graph-density.
The median approximation ratio at depth p = 1 is lower than for problem in-
stances with a density of 0.8, increasing to ≈ 0.94 at depth p = 2 for the basic
QAOA and FOURIER variants, and at p = 3 for the INTERP variant. This median
value then remains constant for higher p. The range of spread narrows around
this median solution quality for the startegies FOURIER[∞, 0] and INTERP as
well as the the basic variant. The quantile range of the FOURIER[0, 5] strategy
generally stays the same. All in all, simliarly to the case where the graph-density
is 0.8, the performance of the variants in nearly identical for problem instances
with a graph density of 0.9.

In summary, for MAXCUT on random non-regular graphs where the order is
fixed and the edge-density increases, the median approximation ratio decreases
for all variants, and the higher the graph density is set, the less distinguishable
the performance of these variants is. Furthermore, this decrease in median so-
lution quality does not grow consistently with the increase in density: There is
barely a difference in approximation quality when comparing problem instances
with a graph-density of 0.5 to those with 0.6 or when comparing instances with

49

density 0.8 to 0.9 dense instances. In contrast to this, the dissimliarities be-
tween instances with graph-densities 0.6 and 0.7, as well differences between
as 0.7 and 0.8 dense instances, are far more pronounced. Regarding the per-
formance of the different methods relative to each other: For densities 0.5 and
0.6 the FOURIER variants evidently achieve better median approximation ra-
tios and have a narrower spread than the other methods, however for densities
≥ 0.7 the spread of the solution quality more closely matches that of the of the
other strategies, with the advantage FOURIER has over the other variants be-
comes increasingly less noticeable as the density goes toward 1.0. Overall, a
high edge-density seems to impact the performance of the FOURIER strategy
more negatively than the increasing graph orders examined in Section 5.2.

5.3.2. How Different Edge Assignments Affect the Solution
Quality

As stated in the conclusion of the previous section, median solution quality does
decrease with increasing density, however this relationship is not linear, with
the most significant decreases happening when increasing the density for 0.6
to 0.7 and from 0.7 to 0.8. This may suggest that the magnitude of edge-density
of the problem instance graphs is not the only factor affecting performance.
Possibly the way in which the edges are assigned may also have an effect on the
quality of the approximations produced by QAOA and its variants. In order to
investigate this proposition, an additional set of experiments was conducted, to
assess if the presence of fully connected nodes (i.e. nodes with degree n − 1)
has an effect on the solution quality.

The problem instances, which were examined for this purpose, have a fixed or-
der of 8 and a fixed density of 0.8. Aside from these properties, an additional
constraint we impose on the graph is the maximum degree that we allow for
nodes in this graph. The specific values of this bound on the degree are n − 1,
which is equivalent to not limiting the degree at all, and n− 2, which is equiva-
lent to not allowing fully connected nodes in the graph. In order to modify the
problem instances such that no fully connected nodes are present while pre-
serving the original graph structure as much as possible, we perform modify
the graph in such a way that the lowest possible number of edges are affected:
For every node of degree n − 1 the edge of vadj, one of the nodes adjacent to
this fully connected node, is moved to connect the vadj and a node that is not
adjacent to vadj. in this way, the graph-density and the assignment of most of
the edges are unaffected by the modifications.

Moreover, in a further set of experiments, the nodes with degree n− 1 were re-
moved from the problem instance graphs before running the variants on these
instances. After a solution, which assigns a group to each of the remaining
nodes, is produced, the nodes are reinserted into the graph in a balanced way

50

(i.e. such that the sizes of the groups are roughly equal); this is done by as-
signing groups to the removed nodes such that a node always gets added to the
group which currently contains less nodes4.

The results of these supplementary experiments are shown in Figure 8.

max vertex degree n-1 max vertex degree n-2 vertices of degree n-1 eliminated

F
O

U
R

IE
R

[5,0]
F

O
U

R
IE

R
[∞

,0]
IN

T
E

R
P

R
I(default)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

depth p

A
pp

ro
xi

m
at

io
n

R
at

io

Median IQR / 25th to 75th percentile (50% of runs) 15th to 85th percentile (70% of runs) 5th to 95th percentile (90% of runs)

Node count: 8, Density: 0.8
Median approximation ratio and percentiles by vertex connectivity

Figure 8.: Median approximation ratio and percentiles by density and presence of
nodes with degree n-1.

Since setting the maximum allowed degree of the graphs to n − 1 corresponds
to not restricting the degree at all, the results for these problem instances are
identical to those presented in Section 5.3 with a graph-density of 0.8. For these
instances the median approximation ratio is identical for all methods and the
range of the spread is very similar between variants, concentrating in a narrow
range around the median. In other words, the approximation ratios provided by
the different methods are barely distinguishable from one another.
If we restrict the maximum degree to be n− 2, that is, disallow fully connected
nodes, we can observe results, which are considerably more distinct from each
other: In general, the methods have a higher median approximation quality,
with the exception of low depths p and some higher depths of the basic variant.
Unlike the case where the maximum degree is n − 1, the methods are able to
produce a median approximation ratio of 1.0, and this median is achieved by the
heuristic strategies more consistently than by the basic QAOA variant, for which
the median frequently fluctuates between 1.0 and lower values. This fluctuation
can be described as being seemingly random between p = 1 and p = 4, before
steadily declining form p = 5 to p = 7, after which the median increases contin-
uously up to a value of 1.0 at p = 10. The INTERP strategy has less variation
4Note that this is a very naive approach to eliminating and reinserting nodes, for a more so-
phisticated method see RQAOA, see [45] for details on this approach.

51

in its solution quality, steadily increasing to a median of 1.0 at p = 3, and main-
taining this value for all higher depth except p = 7. The range of spread of the
basic and INTERP variants is comparable, and overall broader than the spread
for the maximum degree n − 1 case. The FOURIER variants on the other hand
yield distinctly more narrow quantile ranges, which get progressively narrower
as p increases. Furthermore, the median approximation value is varies less for
these strategies, reaching 1.0 at p = 2 and conserving this value for all higher
depths that they were tested for. There are no apparent differences between
the FOURIER[5, 0] and the FOURIER[∞, 0] strategy.
When excluding nodes of degree n−1 from the solution process and later assign-
ing groups to these fully connected way in a balanced way, all variants perform
similarly, reaching a median of 1.0 at p = 2 and then maintaining this solu-
tion quality for higher p. The range of the spread is exceptionally narrow for
all strategies, which the FOURIER strategies achieving a slightly more narrow
spread than the other strategies.

In summary, the results imply that for MAXCUT on random non-regular graphs,
the median approximation is lower if fully connected nodes are present in the
graph compared to when there are no nodes of degree n − 1; conversely, the
range in which the individual samples are spread narrows in the presence of
fully connected nodes for the problem instances examined in these experiments.
Moreover, is seems that the FOURIER strategies can better maintain their ad-
vantage in approximation quality over the other methods if there are no fully
connected nodes present in the the graph. Finally, the results demonstrate that,
when augmenting QAOA to solve a constrained version of the problem, such as
removing fully connected nodes from the problem instance graph, the heuristic
strategies may not yield noticeably better approximation qualities compared to
the basic QAOA variant.

5.4. Solution Quality Starting with an
Intermediate Initial p

Figure 9 shows the results for the set of experiments where the edge-density of
the problem instances is fixed to 0.5 and the order is fixed to 10, while the initial
p, the optimum of which the is used by the heuristic strategies for determining
good initial parameters for higher level QAOA, is increased, starting at the de-
fault of p = 1, and subsequently being set to the intermediate depths p = 3 and
p = 5.

Due to the fact that an initial depth of p = 1 is the default used in the previ-
ous experiments, the results for the case where the initial p is 1 are identical to
those presented in Section 5.2 for problem instances with with a graph order of
10 (and a graph-density of 0.5, since the density was fixed to that value for the
experiments that were reported on in that section). To briefly recapitulate the

52

1 3 5

F
O

U
R

IE
R

[5,0]
F

O
U

R
IE

R
[∞

,0]
IN

T
E

R
P

R
I(default)

1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 5 6 7 8 9 10

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

depth p

A
pp

ro
xi

m
at

io
n

R
at

io

Median IQR / 25th to 75th percentile (50% of runs) 15th to 85th percentile (70% of runs) 5th to 95th percentile (90% of runs)

Node count: 10
Median approximation ratio and percentiles by starting depth

Figure 9.: Median approximation ratio and percentiles by initial depth p

findings for those instances: Both the basic QAOA and INTERP variants reach
a median approximation ratio of 1.0 at p = 2, but do not always conserve this
median for higher depths, with the solution quality decreasing slightly in gen-
eral; the range of the spread for these variants is fairly broad when compared to
the FOURIER strategies. The FOURIER variants yield an median approximation
ratio of 1.0 consistently for depths 2 ≤ p ≤ 10, and have a comparatively low
spread in relation to the other variants, with the range of spread being some-
what narrower for the FOURIER[∞, 0] strategy compared to the FOURIER[5, 0]
strategy at high depths p > 6.
As seen in the figure, if we make the heuristic methods start optimization at a
higher depth by setting the initial depth to be p = 3, these results only change
slightly. The approximation quality of the basic QAOA variant unsurprisingly
does not change at all, as its starting parameters are randomly initialized5 and
thus it does not use lower depth optima for producing a good initial point to
start from. The INTERP variant is the only method where the median does not
remain unchanged as the initial depth increases, however in general the mag-
nitude of the shifts of the median is similar to the fluctuations we can already
observe for the initial p = 1 case. The ranges of the quantiles are also similar to
those observed when starting INTERP from p = 1, generally broadening while
the depth increases. Overall the spread of the solution quality is comparable to
the previously tested depth. The median approximation ratio of the FOURIER
variants does not change for the initial p = 3 case, aside from the different value

5As stated in Subsection 4.2.3, this randomness is controlled by an initial seed, and so we get
exactly the same results when running the basic variants with different initial p.

53

at depth p = 3, where the median matches that of the basic QAOA variant6. The
range of the spread on the other hand is somewhat broader compared to the
case where the initial depth is p = 1, though it is still narrower than for the
other strategies at any of the initial p that were tested. This variation in distri-
bution of the individual samples continuously decreases as p grows, up to p = 7,
where it starts increasing somewhat steadily. All things considered, the results
so far suggest that the FOURIER variants are less sensitive to changes to the
initial depth than the INTERP strategy.
The last starting depth that was tested is the initial depth p = 5, which, in the
case of these experiments, is half that of the final depth p = 10; This corresponds
to the intermediate starting p suggested by Zhou et al. in Section VI. of their
paper (see [18]), which covers some considerations for experimental implemen-
tation of the heuristic strategies. As in the initial p = 3 case, the results of the
basic QAOA method are invariant, and again, the only only variant for which the
median solution quality slightly changes is INTERP, which nevertheless is com-
parable (in regard to its median and quantiles) to the results we observed for
lower initial depth. Both FOURIER strategies achieve a median approximation
ratio of 1.0 for all depths 5 ≤ p ≤ 10, which is identical to their median for the
previously tested initial p levels. The range of the spread is somewhat broader
than when starting the methods at p = 1, to a similar extent as in the initial p = 3
case, and generally narrows as the final p increases. This decrease in the quan-
tile ranges of the quality of the approximation produced by the FOURIER vari-
ants get increasingly more pronounced for the FOURIER[∞, 0] strategy (com-
pared to the FOURIER[5, 0] strategy) as the target depth grows.

In summary, for MAXCUT on random non-regular graphs, the effect that start-
ing the heuristic parameter selection strategies at a higher initial p has on the
spread of the quality of the resulting approximations seems to be minor for the
intermediate initial depths tested. Furthermore, the results indicate that the
FOURIER variants are less affected by changes to the starting depth than the
INTERP variant. While individual samples of the FOURIER variant with un-
bounded q lie within a somewhat narrower distribution the fixed q variant, the
FOURIER[5, 0] strategy nonetheless closely matches its performance, with the
spread for the fixed q case being only moderately broader at higher p.

6This is of course to be expected, as we have not supplied any known optimal parameters to
start from in these experiments. Thus, the heuristic variants do not have access to any lower
depth optima at the starting depth, and the basic variant has to be run once to obtain an
optimum to start from.

54

6. Discussion

The series of experiments, which are specified in Chapter 4 and reported on in
Chapter 5, indicate that the FOURIER variants that were examined yield a me-
dian solution quality that is considerably higher than that of the basic variant.
Furthermore, the solution qualities of the individual samples concentrate in a
narrower range around this median: In more simple terms, the midpoint of the
ordered dataset of approximation ratios produced by the FOURIER variants is
higher than that of the basic QAOA variant, and as such we can say that solution
qualities produced the by the best 50% of FOURIER runs have a greater lower
bound than those of the best 50% basic QAOA runs. Furthermore, the range
around this value, in which most of the other samples of solution quality data
lie, is in general more narrow for FOURIER than for basic QAOA. In essence,
the solution quality produced by the FOURIER variant is more consistent than
that of the basic variant.
At higher depths, where finding optimal parameters is more challenging and
the median solution quality decreases for basic QAOA optimized by COBYLA,
the FOURIER variant is often unaffected by such a decrease for the depths and
instances that were tested. The increase in the range of the spread, which can
be observed for the basic QAOA variant, in general sets in at a higher depth
for the FOURIER strategy or is not present altogether for the depths that were
examined. This demonstrates the potential for the FOURIER variants to im-
prove the outer-loop classical optimization of QAOA parameters, finding good
parameters more consistently than optimization starting from randomly initial-
ized parameters.

In contrast to this, the INTERP strategy did not produce noticeably different
median approximation ratios and quantile ranges compared to the basic vari-
ant. In some cases INTERP was able to outperform the default variant for some
specific depths, but in other cases or for other depths the default variant per-
formed similarly or better, with no discernable pattern underlying this variation.
All in all, the INTERP produces solution qualities with a similar consistency as
basic QAOA, and yielded comparable median values and quantile ranges as this
variant.

In regard to how certain properties of the problem instances, which were spec-
ified in Subsection 4.2.3, affect the solution quality of the different variants, we
made the following observations:
Generally for all methods themedian decreases and the quantile ranges broaden
with increasing problem graph order at all depths, and the magnitude of this de-
crease/broadening appears to be proportional to the magnitude of the increase

55

of the order for the problem instances that were tested. In other words, there
seems to be a negative linear relationship between solution quality and prob-
lem order. Notably, for the depths the variants were tested for, the FOURIER
strategies were affected to a noticeably lesser degree than the other strategies,
to it is not known if these effects start to set in at higher (untested) p.
When increasing the problem instance graph density (see Subsection 4.1.2),
which corresponds to increasing the problem size, the median also decreases,
however this decrease is less correlated with the increase in density compared
to the experiments where we increased to order: the most significant changes
occurred when increasing the density from 0.6 to 0.7 and 0.7 to 0.8, with the
other increases barely affecting the solution quality. This may be an indica-
tion that the problem size is not the only factor affecting the solution quality
here. Further experiments, which placed a limit on vertex connectivity found
that graphs with equal density but lower maximum vertex connectivity yielded
consistently better results. Consequently, the presence of nodes with high con-
nectivity may have a greater negative effect on the solution quality than just the
number of edges or the order of the problem instance graph.
The results of the experiments, where heuristic optimization is started at an in-
termediate p instead of setting the initial depth to p = 1, suggest that starting
at intermediate depths does not significantly affect the median solution quality
and the range of the quantiles is is only slightly affected. In general, starting
heuristically optimized QAOA at an intermediate p seems to be promising for
experimental or practical implementations of the FOURIER and INTERP strate-
gies.

Given the above, what have we learned about heuristically optimized QAOA?
On one hand, some observations made by Zhou et al. in [18] could be repro-
duced for the small sample of random non-regular graphs that was examined in
this thesis:
To begin with, wewere able to confirm that the FOURIER strategies can improve
the outer-loop optimization compared to random initialization. As mentioned
above, the qualities of the approximations they produce are more consistent,
and often have a higher median than those of the basic variant. Thus, since
the default QAOA strategy produces less consistent results, we may often need
more runs of the basic variant to find a solution as good those produced by the
FOURIER variants. This coincides with the observations made by Zhou et al
in Chapter VI of [18], where they showed that the median number of random
initialization runs needed to match the performance of the heuristic strategies
scales exponentially in p (for MAXCUT on random 3-regular graphs). More-
over, we were able to validate that the FOURIER variant with fixed q, i.e the
FOURIER[q, 0] strategy was closely able to match the solution quality of the un-
bounded q variant (FOURIER[∞, 0]), which substantiates the conjecture, that
only the low-frequency components of the QAOA parameters in the frequency
domain representation are important, as made by Zhou et al. in Chapter IV
of [18]. Furthermore, we were able to see that when starting heuristic opti-
mization at an intermediate level p, this did not have a noticeable detrimental

56

effect on the solution qualities or the consistencywith which these are produced.
Since starting at a higher depth lets us skip the the QAOA runs at lower depths,
this allows us to find a solution faster, and since that consistency of the solution
quality does not change significantly, this would be an overall improvement for
practical implementations. This supports the consideration made by Zhou et al.
in Chapter VI of [18], that starting the heuristic strategies at an intermediate
depth may be advantageous of realistic implementations of these.
On the other hand, some observations, which Zhou et al. were able to make for
regular graphs, could not be made for the sample of non-regular graphs exam-
ined in this thesis:
Most notably, we could not observe an improvement of the outer-loop optimiza-
tion for the INTERP strategy, which is comparable to the basic QAOA variant
in terms of the consistency of the approximation qualities produced. This is
in stark contrast to the results for regular graphs, where the INTERP strategy
performs similarly well as the FOURIER strategies. This deviation from these
observations implies that the INTERP strategy may be less suitable for MAX-
CUT on problem instances where we cannot be assured of regularity of the
corresponding graphs.
Finally, aside from confirming that an increase in graph order or density has a
detrimental effect on the approximation ratios achieved by the strategies, most
likely to an increase in the difficulty of the QAOA parameter optimization, we
conjectured that there might be a further factor influencing the performance of
QAOA, which is the connectivity of the nodes. The results for the small sample of
non-regular graphs suggest that the presence of nodes with high connectivity
may considerably impact the approximation quality of QAOA and the heuris-
tic strategies1. However there still has to be some investigation to be carried
out in order to confirm or deny if this conjecture holds, as this effect may not
only be due to the nodes having a high connectivity, but instead due to certain
other structural properties of the graphs, and thus, this observation may not
be present for larger samples of graphs. If however it turns out that high con-
nectivity is an obstacle to the performance for heuristically optimized QAOA,
this would motivate using the heuristic strategies in conjunction with a QAOA
variant, which iteratively reduces the problem, such as RQAOA [45].

Taking these results and the observations made by Zhou et al. in [18] into con-
sideration, heuristic optimization of QAOA using one of the FOURIER strategy
variant seems to be feasible, especially in the context of realistic implementa-
tions on NISQ devices:
Considering that we need to run the basic QAOA variant more often to produce
an approximation quality that matches that of the FOURIER variants, and that
the evaluation of a quantum circuit can be an expensive task on the imperfect
NISQ-era devices we currently have access to, the FOURIER strategy seems
promising for near-term implementations of QAOA. Out of the various modifi-
cations we can make to the FOURIER strategy, setting a fixed q and starting
1with the exception of complete graphs of course, as these are trivial to solve, since any bal-
anced assignment of nodes yields the maximum cut

57

heuristic optimization at an intermediate depth q appear to be especially fa-
vorable for realistic implementations. The first of these, setting a fixed q < p
(i.e. restricting the maximum number of frequency components we allow in the
FOURIER parameterization), simplifies the optimization, as the number of fre-
quency domain parameters is bounded even as the circuit depth grows. The
second modification, using a intermediate level starting p, can further reduce
the number of times we have to run QAOA, as the effect this has the quality of
the approximation is unsubstantial.
A further modification, which was not tested in this thesis but which may be
advantageous for near-term implementations, is the use of known good initial
parameters (or an educated guess) to start heuristic optimization from, such as
the fixed parameters proposed in [14] (see Sections 3.1.2 and 3.3), as in this
way we could account for worst case instances and would not have to rely on the
initial parameters produced by running the random initialization QAOA variant
at the initial p. However, further investigation is required to assess how well
this works in practice.

58

7. Conclusion and Outlook

in summary, this work studied the QAOA parameter optimization heuristics IN-
TERP and FOURIER with a focus on NISQ-era devices by first giving a com-
prehensive overview of QAOA and the heuristic strategies as proposed by Zhou
et al. [18], as well a review of further related research, especially regarding
performance guarantees and limitations of QAOA and transferability of optimal
parameters. Next, numerical simulations were performed in order to bench-
mark the heuristic strategies on a small sample of instances of the MAXCUT
problem, which vary in graph order and density and are not constrained to be-
ing regular graphs.
the results give insight to the performance of heuristically optimized QAOA, and
show that the FOURIER strategy variants appear to be a promising modification
to the outer-loop optimization of QAOA parameters for realistic near-term im-
plementations of QAOA. Especially the fixed q variant in conjunction with using
an intermediate starting p (instead of setting the initial depth p = 1) appears to
be advantageous for such implementations.
While benchmarking the strategies for different problem instance graph orders
and densities, it became apparent that the decrease in median solution quality,
which comes with an increase in density, is not linearly proportional to this in-
crease, instead increasing more for some density levels than for others. This
may suggest that other factors, such as the connectivity of the individual nodes,
may also affect the performance of the QAOA variants. A further comparison of
problem instances with differing maximum node connectivity substantiates this
inference somewhat, however further investigations need to be carried out to
confirm or disprove this assumption. If a high node connectivity proves signif-
icantly detrimental to the performance heuristically optimized QAOA, the use
of QAOA extentions which iteratively reduce the problem, such as RQAOA, to-
gether with the heuristic strategies may be advantageous for near-term QAOA
implementations.

Future research into heuristic QAOA parameter optimization strategies could
build on the numerical simulations made in this thesis, and examine the per-
formance of the strategies at higher p or for problem instances with greater
graph orders, to determine if the FOURIER maintains the consistency, that was
observed in the experiments performed in this work, at higher depths or for
bigger problem instances.
Furthermore, one could examine the effect that different optimizers have on
the performance of the heuristic strategies, since the advantage, which the

59

FOURIER strategy provides, may be less substantial when using a more expen-
sive optimization method. Performing such a comparison could give insights
into trade-off between solution quality and the number of function evaluations
(that is, evaluations of the quantum circuit) required for convergence when us-
ing different optimizers with or without heuristic optimization. This knowledge
could help us when configuring QAOA to solve a problem of a certain size, since
we would have a better idea of what solution quality we can expect from certain
configurations.
Additionally, an examination of different problems may be interesting, as this
would give us a better idea of how the performance of the heuristic strategies
differs from the observations we made for MAXCUT and could possible identify
problems or problem instance types for which the use of INTERP is advanta-
geous.
Finally, two interesting research directions, which directly continue where we
left off in this thesis, are studies concerning the effect of providing good known
parameters, such as the fixed parameters discussed in [14], and further inves-
tigations into the the effect of structural properties of the problem instance
graphs, such as vertex connectivity, as was mentioned in the above paragraph.
The latter of these considerations may motivate the study of heuristically opti-
mized RQAOA: Not only could we overcome possible structural obstacles to the
performance of QAOA by recursively eliminating variables and replacing them
with problem constraints, but possibly even achieve better approximations in
a smaller number of QAOA runs than when using the heuristic strategies or
RQAOA independently. The reasoning behind this is as follows: It was shown
that when warm-starting RQAOA with an initial state that corresponds to the so-
lution of a relaxation of the problem, this can outperform standard RQAOA [46].
While the warm-start extension of QAOA is not equivalent to the heuristic strate-
gies, both work by modifying QAOA based on some initial solution; in the case
of the heuristic strategies, this is knowledge of optimal parameters at a lower
depth, while for warm-start QAOA this is the knowledge of a solution to a relaxed
version of the problem. Due to these similarities, heuristically optimizing the
RQAOA parameters may prove to be favorable for near-term implementations
of QAOA.

60

A. FOURIER method with random
perturbations

An improved variant of the FOURIER-Strategy that sets R ≥ 0; The aim of this
version is to circumvent a limitation of the basic version, namely the problem
that this variant sometimes gets stuck in sub-optimal local optima. Random
perturbations of the initial parameters have been demonstrated to improve the
performance of QAOA, since this makes it possible to "escape" from these flawed
local optima.

This improved variant determines initial parameters for depth p + 1 by opti-
mizing over R + 1 additional parameter sets (in addition to the parameter set
provided by the optimization-routine of the basic variant), where R of these sets
are generated by adding random perturbations to the best local optimum that
was found for depth p using the FOURIER strategy (i.e. a random permutation
is added to the optimal frequency domain parameters (u, v) at level p a total of
R times, resulting in R extra parameter sets; the one additional set in the R+ 1
randomly perturbed initial points are the best parameters for depth p with a
perturbation of zero added, effectively duplicating the point found by the basic
variant). Subsequently the best of these R+2 parameter sets (consisting of the
optimal parameters of the basic version and the R + 1 additional parameters
generated in the previous step) is chosen to be used as initial parameters for
(p+ 1)-level QAOA.
Aside from (uB(p), v

B
(p)), which is the best of these R + 2 initial points, (uL(p), vL(p)),

which is the original optimum found at level p, is kept in parallel for optimization
at level p + 1; when determining an initial point for p + 2 based on the optimal
parameters at level p+1, we will again generate R+1 random extra points from
(uB(p+1), v

B
(p+1)), while (uL(p+1), v

L
(p+1)) will be kept as is. From these R+2 additional

parameter sets we once again select the best parameters and repeat this pro-
cess iteratively until the targeted depth is reached1.
A comparison between this variant (FOURIER-QAOA augmented with random
permutations) and the basic FOURIER variant is made in Figure 10:
1by keeping the (uL

(p), v
L
(p)) optimum we can improve the stability of this heuristic, avoiding

erratic/non-smooth optimal parameters; Since we are thus essentially performing the basic
variant in parallel to the actual augmentation of the FOURIER strategy and including those
results in the pool of optima to select from, we can ensure that this variant will perform at
least as good as the basic strategy (i.e. if the random perturbations lead to a suboptimal
performance at the target depth, the initial point obtained by the basic strategy can still be
selected, resulting in the same performance as the base variant

61

u⃗L
(p)

, v⃗L
(p)

u⃗L
(p)

, v⃗L
(p)

u⃗B
(p)

, v⃗B
(p)

FOURIER[q, 0]

FOURIER[q, R]

Level p

u⃗(p+1), v⃗(p+1)

u⃗(p+1), v⃗(p+1)

u⃗R0
(p+1)

, v⃗R0
(p+1)

u⃗L
(p+1)

, v⃗L
(p+1)

u⃗L
(p+1)

, v⃗L
(p+1)

u⃗L,R0
(p+1)

, v⃗L,R0
(p+1)

u⃗
RR
(p+1)

, v⃗
RR
(p+1)

u⃗
L,RR
(p+1)

, v⃗
L,RR
(p+1)

u⃗R1
(p+1)

, v⃗R1
(p+1)

u⃗L,R1
(p+1)

, v⃗L,R1
(p+1)

... ...

Initial parameters Local optimaQAOA

u⃗B
(p+1)

, v⃗B
(p+1)

R + 1 additional parameters

The best of these
R+ 2 Parameters:

Level p+ 1

Where q is the maximum frequency component allowed for the amplitude parameters u⃗, v⃗; R is the Number
of random perturbations added to the best parameters found at level p, with the goal of escaping possible
local optima in order to find a better one

Figure 10.: Comparison between the basic QAOA-FOURIER method (FOURIER[q, 0])
and QAOA-FOURIER strategy with R random perturbations
(FOURIER[q,R]), based on Figure 10. in [18]

For the purpose of adding random permutations to the optimal parameters at
level p, Zhou et al. followed this procedure: For the previously determined best
p-level optimum (uB(p), v

B
(p)), a randomly perturbated initial point (uRr

(p), v
Rr

(p)), where
Rr is a the random perturbation with the index r = 0, 1, · · · , R, is generated by
adding a random permutation such that

(uR0

(p), v
R0

(p)) = (uB(p), v
B
(p)) (A.1)

(uRr

(p), v
Rr

(p)) = (uB(p) + αuPr

(p), v
B
(p) + αvPr

(p)) (A.2)

where uPr

(p) and v
Pr

(p) are random numbers drawn from the following normal dis-
tributions: [

uPr

(p)

]
k
∼ Normal

(
0,
[
uB(p)

]2
k

)
(A.3)[

vPr

(p)

]
k
∼ Normal

(
0,
[
vB(p)

]2
k

)
(A.4)

i.e distributions with a mean of zero and a variance that is determined by uB(p)
and vB(p).

Note that this introduces a new parameter, α, which controls the strength of
the perturbations (See Equation A.2). According to Zhou et al., setting α = 0.6
consistenly yields good results, however this value was determined by trial and
error, so better assignments of α may be possible.

62

B. Comparison to the
Goemans-Willamson Optimizer

This thesis primarily focuses on drawing a comparison between the heuristic
parameter selection strategies and the standard, randomly initialized, QAOA
method; in other words the goal is evaluating the performance of these strate-
gies relative to the basic variant. However, the reader may also be interested in
how these results compare to those produced by classical algorithms, in order
to better contextualize the problem instances for which the QAOA strategies
were benchmarked.
For this reason, the maximum cuts for these problem instances were computed
using the Goemans-Willamson (GW) algorithm [26] which was previously men-
tioned in Subsection 3.1.2 as the best currently known classical approximation
algorithm for MAXCUT. The implementation used for computing these results
was the GoemansWillamsonOptimizer of the qiskit.optimization module1.
The num_cuts parameter GW Optimizer was set to 1, and sort_cuts was left in
the default setting True. What this means is that the GW optimizer was config-
ured to return only the highest cut found2.
The results of these supplementary benchmarks are presented in the following
sections.

B.1. Results for the Problem Instances with
Increasing Order

Table B.1 shows the approximation ratios produced for the problem instances
with increasing graph order; the corresponding QAOA results can be found in
Section 5.2.

When comparing the results for the GW optimizer with the results for QAOA,
we find that the QAOA variants can sometimes match the performance of the
GW-Optimizer and, in cases where the GW algorithm produces approximation
ratios less than 1.0, produce better approximations. However, the majority of
QAOA runs produce a lower approximation ratio, meaning we would have to
1As with the implementation of the QAOA variants, qiskit.optimization version 0.5.0 was used.
2More accurately: only one of the highest cuts found, since there are always multiple cuts with
the highest cut value (at least two, since we could reverse the assignment of the nodes and
get the same cut value).

63

6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes
Graph 1 1.0 1.0 1.0 0.916 ≈ 0.968
Graph 2 1.0 1.0 1.0 0.916 1.0
Graph 3 1.0 0.81 1.0 ≈ 0.957 ≈ 0.969

Table B.1.: Goemans-Willamson approximation ratio for the problem instances with
increasing number of nodes, which are reported on in Section 5.2

run QAOA mutiple times in order to match/exceed the approximation quality
of the GW algorithm. The FOURIER strategy performs better than the basic
QAOA and INTERP variants in that regard, since the spread of the individual
approximation ratios is narrower, meaning we can match (or even surpass) the
GW approximation ratio in a fewer amount of QAOA runs compared to the basic
variant or INTERP.

B.2. Results for the Problem Instances with
Increasing Size

Table B.2 reports the approximation ratios produced for the problem instances
with increasing graph density (see Subsection 4.1.2 for details on how the den-
sity relates to graph size); the corresponding QAOA results can be found in
Section 5.3.

0.5 Dense 0.6 Dense 0.7 Dense 0.8 Dense 0.9 Dense
Graph 1 1.0 ≈ 0.923 1.0 0.93 ≈ 0.938
Graph 2 1.0 1.0 1.0 1.0 ≈ 0.938
Graph 3 0.81 0.916 1.0 0.93 ≈ 0.938

Table B.2.: Goemans-Willamson approximation ratio for the problem instances with
increasing number of nodes, which are reported on in Section 5.3

When comparing the results for the GW optimizer with the results for QAOA, we
find that, similarly to the results presented in Section B.2, the QAOA variants
can sometimes match or exceed the approximation quality of the GW algorithm,
but more often produce worse approximations, requiring us to run QAOA mul-
tiple times if we want to find a cut that is at least the size of the cut produced
by GW. This effect is more pronounced here than for the problem instances with
increasing graph order, since the QAOA approximation ratio decreases consid-
erably with increasing density, while approximation quality of the GW algorithm
appears to be unaffected by such a negative correlation. In other words, high
graph densitiess further increase the average number of QAOA runs needed to
match or surpass the approximation qualities of GW.

64

List of Figures

1. Graphs and Subgraphs . 17

2. QAOA Circuit . 22
3. QAOA-INTERP Circuit . 26
4. QAOA-FOURIER Circuit . 28

5. MAXCUT problem . 34

6. Median approximation ratio and percentiles with increasing prob-
lem instance order . 45

7. Median approximation ratio and percentiles with increasing graph
density . 48

8. Median approximation ratio and percentiles by density and pres-
ence of fully connected nodes . 51

9. Median approximation ratio and percentiles by initial depth p . . . 53

10. QAOA-FOURIER-R protocol . 62

65

Bibliography
[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Dis-

crete Logarithms on a Quantum Computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, Oct. 1997, arXiv:quant-ph/9508027, ISSN:
0097-5397, 1095-7111. DOI: 10.1137/S0097539795293172.

[2] L. K. Grover, A fast quantum mechanical algorithm for database search,
arXiv:quant-ph/9605043, Nov. 1996. DOI: 10.48550/arXiv.quant-ph/
9605043.

[3] R. Sagastizabal, X. Bonet-Monroig, M. Singh, et al., “Experimental er-
ror mitigation via symmetry verification in a variational quantum eigen-
solver,” Physical Review A, vol. 100, no. 1, p. 010302, Jul. 2019, Publisher:
American Physical Society. DOI: 10.1103/PhysRevA.100.010302.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, 2010.
DOI: 10.1017/CBO9780511976667.

[5] M. Cerezo, A. Arrasmith, R. Babbush, et al., “Variational Quantum Algo-
rithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, Aug. 2021,
arXiv:2012.09265 [quant-ph, stat], ISSN: 2522-5820. DOI: 10.1038/s42254-
021-00348-9.

[6] A. Peruzzo, J. McClean, P. Shadbolt, et al., “A variational eigenvalue solver
on a quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213,
Jul. 2014, arXiv:1304.3061 [physics, physics:quant-ph], ISSN: 2041-1723.
DOI: 10.1038/ncomms5213.

[7] N. Moll, P. Barkoutsos, L. S. Bishop, et al., “Quantum optimization us-
ing variational algorithms on near-term quantum devices,” Quantum Sci-
ence and Technology, vol. 3, no. 3, p. 030503, Jul. 2018, arXiv:1710.01022
[quant-ph], ISSN: 2058-9565. DOI: 10.1088/2058-9565/aab822.

[8] S. Hadfield, Z. Wang, B. O’Gorman, et al., “From the Quantum Approxi-
mate Optimization Algorithm to a Quantum Alternating Operator Ansatz,”
Algorithms, vol. 12, no. 2, p. 34, Feb. 2019, arXiv:1709.03489 [quant-ph],
ISSN: 1999-4893. DOI: 10.3390/a12020034.

[9] S. Hadfield, T. Hogg, and E. G. Rieffel, “Analytical Framework for Quan-
tum Alternating Operator Ans\"atze,” Quantum Science and Technology,
vol. 8, no. 1, p. 015017, Jan. 2023, arXiv:2105.06996 [quant-ph], ISSN:
2058-9565. DOI: 10.1088/2058-9565/aca3ce.

66

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.1103/PhysRevA.100.010302
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.3390/a12020034
https://doi.org/10.1088/2058-9565/aca3ce

[10] E. Farhi, J. Goldstone, and S. Gutmann, A Quantum Approximate Opti-
mization Algorithm, arXiv:1411.4028 [quant-ph], Nov. 2014.

[11] E. Farhi and A. W. Harrow, Quantum Supremacy through the Quantum
Approximate Optimization Algorithm, arXiv:1602.07674 [quant-ph], Oct.
2019.

[12] E. Farhi, D. Gamarnik, and S. Gutmann, The Quantum Approximate Opti-
mization Algorithm Needs to See the Whole Graph: Worst Case Examples,
arXiv:2005.08747 [quant-ph], May 2020.

[13] E. Farhi, D. Gamarnik, and S. Gutmann, The Quantum Approximate Opti-
mization AlgorithmNeeds to See theWhole Graph: A Typical Case, arXiv:2004.09002
[quant-ph], Apr. 2020.

[14] J. Wurtz and P. Love, “MaxCut quantum approximate optimization algo-
rithm performance guarantees for $p>1$,” Physical Review A, vol. 103,
no. 4, p. 042612, Apr. 2021, Publisher: American Physical Society. DOI:
10.1103/PhysRevA.103.042612.

[15] J. Wurtz and D. Lykov, The fixed angle conjecture for QAOA on regular
MaxCut graphs, arXiv:2107.00677 [quant-ph], Jul. 2021. DOI: 10.48550/
arXiv.2107.00677.

[16] X. Lee, Y. Saito, D. Cai, et al., “Parameters Fixing Strategy for Quan-
tumApproximate Optimization Algorithm,” en, in 2021 IEEE International
Conference onQuantumComputing and Engineering (QCE), arXiv:2108.05288
[quant-ph], Oct. 2021, pp. 10–16. DOI: 10.1109/QCE52317.2021.00016.

[17] L. Bittel and M. Kliesch, “Training Variational Quantum Algorithms Is NP-
Hard,” Physical Review Letters, vol. 127, no. 12, p. 120502, Sep. 2021,
Publisher: American Physical Society. DOI: 10.1103/PhysRevLett.127.
120502.

[18] L. Zhou, S.-T. Wang, S. Choi, et al., “Quantum Approximate Optimization
Algorithm: Performance, Mechanism, and Implementation on Near-Term
Devices,” Physical Review X, vol. 10, no. 2, p. 021067, Jun. 2020, Pub-
lisher: American Physical Society. DOI: 10.1103/PhysRevX.10.021067.

[19] S. Khairy, R. Shaydulin, L. Cincio, et al., “Learning to Optimize Variational
Quantum Circuits to Solve Combinatorial Problems,” en, Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, pp. 2367–
2375, Apr. 2020, Number: 03, ISSN: 2374-3468. DOI: 10.1609/aaai.
v34i03.5616.

[20] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics,
vol. 2, 2014, ISSN: 2296-424X.

[21] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, en. Courier Corporation, Jan. 1998, ISBN: 978-0-
486-40258-1.

[22] J. L. Gross and J. Yellen, Handbook of Graph Theory, en. CRC Press, Dec.
2003, Google-Books-ID: mKkIGIea_BkC, ISBN: 978-0-203-49020-4.

67

https://doi.org/10.1103/PhysRevA.103.042612
https://doi.org/10.48550/arXiv.2107.00677
https://doi.org/10.48550/arXiv.2107.00677
https://doi.org/10.1109/QCE52317.2021.00016
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1609/aaai.v34i03.5616
https://doi.org/10.1609/aaai.v34i03.5616

[23] F. Glover, G. Kochenberger, and Y. Du, A Tutorial on Formulating and
Using QUBO Models, arXiv:1811.11538 [quant-ph], Nov. 2019. DOI: 10.
48550/arXiv.1811.11538.

[24] E. Farhi, J. Goldstone, S. Gutmann, et al., Quantum Computation by Adi-
abatic Evolution, arXiv:quant-ph/0001106, Jan. 2000. DOI: 10 . 48550 /
arXiv.quant-ph/0001106.

[25] N. Hatano andM. Suzuki, “Finding Exponential Product Formulas of Higher
Orders,” in vol. 679, arXiv:math-ph/0506007, Nov. 2005, pp. 37–68. DOI:
10.1007/11526216_2.

[26] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming,” Journal of the ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995, ISSN:
0004-5411. DOI: 10.1145/227683.227684.

[27] D. Gamarnik, “The Overlap Gap Property: A Geometric Barrier to Opti-
mizing over Random Structures,” Proceedings of the National Academy of
Sciences, vol. 118, no. 41, e2108492118, Oct. 2021, arXiv:2109.14409 [cs,
math], ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.2108492118.

[28] F. G. S. L. Brandao, M. Broughton, E. Farhi, et al., For Fixed Control
Parameters the Quantum Approximate Optimization Algorithm’s Objec-
tive Function Value Concentrates for Typical Instances, arXiv:1812.04170
[quant-ph], Dec. 2018. DOI: 10.48550/arXiv.1812.04170.

[29] P. C. Lotshaw, T. S. Humble, R. Herrman, et al., “Empirical performance
bounds for quantum approximate optimization,” Quantum Information
Processing, vol. 20, no. 12, p. 403, Dec. 2021, arXiv:2102.06813 [physics,
physics:quant-ph], ISSN: 1570-0755, 1573-1332. DOI: 10.1007/s11128-
021-03342-3.

[30] V. Akshay, D. Rabinovich, E. Campos, et al., “Parameter concentrations in
quantum approximate optimization,” Physical Review A, vol. 104, no. 1,
p. L010401, Jul. 2021, Publisher: American Physical Society. DOI: 10.
1103/PhysRevA.104.L010401.

[31] J. Håstad, “Some optimal inapproximability results,” Journal of the ACM,
vol. 48, no. 4, pp. 798–859, Jul. 2001, ISSN: 0004-5411. DOI: 10.1145/
502090.502098.

[32] F. Barahona, M. Grötschel, M. Jünger, et al., “An Application of Combi-
natorial Optimization to Statistical Physics and Circuit Layout Design,”
Operations Research, vol. 36, pp. 493–513, May 1988. DOI: 10.1287/
opre.36.3.493.

[33] GitHub - lfd/arcs2022, Sep. 2022.
[34] Qiskit contributors, Qiskit: An open-source framework for quantum com-

puting, 2023. DOI: 10.5281/zenodo.2573505.

68

https://doi.org/10.48550/arXiv.1811.11538
https://doi.org/10.48550/arXiv.1811.11538
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.1007/11526216_2
https://doi.org/10.1145/227683.227684
https://doi.org/10.1073/pnas.2108492118
https://doi.org/10.48550/arXiv.1812.04170
https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1103/PhysRevA.104.L010401
https://doi.org/10.1103/PhysRevA.104.L010401
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.5281/zenodo.2573505

[35] “Quark: A framework for quantum computing application benchmarking,”
version 1.1.0, IEEE International Conference on Quantum Computing and
Engineering (QCE), pp. 226–237, 2022. DOI: 10.1109/qce53715.2022.
00042.

[36] F. J. Kiwit, M. Marso, P. Ross, et al., Application-Oriented Benchmarking of
Quantum Generative Learning Using QUARK, arXiv:2308.04082 [quant-
ph], Aug. 2023. DOI: 10.48550/arXiv.2308.04082.

[37] M. J. D. Powell, “A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation,” en, S. Gomez
and J.-P. Hennart, Eds., Book Title: Advances in Optimization and Numer-
ical Analysis, Dordrecht: Springer Netherlands, 1994, pp. 51–67. DOI:
10.1007/978-94-015-8330-5_4.

[38] M. Powell, “On trust regionmethods for unconstrainedminimization with-
out derivatives,” en, Mathematical Programming, vol. 97, no. 3, pp. 605–
623, Aug. 2003, ISSN: 1436-4646. DOI: 10.1007/s10107-003-0430-6.

[39] R Core Team, R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2022.

[40] R. Hyndman and Y. Fan, “Sample Quantiles in Statistical Packages,” The
American Statistician, vol. 50, pp. 361–365, Nov. 1996. DOI: 10.1080/
00031305.1996.10473566.

[41] R. Herrman, P. C. Lotshaw, J. Ostrowski, et al., Multi-angle Quantum Ap-
proximate Optimization Algorithm, arXiv:2109.11455 [quant-ph], Sep. 2021.
DOI: 10.48550/arXiv.2109.11455.

[42] J. R. McClean, S. Boixo, V. N. Smelyanskiy, et al., “Barren plateaus in quan-
tum neural network training landscapes,” en, Nature Communications,
vol. 9, no. 1, p. 4812, Nov. 2018, Number: 1 Publisher: Nature Publishing
Group, ISSN: 2041-1723. DOI: 10.1038/s41467-018-07090-4.

[43] M. Cerezo, A. Sone, T. Volkoff, et al., “Cost Function Dependent Barren
Plateaus in Shallow Parametrized Quantum Circuits,” Nature Communi-
cations, vol. 12, no. 1, p. 1791, Mar. 2021, arXiv:2001.00550 [quant-ph],
ISSN: 2041-1723. DOI: 10.1038/s41467-021-21728-w.

[44] C. Ortiz Marrero, M. Kieferová, and N. Wiebe, “Entanglement-Induced
Barren Plateaus,” PRX Quantum, vol. 2, no. 4, p. 040316, Oct. 2021, Pub-
lisher: American Physical Society. DOI: 10.1103/PRXQuantum.2.040316.

[45] S. Bravyi, A. Kliesch, R. Koenig, et al., “Obstacles to State Preparation
and Variational Optimization from Symmetry Protection,” Physical Re-
view Letters, vol. 125, no. 26, p. 260505, Dec. 2020, arXiv:1910.08980
[cond-mat, physics:quant-ph], ISSN: 0031-9007, 1079-7114. DOI: 10.1103/
PhysRevLett.125.260505.

[46] D. J. Egger, J. Marecek, and S. Woerner, “Warm-starting quantum opti-
mization,” Quantum, vol. 5, p. 479, Jun. 2021, arXiv:2009.10095 [quant-
ph], ISSN: 2521-327X. DOI: 10.22331/q-2021-06-17-479.

69

https://doi.org/10.1109/qce53715.2022.00042
https://doi.org/10.1109/qce53715.2022.00042
https://doi.org/10.48550/arXiv.2308.04082
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/s10107-003-0430-6
https://doi.org/10.1080/00031305.1996.10473566
https://doi.org/10.1080/00031305.1996.10473566
https://doi.org/10.48550/arXiv.2109.11455
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PhysRevLett.125.260505
https://doi.org/10.1103/PhysRevLett.125.260505
https://doi.org/10.22331/q-2021-06-17-479

Erklärung

1. Mir ist bekannt, dass dieses Exemplar der Bachelorarbeit als Prüfungsleis-
tung in das Eigentum der Ostbayerischen Technischen Hochschule Re-
gensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Bachelorarbeit selbstständig verfasst,
noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sin-
ngemäße Zitate als solche gekennzeichnet habe.

Ort, Datum und Unterschrift

Presented by: Vincent Eichenseher
Student ID: 2061182
Study Programme: Informatik
Supervisor: Prof. Dr. Wolfgang Mauerer
Secondary Supervisor: Prof. Dr. Christian Wolff

	Introduction
	Background on Quantum Computing and Combinatorial Optimization
	Background on Quantum Computing
	Qubits and Quantum States
	Multiple Qubit Systems and Entanglement
	Quantum Operators and Gate-based Quantum Computation
	Expectation Value and Measurement of Quantum States
	Problem encoding and the Ising Model

	Background on Combinatorial Optimization
	Combinatorial Optimization and NP-Hard Problems
	QUBO formulation
	Graph theory fundamentals

	Background on the Quantum Approximate Optimization Algorithm and Related Work
	QAOA
	Algorithm
	Known Performance Guarantees and Limitations

	Parameter Selection Heuristics for QAOA
	INTERP
	FOURIER

	On the Transferability of Optimal QAOA Parameters between Problem Instances

	Method
	Problem instance generation
	MAXCUT
	Generating Graphs by Density

	Benchmarking the different strategies
	Benchmarking Framework
	Implementation of the Application, Mapping and Solver
	Experimental Setup

	Results
	Plotting the Data
	Solution Quality with an increasing Number of Nodes
	Effect of different Graph Densities
	Solution Quality with increasing Graph Density
	How Different Edge Assignments Affect the Solution Quality

	Solution Quality Starting with an Intermediate Initial p

	Discussion
	Conclusion and Outlook
	FOURIER method with random perturbations
	Comparison to the Goemans-Willamson Optimizer
	Results for the Problem Instances with Increasing Order
	Results for the Problem Instances with Increasing Size

	Bibliography

