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Abstract

Quantum Computing (QC) offers the potential for substantial computational speed-ups
by exploiting the principles of quantum mechanics. Several quantum algorithms have
already been shown to outperform classical methods. However, their practical useful-
ness on current Noisy Intermediate-Scale Quantum (NISQ) devices is still limited due
to hardware noise and the small number of available qubits. Even with these limita-
tions, variational hybrid quantum–classical algorithms are viewed as a promising way
to achieve early quantum advantages on existing hardware.

This bachelor’s thesis investigates compact hardware demonstrators that make quan-
tum concepts accessible and examines the feasibility of Quantum Machine Learning
(QML) embedded systems. The first part focuses on an empirical study of Variational
Quantum Deep Q-Learning (VQ-DQL) in embedded systems. For this purpose, a VQ-DQL
agent was developed that controls an Anki Overdrive car on a custom-designed track.
The training results show that the quantum agent can reach a performance level similar
to a classical Deep Q-Network (DQN).

The second part presents a compact Quantum circuit demonstrator based on an afford-
able ESP32 microcontroller. The system is designed for accessibility and hands-on ex-
perimentation. It uses Radio Frequency Identification (RFID)-modules as a physical in-
terface for selecting quantum gates and simulates the state of a five-qubit system in real
time. The successful implementation and evaluation of basic quantum circuits, includ-
ing the creation of entangled states such as a five-qubit Bell state, confirm the hands-on
functionality and practicality of the demonstrator.

The findings of this thesis show that low-cost and accessible quantum learning tools are
feasible. They also highlight future progresses, especially in improving the scalability of
such demonstrators and developing more effective optimization techniques for quantum
machine learning algorithms.
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Kurzfassung

QC bietet das Potenzial für erhebliche Geschwindigkeitsvorteile, da es die Prinzipien
der Quantenmechanik nutzt. Einige Quantenalgorithmen konnten bereits theoretisch
zeigen, dass sie klassischen Methoden überlegen sind. Ihre praktische Anwendbarkeit
ist auf heutigen NISQ Geräten jedoch weiterhin begrenzt, was vor allem auf Hardware-
Rauschen und die geringe Anzahl verfügbarer Qubits zurückzuführen ist. Trotz dieser
Einschränkungen gelten variationale hybride quanten-klassische Algorithmen als ein -
versprechender Ansatz, um bereits mit bestehender Hardware einen frühen quantenbe-
dingten Vorteil zu erzielen.

Diese Bachelorarbeit untersucht kompakte Hardware-Demonstratoren, die quantenme-
chanische Konzepte anschaulich vermitteln, und analysiert zugleich die Umsetzbarkeit
von QML eingebetteten Systemen. Der erste Teil widmet sich einer empirischen Unter-
suchung von VQ-DQL in eingebetteten Systemen. Zu diesem Zweck wurde ein VQ-DQL-
Agent entwickelt, der ein Anki-Overdrive-Fahrzeug auf einer Strecke steuert. Die Train-
ingsergebnisse zeigen, dass der Quanten-Agent ein Leistungsniveau erreichen kann, das
mit einem klassischen DQN vergleichbar ist.

Im zweiten Teil wird ein kompakter Quantenschaltkreisdemonstrator vor- gestellt, der
auf einem kosten- günstigen ESP32-Mikrocontroller basiert. Das System wurde speziell
für leichte Zugäng- lichkeit und praxisorientiertes Lernen konzipiert. RFID-Module di-
enen als physische Schnittstelle zur Aus- wahl von Quantengattern, während das Gerät
in Echtzeit den Zustand eines Fünf-Qubit-Systems simuliert. Die erfolgreiche Imple-
mentierung und Überprüfung grund- legender Quantenschaltkreise, darunter auch die
Erzeugung verschränkter Zustände wie eines Fünf-Qubit Bellzustands, bestätigt die
Funktionalität und praktische Nutzbarkeit des Demonstrators.

Die Ergebnisse dieser Arbeit zeigen, dass kostengünstige und leicht zugäng- liche Lern-
plattformen für QC realisierbar sind. Zudem eröffnen sie zukünftige Fortschritte, ins-
besondere im Hinblick auf die Skalierbarkeit solcher Demonstratoren und die Entwick-
lung effektiverer Optimierungsstrategien für quantenmaschinellen Lernenalgorithmen.
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1 Introduction

The field of QC aims to exploit the properties of quantum mechanics in order to achieve
computational speed-ups. It has indeed been shown that certain problems can theoret-
ically be solved more efficiently using quantum algorithms than classical algorithms.
Two well-known examples are Grover’s algorithm [1] and Shor’s algorithm [2], which
respectively provide a quadratic speed-up for the exploration of unstructured search
spaces and efficiently solve prime factorization and discrete logarithm problems.

While the promise of quantum computing is vast, the current generation of quantum
computers, called NISQ systems, is prone to errors, such as decoherence caused by
interactions with the environment, and is limited by a few available qubits [3]. These
hardware imperfections limit the capabilities of current quantum devices and impose
restrictions on the size of problems that can be solved on them. Nonetheless, some
quantum approaches offer potential advantages over classical approaches, even in the
NISQ-era, with variational hybrid quantum-classical algorithms being particularly well-
suited for near-term gate-based quantum machines [4], [5]. These algorithms perform
only a limited number of steps on a quantum computer, with the remaining steps ex-
ecuted on classical machines, making it more feasible to take advantage of QC within
current hardware constraints. A promising class of hybrid methods is QML, especially
Quantum Reinforcement Learning (QRL), which operates on small data sets but explores
large search spaces in which quantum computing may provide advantages. [6], [7].

This exploration is significant given that despite substantial advancements in classical
Reinforcement Learning (RL) over the past decade, achieving superhuman performance
even on simple tasks still requires vast computational resources, making the search for
quantum speed-ups in this domain a natural area of research [8]. However, a major chal-
lenge facing the entire field is the lack of intuitive, engaging, and accessible educational
tools that can lower the barrier to entry for non-experts and cultivate new talent [9]. Cur-
rent quantum cirriculum approaches often remain too abstract and difficult to grasp for
newcomers, hindering wider understanding [9]. The primary goal of this thesis is to ad-
dress this crucial gap by focusing on the development and implementation of accessible
hardware demonstrators for QC and quantum-enhanced reinforcement learning.

This thesis pursues this goal by first analyzing and comparing the performance of VQ-
DQL [6], [10], [11] with its classical counterpart, Deep Q-Learning (DQL), utilizing the
real-world control problem of driving an Anki Overdrive car. This real-world applica-
tion serves as a gamified use case to explain the core concepts of RL and its quantum
enhancement in a tangible way.

Secondly, the work details the design and implementation of a compact QC hardware
demonstrator using an affordable embeddedmicrocontroller platform, such as the ESP32.
This demonstrator is specifically built to provide a hands-on, real-world interface, using

1



physical components to represent gates, allowing audiences to physically interact with
and intuitively explore the core principles of a quantum circuit, thus creating a much-
needed [9], enjoyable and practical entry point to this complex field.

Structure This thesis is beginning with Chapter 2, which provides the necessary back-
ground of QC. Chapter 3 introduces the fundamentals of RL, Q-Learning and its quantum
analog. Chapter 4 presents the hardware components and its communication protocols
used in this work. Chapter 5 describes the development of the two quantum demon-
strators, including the methodology for implementing the self-learning agent and the
design of the microcontroller-based quantum simulator. Chapter 6 discusses the results
obtained from both demonstrators and gives an outlook on future research directions.
Finally, Chapter 7 summarizes the key findings and contributions of this thesis.
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2 Background on Quantum
Computing

This section provides a concise introduction to the fundamental concepts of QC. It starts
by introducing the basic unit of quantum information, the qubit and superpositions in
Sec. 2.1 and expanding the concept of multi-qubit systems and entanglement in Sec. 2.2.
Sec. 2.3 then describes quantum gates, which are the building blocks for quantum com-
putation. Sec. 2.3.2 discusses universal gate sets, which are essential for constructing
arbitrary quantum circuits. Finally, Sec. 2.4 introduces Variational Quantum Algorithm
(VQA), which are particularly relevant for hybrid quantum-classical approaches.

2.1 Quantum Bits

The quantum bit, or qubit, represents the fundamental unit of quantum information.
Unlike classical bits, a qubit harnesses the principle of superposition, allowing it to exist
in a linear combination of the two basis states.

For single qubits, these computational basis states are symbolized by |0⟩ and |1⟩, forming
a basis B, allowing them to be represented [12] as

B = {|0⟩, |1⟩} =
{(

1
0

)
,

(
0
1

)}
, (2.1)

as a superposition or in other words a linear combination of basis states:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.2)

with its complex amplitudes α, β ∈ C.

When a measurement is performed in the standard basis |0⟩ , |1⟩, the superposition col-
lapses to one of the computational basis states, where the state |0⟩ is obtained with
probability |α|2, and |1⟩ with probability |β|2. The normalization condition

|α|2 + |β|2 = 1 (2.3)

ensures that the total measurement probability equals one [13].

3



The notation above used to described quantum states is known as the Dirac notation.
Within this framework, a quantum state is represented by a vector called a ket, symbol-
ized as |ψ⟩, where ψ is simply a label for the specific state vector. The complex conjugate
transpose of a ket |ψ⟩ is called a bra, denoted by ⟨ψ|.

x
y

z
|0⟩

|1⟩

|ψ⟩

|0⟩+|1⟩√
2

φ

θ

Figure 2.1: Representation of a qubit by the Bloch sphere [14].

Every pure single-qubit state can equivalently be represented as a point on the surface
of the Bloch sphere, depicted in Fig. 2.1. By choosing suitable real parameters γ, θ, φ ∈ R
Eq. 2.2 can be written [13] as

|ψ⟩ = eiγ
(
cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩
)
. (2.4)

Here, θ corresponds to the polar angle and φ to the azimuthal angle on the Bloch sphere,
while eiγ represents the global phase which has no observable physical effect and there-
fore be disregarded in the following.

2.2 Multiple Qubits and Entanglement

Classical bits can be combined through simple concatenation to form longer bitstrings.
For example, two bits can represent four possible states, namely 00, 01, 10, 11. How-
ever, unlike classical bits, a pair of qubits can exist in a superposition of all four possible
basis states.

A two qubit quantum system can therefore be represented as [13]

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ , (2.5)

where αij ∈ C with i, j ∈ {0, 1} are the probability amplitutes for the basis states and
their squared amplitudes |αij|2 must sum to one, due to the normalization condition.

Due to the principle of superposition, an n-qubit system can encode and process informa-
tion that scales as O(2n). In contrast, a classical system is limited to scaling of O(n). This
exponential increase in computational complexity is one of the indicators of a potential
quantum advantage [12].
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To construct the state space of a multi-qubit system, individual vector spaces V and W
can be combined using the tensor product [13]. The resulting space has basis vectors of
the form |i⟩ ⊗ |j⟩, where |i⟩ and |j⟩ denote orthonormal basis states of V and W , respec-
tively. Any state in the combined space can then be expressed as a linear combination
of these tensor product basis states.

The tensor product for vectors and matrices is implemented using the Kronecker prod-
uct. For example, using the computational basis representation |0⟩, the two-qubit state
|00⟩ is computed as:

|00⟩ = |0⟩ ⊗ |0⟩ =
(
1
0

)
⊗
(
1
0

)
=


1 · 1
1 · 0
0 · 1
0 · 0

 =


1
0
0
0

 , (2.6)

which is a computational state of a two-qubit system.

More generally, for an n-qubit system, any quantum state consisting of 2n probability
amplitudes can be written as

|ψ⟩ =
2n−1∑
i=0

αi |i⟩ , αi ∈ C,
∑
i

|αi|2 = 1, (2.7)

where 2n is the dimension of the state space. Thus, the state vector of an n-qubit sys-
tem formally contains 2n amplitudes. However, only generic quantum states require an
explicit specification of all amplitudes, whereas special cases, such as basis states with
a single non-zero amplitude, allowing an efficient classical representation. For conve-
nience, tensor products of multiple single-qubit states such as

|v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩ (2.8)

are commonly written in the compact form

|v1v2 · · · vn⟩. (2.9)

In an ideal, noise-free quantum system, the state of the computer is fully described
by a single normalized statevector, known as a pure state. Real quantum hardware,
however, is subject to noise and decoherence effects [3]. These noise proccesses lead to
mixed states, which are statistical ensembles of pure states, which can be described by
density matrices [13]. This representation requires more memory rescources, compared
to pure states, as a density matrix for an n-qubit system has dimensions 2n× 2n, making
mixed-state simulations substantially more computationally expensive. Since the focus
of this work lies on simulating ideal quantum circuits, all simulations in this thesis are
restricted to pure states.

QC also introduces a concept called entanglement which has no classical counterpart
[13]. The Bell state or EPR pair [15], [16] is a well-known example of an entangled state
in a two qubit system, defined as:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), (2.10)
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which has the property that measuring one qubit instantaneously determines the state
of the other. Taking the state from Eq. 2.10, the second qubit yields the same result as
the first, resulting in perfect correlations between the two qubits. This phenomena is
the foundation for various QC protocols and algorithms [13].

2.3 Quantum Computation

This section provides an overview of the basic principles of quantum computation, with
a particular emphasis on how quantum gates are used to transform quantum states. It
starts by defining a quantum gate and its quantum circuit model.

Quantum Gates An important part of QC is the manipulation of qubit states. This
can be achieved by rotating the state vector in the complex vector space using trans-
formation, such as applying matrices. To ensure that the transformation presevers the
normalization condition from Eq. 2.3, the corresponding matrix U must fulfill the unitary
condition

U †U = UU † = I, (2.11)

where U † is the conjugate transpose of U and I is the identity matrix [13]. Quantum
operations (except measurements) are unitary operations, and therefore, are reversible.
This is in contrast to classical logic gates, which are often irreversible.

Quantum Circuits Deutsch introduced 1989 the quantum circuit model [17]. This
model is a description of a collection of qubits with gates acting on each qubit in a fixed
sequence. Similar to classical algorithms, a quantum register prepared in an initial
state serves as the input, while quantum gates act on the qubits. The output is received
by measuring the qubits. There are other model representations of QC, like adiabatic
quantum computing [18], but this is out of the scope of this thesis.

In the gate-based model introduced by Deutsch, qubits are represented as wires run-
ning from left to right. Quantum gates operate on the qubits by being applied to the
corresponding wires.

q0 U

P
q1

Figure 2.2: Example of a Quantum Circuit.

Fig. 2.2 illustrates an example quantum circuit in which a U gate is applied to qubit q0,
followed by a two-qubit gate P acting on qubits q0 and q1, after which both qubits are
measured.
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2.3.1 Single-Qubit Gates

Classical computing employs only one non-trivial single-bit gate, the NOT gate, which
flips a bit, that is, transforming 0 to 1 and vice versa. QC, in contrast to its classical
counterpart, employs multiple single-qubit gates that manipulate quantum states. The
quantum analog of the classical NOT gate is the Pauli-X gate [13], defined as

X =

[
0 1
1 0

]
. (2.12)

For a general single-qubit state α |0⟩ + β |1⟩, the action of the X gate with α, β ∈ C and
|α|2 + |β|2 = 1 is given by

Xα |0⟩+Xβ |1⟩ = X(α|0⟩+ β|1⟩) =
[
0 1
1 0

] [
α
β

]
=

[
β
α

]
= β|0⟩+ α|1⟩, (2.13)

resulting in a negation of the amplitudes. The X gate is a part of the set of Pauli gates,
which also includes the Pauli-Y and Pauli-Z gates. These widely used matrices [13] are
defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (2.14)

Pauli matrices are not only unitary but also Hermitian [19], satisfying

A = A†, (2.15)

which, described by [19], implies that their eigenvalues are real. Hermitian operators
correspond to observable physical quantities in quantum mechanics, therefore they are
often referred to as observables [13]. Post-measurement, the quantum state collapses to
one of the eigenstates of the operator being measured. Pauli-Z is particularly important
for measurements in the computational basis, as its operater has the eigenvectors |0⟩
and |1⟩ with eigenvalues +1 and -1 respectively, therefore making it essential in the
context of hybrid quantum-classical algorithms, including QRL.

In addition to the Pauli operators, their corresponding rotational gates play a central role
in quantum state manipulation. Rotational gates implement continuous transformations
on the Bloch sphere, allowing qubit states to be adjusted by arbitrary angles. For a given
Pauli operator A ∈ {X, Y, Z}, the rotation operator around axis A by an angle θ ∈ R is
defined as

RA(θ) = e−i θ
2
A. (2.16)

Explicitly, the three rotational gates are given by
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RX(θ) =

(
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ) , (2.17)

RY (θ) =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ) , (2.18)

RZ(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
. (2.19)

Rotational Gates are frequently used in a Variational Quantum Circuit (VQC), as they can
be parameterized by optimizable parameters θ, described in more detail in Sec. 2.4.

In addition to rotation gates, the Hadamard gate H and the T gate are fundamental
single-qubit gates in QC. The Hadamard gate creates superposition states from compu-
tational basis states, while the T gate applies a π/4 phase rotation, enabling finer control
over qubit phases [13]. Their matrix representations are given by

H =
1√
2

(
1 1
1 −1

)
, (2.20)

T =

(
1 0
0 eiπ/4

)
. (2.21)

2.3.2 Multi-Qubit Gates and Universal Gate Sets

In QC, multi-qubit gates are fundamental for creating correlations and entanglements
between qubits, which are essential resources for quantum algorithms. Among the most
commonly used two-qubit gates is the CNOT (Controlled-NOT) gate, operating between
two seperate qubits defined as:

CNOT : |c⟩ |t⟩ 7→ |c⟩ |t⊕ c⟩ , (2.22)

where |c⟩ is the control qubit, |t⟩ is the target qubit, and ⊕ denotes addition modulo 2.
The CNOT gate flips the target qubit if the control qubit is in the |1⟩ state, leaving it
unchanged if the control qubit is |0⟩ [13]. This gate is essential for generating entangled
states, such as a Bellstate (see Eq. 2.10) :

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) = (CNOT1,2 ⊗H) |00⟩ , (2.23)

where CNOTx,y indicates that x is the control and y the target qubit.
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The CNOT gate can be represented in matrix form as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.24)

Generally speaking any single-qubit gate unitary U can be used as a target gate, where
the target qubit is only modified if the control qubit is in the |1⟩ state [13]. The symbols
for CNOT and controlled-Pauli-Z (CZ) gates, which are used in VQCs to ensure correla-
tions, are depicted in Fig. 2.3.

(a) CNOT (b) CZ

Figure 2.3: Circuit symbols for the controlled-NOT (CNOT ) and the controlled-Pauli-Z (CZ)
gate. The control qubit is indicated by a black dot, whereas the target qubit is
indicated by the ⊕ symbol for the CNOT gate and by the × symbol for the CZ gate.

In QC, a universal gate set is a collection of gates from which any unitary operation,
and thus any quantum computation, can be approximated to arbitrary accuracy. One
used universal gate set consists of the single-qubit gates {H,X, Y, Z, T} together with
the two-qubit CNOT gate [20]. While Clifford gates alone can be efficiently simulated
classically [21], the addition of the T gate allows for universal quantum computation
and access to the full computational power of quantum systems. Alternatively, the Pauli
gates can be replaced by the phase gate S, yielding the widely used Clifford+T gate set
[20]. However, this formulation is beyond the scope of this thesis, as the use of Pauli
gates provides a more intuitive interpretation in terms of axis rotations for the design
of the demonstrator in Sec. 5.2.

Another common universal set is based on the single-qubit rotation gates {RX , RY , RZ}
together with CNOT. These gates allow continuous parameterization of qubit rotations,
making them particularly suitable for VQAs, such as those used in hybrid quantum-
classical approaches including QRL. Both gate sets are capable of constructing any
multi-qubit unitary, demonstrating the universality of these gates for quantum compu-
tation. This concludes the building block necessary to understand variational hybrid
quantum-classical algorithms, which are introduced in the next section.

2.4 Variational Hybrid Quantum-Classical Algorithms

This section introduces variational hybrid quantum-classical algorithms, which are cen-
tral to the approaches for QRL discussed later in Sec. 3.4.
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Variational hybrid quantum-classical algorithms represent a class of quantum al-
gorithms that combine parameterized quantum circuits with classical optimization rou-
tines. These algorithms are widely used to approximate target functions [22] in tasks
such as QRL, which is described in Sec. 3.4.

A VQA aims to find a set of optimal parameters θ⃗ that minimizes a cost function C de-
pending on the parameters:

θ⃗∗ = argmin
θ⃗
C(θ⃗), (2.25)

where θ⃗∗ represent the optimal parameters for the cost function. A VQA employs a
parameterized quantum circuit, often referred to as a VQC . Such circuits contain gates
with adjustable parameters, typically realized through single-qubit rotations around the
pauli axes. During training, an input state is prepared and processed by the VQC, after
which measurements are performed on the output state. The circuit parameters are
then updated using classical optimization methods, such as the Adam optimizer [23], to
minimize a predefined cost function. This hybrid quantum-classical loop is iterated until
the VQC approximates the target function to the desired quality.

Quantum Computer Classical Computer

...

|0⟩

Ue(x⃗) U(θ⃗)...
|0⟩

Classical Algorithm

Input
x⃗

Parameters
θ⃗

Output ⟨Ô⟩

Figure 2.4: Structure of a quantum-classical algorithm using a VQC [14]

An VQC consists of three parts, seen in Fig. 2.4. The first part prepares classical input
data x⃗ to represent a quantum state. The input is encoded into a initial state |ψin(x⃗)⟩,
which is by convention assumed to be |0⟩⊗n [12], using an encoding unitary Ue(x⃗):

|ψin(x⃗)⟩ = Ue(x⃗) |0⟩⊗n . (2.26)

After encoding, the state is processed by a parameterized unitary U(θ⃗), referred to as a
variational layer, representing the trainable part of the circuit:

|ψout(x⃗, θ⃗)⟩ = U(θ⃗) |ψin(x⃗)⟩ . (2.27)

Finally, measurements of an observable Ô are performed on the output state to obtain
classical information. The expectation value of Ô, later discussed in Sec. 2.4.2, is used
to evaluate the cost function.

The classical optimizer then updates the parameters θ⃗ iteratively to minimize C(θ⃗). The
classical part feeds input data x⃗ to the encoding component and parameters θ⃗ to the
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variational layer [6]. The following three subsections provide a more detailed expla-
nation of quantum encodings used to transform classical data to quantum states, data
extraction of quantum states and the calculation of gradients used for the cost function
evaluation.

2.4.1 Quantum Encodings

In order to process classical information on a quantum computer, the data must first
be transformed into a quantum representation. This transformation is realised through
encoding unitaries, which map classical input vectors x⃗ to quantum states |ψin(x⃗)⟩ =
Ue(x⃗) |0⟩⊗n. Several encoding strategies have been proposed in the literature, each of-
fering a different trade-off between circuit complexity, qubit efficiency, and representa-
tional density. In this work, two widely used methods [24], [25] are listed in the follow-
ing:

Amplitude Encoding enables compact representation of classical data by mapping
real-valued features, such as integers or floating-point numbers, onto the amplitudes
of a quantum state. Using n qubits, it is possible to encode up to 2n classical values
simultaneously, while ensuring that the amplitudes satisfy the normalisation condition
Eq. 2.7. This encoding therefore offers the highest information density among common
approaches. However, preparing a general quantum state with arbitrary amplitudes via
the corresponding unitary U (a)

e requires an exponential number of operations to encode
2n data values, making it infeasible for current NISQ-devices [25], [26]. Consequently,
amplitude encoding is typically limited to small data dimensions or theoretical studies.
Hence, we do not consider it in our study.

Angle Encoding in contrast, maps classical values to the rotation angles of parame-
terised quantum gates. The corresponding unitary U (∠)

e (x⃗) applies one [10], [25] or more
[27], [28] Pauli-rotation gates to each qubit:

U (∠)
e (x⃗) =

n∏
i=1

Rσi
(xi), (2.28)

where Rσi
(xi) = e−ixiσi/2 and σi denotes a Pauli operator (X, Y , or Z). Since rotation

gates are periodic, input values must be scaled to a finite interval, typically [0, 2π] or
smaller. Various schemes have been proposed to perform this scaling. Skolik et al. [29]
present Continous (C) encoding, which computes rotation angles as the arctan of the
respective input value [6]. Angle encoding requires only one qubit per feature, leading to
shallow circuits and low resource requirements, which makes it particularly well suited
for near-term quantum hardware and applications such as QRL. For these reasons, angle
encoding is employed in this work.

The standard encoding strategy in a VQC follows a structure analogous to a classical
Neural Network (NN): the input is embedded once into the circuit using an encoding
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unitary, after which the variational layers are applied until measurement, depicted in
Fig. 2.5b.

However, data re-uploading [30] has been proposed as a method to increase the expres-
sivity of VQCs, that is their ability to represent groups of functions [10]. In gate-based
quantum circuits, there is no theoretical limitation on how often input features can be
reintroduced. This allows the encoding unitary to be inserted multiple times through-
out the circuit, as illustrated in Fig. 2.5a. Reintroducing the input information at sev-
eral points in the circuit enables the model to capture more complex relationships[31],
thereby enhancing its representational power.

. . . ...

|0⟩
Ue(x⃗) Uv(θ⃗1) Ue(x⃗) Uv(θ⃗l)

...
|0⟩

(a) VQC architecture with data re-uploading.

. . . ...

|0⟩
Ue(x⃗) Uv(θ⃗1) Uv(θ⃗l)

...
|0⟩

(b) Standard VQC architechture.

Figure 2.5: VQC architectures with and without data re-uploading for an encoding unitary Ue(x⃗)
representing the classical data x⃗ and a variational unitary Uv(θ⃗i), parameterised by
θ⃗i with i ∈ [1, l] and l variational layers.

2.4.2 Quantum Data Extraction

To retrieve classical information from a quantum state |ψ⟩, one typically evaluates the
expectation value ⟨Ô⟩ [32] of a hermitian observable Ô, which is defined as

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩
⟨ψ|ψ⟩

. (2.29)

Because all quantum states in this work are assumed to be normalized, ⟨ψ|ψ⟩ is equal
to one and can therefore be ommitted. As quantum measurements are probabilistic
by nature, the probability of each measured value is bound to the amplitudes of the
corresponding basis state. Therefore the expectation value of an observable cannot be
properly obtained from a single circuit measurement but must be estimated by averag-
ing measurement outcomes over multiple repetitions. As prior stated, due to simplicity
and hardware efficiency, Pauli operations are frequently chosen as measurement ob-
servables in VQAs [32].

2.4.3 Quantum Gradient Estimation

To solve the optimization problem, defined in Eq. 2.25, which aims to find optimal pram-
eters θ⃗, the parameters can be trained using gradient-based approaches. In this context,
a VQC is considered where the parameterized unitary U(θ⃗), which depends on m real
gate parameters θ⃗, transforms the initial state |ψ⟩ , followed by a measurement of the
observable Ô. The output of such a parameterized quantum circuit can be written as the
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expectation value of an observable Ô with respect to the state prepared by the circuit.
Formally, this defines a real-valued function [31] f : Rm → R:

f(θ⃗) := ⟨Ô⟩ = ⟨ψ |U †(θ⃗)ÔU(θ⃗) |ψ⟩, (2.30)

where U(θ⃗) denotes a parameterized unitary transformation acting on an input state |ψ⟩.
To minimize a cost function C(θ⃗) based on Eq. 2.30, gradient-based optimisation meth-
ods can be applied. However, classical finite-difference approximations (or altogether
gradient-free methods) are unfeasible in near-term quantum devices [33].

Consider a parameterised quantum gate of the form

Rσ(µ) = e−iµσ/2, (2.31)

where σ is a Pauli operator and µ ∈ θ⃗ is a single trainable parameter. If each generator
σ has only two distinct eigenvalues, then the partial derivative of f(θ⃗) with respect to
µ ∈ θ⃗ can be evaluated [22] analytically via the parameter-shift rule [4], [33]:

∂f(θ⃗)

∂µ
=

1

2

[
f(θ⃗µ,+π

2
)− f(θ⃗µ,−π

2
)
]
, (2.32)

where θ⃗µ,s denotes that parameter µ is parameter shifted by s, whereas the parameter
(µ + s) ∈ θ⃗µ,s. The parameter-shift rule enables the analytical computation of gradients
[31]. For a general cost function C(θ⃗), which depends on the expectation values pro-
duced by the VQC, the gradient of C(θ⃗) can therefore be obtained by applying the chain
rule [6], [22].

As shown by Pérez et al.[30], a VQC can act as a universal function approximator, similar
to a classical NN [34]. This implies that, given a sufficient number of parameters, a VQC
can approximate any continuous function. This property makes VQCs highly suitable
for optimization and machine learning tasks, where function approximation is a central
component. Additionally, VQCs offer flexible control over circuit depth and the number
of qubits, which makes them particularly adaptable for use on NISQ-devices [5].
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3 Background on Reinforcement
Learning

In this section we will introduce the basic concepts of RL and its mathematical founda-
tion, the Markov Decision Process (MDP). We will also discuss various RL algorithms,
including Q-Learning and Temporal-Difference Learning (TDL). Finally, we will explore
DQL and its application in complex environments. RL is a subfield of machine learning
which falls into the category of interaction-based learning. The goal of RL is to learn a
optimized policy with regard to a reward received by its corresponding problem.

3.1 Markov Decision Process

The mathematical framework undermining RL is the MDP, which provides a formal no-
tation to model the sequential interaction between an agent and its environment over
discrete time steps t. AnMDP is comprehensively defined by the tuple ⟨S,A, P,R, γ⟩, cap-
turing the entire dynamics and objective of the problem, which can be seen in Fig. 3.1.

In each time step t, the state of the environment is summarized by the state St ∈ S,
where S denotes the set of all possible states. Based on this configuration, the agent
selects an action At ∈ A, where A is the set of all possible actions. This selection is
governed by a policy π, defined as the probability P of taking action At in state St,
π(s, a) = P [At = a|St = s].

Agent

Environment

action
At

St+1

Rt+1

state
St

reward
Rt

Figure 3.1: Transition of an agent in a MDP interacting with its environment over discrete time
steps [35].

Taking action At in state St causes the environment to transition to a new state St+1 ∈
S. This transition is determined by the state transition probability P (St+1|St, At), which
specifies the likelihood of reaching state St+1 from state St after taking action At. This
probability fulfills the Markov property [36], meaning the next state depends solely on
the current state St and action At, independent of the past history of the process.
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3.1.1 Rewards and Return

The agent’s objective is to find a policy that maximizes the expected cumulative reward
it receives from the environment, known as the return Gt. This is calculated as the
discounted sum of future rewards until a terminal state ST is reached [35]:

Gt =
T∑

t′=t

γt
′
Rt′ . (3.1)

Here, the discount factor γ ∈ [0, 1] determines the present value of future rewards,
effectively balancing immediate and long-term gains. The period from the initial state
S0 to the terminal state ST is referred to as an episode.

A key challenge in RL is that the MDP’s underlying dynamics P (St+1, Rt+1|St, At) are typ-
ically unknown to the agent. This necessitates that the agent learns an optimal behavior
π, typically through trial-and-error interaction with the environment.

3.1.2 Learning Policies

The efficacy of a policy π is assessed using the action-value function qπ(s, a):

qπ(s, a) = E [Gt | St = s, At = a] , (3.2)

where Gt represents the cumulative discounted reward, often referred as the Q-value
[35]. This function measures the expected return starting from state s ∈ S, executing
action a ∈ A, and subsequently following policy π.

The primary objective in a RL task is to identify a policy that maximizes the accumulated
reward over time. We can rank policies by comparing their corresponding action-value
function. Hence, policy π is considered superior to π′ if

qπ(s, a) > qπ′(s, a) ∀(s, a). (3.3)

The optimal action-value function, denoted as q∗, represents the maximum expected
return achievable from any state-action pair:

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S,∀a ∈ A. (3.4)

This function is maximized by the optimal policy π∗. Once q∗ is determined, π∗ can be
directly derived by selecting the action that yields the highest q∗-value in each state [11],
[35]:

π∗(a, s) = argmax
π

qπ(s, a). (3.5)

In practice, RL methods aim to approximate or learn this optimal policy.
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3.2 Q-Learning

Since the underlying dynamics of theMDP are typically unknown to the agent, RL agents
must utilize methods to approximate the optimal policy π∗. Q-Learning [37] is a core
RL technique that estimates the optimal action-value function defined in Eq. 3.4. Q-
Learning effectively combines principles from Dynamic Programming (DP) and TDL,
which we introduce in this section.

3.2.1 Dynamic Programming and the Bellman Optimality
Equation

In DP, value functions are employed to guide the search for optimal policies [11]. The
Bellman Optimality Equation is central to this process, relating the optimal value of the
current state-action pair to the maximum optimal value of the subsequent state:

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′) | St = s, At = a
]
. (3.6)

This equation establishes a self-consistency condition for q∗ that is independent of any
specific policy. In iterative DP methods, a sequence of Q-value functions (q0, q1, . . . ) is
generated, starting from an arbitrary initialization q0. The subsequent approximation
qk+1 is derived from the current estimate qk with k ∈ N using the recursive update rule:

qk+1(s, a) = E
[
Rt+1 + γmax

a′
qk(St+1, a

′) | St = s, At = a
]
. (3.7)

The policy πk derived from qk is guaranteed to converge toward the optimal policy π∗ as
k →∞. While DP methods mathematically guarantee convergence to the optimal policy,
the necessity of an accurate environment model makes them impractical for most real-
world scenarios [35]. Q-Learning overcomes this limitation by operating in a model-free
manner, relying instead on collected experience [35].

3.2.2 Temporal-Difference Learning

TDL enables the construction of improved estimates of the action-value function by boot-
strapping from previous approximations. Q-Learning, a prominent TDL control method,
was originally introduced as a tabular learning algorithm [37]. In this formulation, a Q-
value is stored for every encountered state-action pair within a lookup table, randomly
initialized.

As the agent explores the environment, it updates the Q-value for each visited state-
action pair according to the following update rule [35]:

q(St, At)← (1− α) q(St, At) + α
[
Rt+1 + γmax

a′
q(St+1, a

′)
]
, (3.8)
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where α ∈ [0, 1] denotes the learning rate (or step size). This update moves the old
estimate q(St, At) toward the TDL target, given by the term in brackets.

A crucial property of Q-Learning is that it is an off-policy algorithm, where it uses the
maximum estimated Q-value of the next state, maxa′ q(St+1, a

′), rather than the Q-value
corresponding to the action actually taken. This allows Q-Learning to directly approxi-
mate the optimal action-value function q∗. In the tabular case, it has been proven that
Q-Learning converges to the optimal Q-values q∗(s, a) provided that all state-action pairs
are visited infinitely often [38].

3.3 Deep Q-Learning

Classical Q-Learning’s reliance on a lookup table to store q(s, a) values are infeasible for
environments with large or continuous state spaces [35], therefore in DQL [39] a NN is
used to approximate the action-value function, which is discussed in this section.

3.3.1 Deep Q-Learning Architecture and Loss

The fundamental idea of DQL is to learn the optimal Q-values from the Bellman Opti-
mality Equation Eq. 3.6 using a multi-layered NN that, for any given state s, outputs
a vector of Q-values q(s, a; θ⃗), where θ⃗ are the parameters of the network. If the state
space has n dimensions and the action space has m actions, the neural network acts as
a function mapping Rn to Rm.

The neural network is trained by minimizing a loss function L(θ⃗) [39], typically the mean-
squared temporal-difference error, which quantifies the difference between the current
and target Q-value estimates:

Li(θ⃗i) = E(St,At,Rt+1,St+1)

[(
Yi − q(St, At; θ⃗i)

)2]
, (3.9)

where each training step i ∈ N samples transitions ⟨St, At, Rt+1, St+1⟩ from experience.
The target value Yi (the TDL target) is defined [40] as

Yi = Rt+1 + γmax
a′

q(St+1, a
′; θ⃗i), (3.10)

which defines a one-step estimate of this optimal value. In this way, the network is
trained to minimize the discrepancy between its current Q-value estimate and the tar-
get derived from the Bellman equation. The remainder of this section discusses the
optimization of the neural network parameters θ⃗ to minimize the loss function defined
in Eq. 3.9 and addresses the stability challenges associated with training DQN agents.
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3.3.2 Gradient Update

The parameters, also referred to as weights, of the deep neural network are optimized
using gradient-based techniques. A standard optimizationmethod is Stochastic Gradient
Descent [41], but the Adam optimizer [42] is frequently employed due to its adaptive
learning rate mechanism and efficient convergence properties.

For each parameter, the Adam optimizer updates the weight based on the learning rate
α and a ratio of the bias-corrected moving averages of the gradient (first moment, m̂)
and the squared gradient (second moment, v̂):

⃗θt+1 = θ⃗t − α
m̂t√
v̂t + ε

, (3.11)

where α ∈ [0, 1] denotes the learning rate (step size) and ε is a small constant added for
numerical stability. The gradients gt = ∂L(θ⃗t)

∂θ⃗t
are obtained via backpropagation, which

applies the chain rule to compute derivatives with respect to the loss function L.

However, training q∗ with a high-capacity function approximator such as a deep neural
network can lead to convergence issues. To mitigate these instabilities, DQL employs
two key mechanisms: the use of a target network and experience replay, which are
described in the following subsections.

3.3.3 Experience Replay

Experience replay [43] enables the agent to store its past interactions with the envi-
ronment. Each transition is represented as et = ⟨St, At, Rt+1, St+1⟩ and is stored in a
dedicated memory structure known as the replay buffer Dt = (e1, ..., et). This buffer
continuously collects experiences over multiple episodes. During training, the network
parameters are updated by randomly sampling small batches of transitions e ∼ U(D)
from this memory [39] based on Eq. 3.9

The main advantage of experience replay is that it allows the agent to reuse past experi-
ences, which improves data efficiency [39]. Moreover, by sampling transitions randomly,
it breaks the strong correlations between consecutive samples that typically occur dur-
ing sequential data collection. In DQL, the utilizes an ϵ − greedy behavior policy. This
behavior policy introduces stochasticity by selecting a random action with probability
ϵ. The gradual decay of ϵ throughout the training process is implemented to ensure the
agent initially maintains wide exploration of the environment. As the training progresses
and ϵ approaches zero, the exploration diminishes, guaranteeing that the behavior policy
ultimately converges towards the optimal target policy.

3.3.4 Target Network

To improve the stability of DQL, a separate target network is introduced to compute the
target Q-values Yi [35]. This network, parameterized by θ⃗−, is updated less frequently
than the online network, which is trained continuously.
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The target network parameters are periodically synchronized with those of the online
network every C ∈ N training steps:

θ⃗− ← θ⃗ every C steps. (3.12)

Using a delayed copy of the parameters θ⃗− decouples the target generation from the
most recent updates, reducing feedback loops that can cause instability. This delay
significantly mitigates divergence that may occur when a single network is used for both
prediction and target estimation [39]. The target value Yi is, instead of using Eq. 3.10,
computed using the target network as

Yi = Rt+1 + γmax
a′

q(St+1, a
′; θ⃗−i ). (3.13)

This section concludes the discussion of the core concepts of classical DQL, which builds
the foundation for its quantum analog. The following section will focus on the modifica-
tions and adaptations specific to the quantum version of DQL.

3.4 Variational Deep Q-Learning

VQ-DQL represents a recent class of hybrid quantum-classical RL methods. In this ap-
proach, the traditional deep neural network within the DQL framework is replaced by a
VQC [10], [14], [28], [29]. As VQCs, outlined in Sec. 2.4, can act as universal function
approximators, they are well-suited for machine learning and especially for the DQN
algorithm.

The parameters θ⃗ of the VQC are optimized using classical optimization techniques,
such as the Adam optimizer, in combination with the parameter-shift rule, described in
Sec. 2.4.3, for gradient estimation. This section provides an overview of how the VQC
handles input embedding and output extraction, which differs from the classical neural
network approach.

Quantum Embedding A crucial step in VQ-DQL is quantum embedding, where the
classical state information s ∈ S of the MDP is encoded into a quantum state |ψ(s)⟩. The
choice of embedding method significantly affects the performance of the VQC. Suitable
encoding strategies were discussed in Sec. 2.4.1 and can therefore be employed. There-
fore Sec. 5.1.1 describes the input components of the MDP state in our environment and
Sec. 5.1.2 explores the encoding method.

Q-Value Extraction For a givenMDP state, the VQC outputs Q-values for all |A| actions
simultaneously by measuring the expectation values of Pauli-Z observables on the output
qubits. These values lie within [−1, 1] and may require scaling to obtain valid action
values. Replacing the classical neural network with a VQC allows leveraging QC in RL.
While VQ-DQL models are not proven superior to classical DQL, several studies indicate
potential advantages [10], [11], [28], [44] and even sample efficiency [14].

20



4 Background on Hardware

In this section, we introduce the hardware architecture and communication protocols
underlying the QC demonstrators. We outline the roles of each hardware component and
describe how they interact through different communication protocols. This provides
the foundation for understanding how the quantum demonstrators are developed and
integrated.

4.1 Reinforcement Learning Demonstrator

To serve as a physical demonstrator, a gamified and intuitively accessible use-case was
chosen. This is to ensure that the core concepts of RL and its quantum enhancement
can be easily adapted and explained to a major audience. The chosen hardware demon-
strator for the RL use-case is detailed in the following subsections.

4.1.1 Anki-Overdrive

The Anki Overdrive demonstrator is a sensor-based racing system that combines phys-
ical toy cars with digital control. Each vehicle operates on a modular track and is con-
trolled via a smartphone application, enabling races against either human players or
pre-programmed artificial intelligent opponents.

(a) Top view of the used Anki Overdrive car. (b) Bottom view of the used Anki Overdrive car.
On the side, the infrared sensor for track piece
detection is visible.

Figure 4.1: Top and bottom view of the Anki Overdrive car used as RL demonstrator. It is 8,5
cm long and 4 cm wide.

The system effectively merges physical hardware with algorithmic decision-making, pro-
viding a perfect use-case environment for RL. It consists primarily of two components:
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modular track pieces that can be assembled into various configurations, and small au-
tonomous vehicles, depicted in Fig. 4.1a, equipped with embedded electronics for sens-
ing and control. A key feature of the Anki Overdrive platform is its integrated local-
ization system. Each track piece contains a unique infrared code that is detected by a
downward-facing sensor installed on the car, depicted in Fig. 4.1b. This detection mech-
anism allows the car to continuously determine its position on the track by identifying
the current track piece ID and its relative offset from the center of the lane, depicted in
Fig. 4.2a. The combination of track pieces, which gives us information, and the contro-
lable vehicle, gives the reason to use Anki Overdrive as the demonstrator in comparison
to other toy car systems like the Donkey Car Racing Set build on a Raspberry Pi [45].
The lateral offset, represented as a floating-point value, quantifies how far the vehicle
deviates from the track’s centerline and is essential for navigation, control, and rein-
forcement learning feedback. Other essential information, depicted in Fig. 4.2b are the

(a) Distinction of the track in Anki Overdrive
with discrete offset positions from -50 to
+50 with ±25 steps.

(b) Cumulative track position and unique track
ID in Anki Overdrive.

Figure 4.2: Anki Overdrive location features which builds the state space for the RL agent.

horizontal offset on each piece, represented as a float-point value, its current speed,
between [0,1,2,...,1500], and a boolean value quantifying if the car is driving clockwise
or counterclockwise.

4.1.2 Communication Distribution

The communication between the Anki Overdrive vehicles and the smartphone applica-
tion operates via Bluetooth. Each car is identified by a unique MAC address, which
enables direct access through Bluetooth Low Energy (BLE). By using a predefined BLE
library [46], it becomes possible to both receive telemetry data from the vehicle and
send control commands such as acceleration or lane adjustment in real time. This wire-
less interface plays a crucial role in the training of our RL agent. In order to obtain
precise information, that is the car’s lateral offset or transitions between track pieces,
we prioritized certain telemetry signals over others. As a result, direct speed measure-
ments had to be omitted, since not all data could be transmitted simultaneously within
a single BLE packet. To compensate for the missing speed information, we introduce
an indirect speed estimation method. Instead of using the raw velocity readings, the
system calculates the time required for the vehicle to transition from one track piece to
the next. This transition time proved to be a stable and reliable indicator of the vehicle’s
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effective speed while maintaining correct information of other critical features used for
training the RL model.

4.2 Quantum Simulator Hardware

Building and maintaining a real quantum computer is an exceptionally complex task that
requires advanced expertise and highly specialized equipment. While various online
quantum circuit simulators exist, they remain abstract and difficult to grasp for new-
comers to the field. The goal is therefore to create a tangible, real-world demonstrator
that allows audiences to physically interact with and intuitively explore the principles
of a quantum circuit. To realize this simulator, a range of hardware components are
employed, as described in the following section. The entire system is composed of four
primary hardware components: the ESP32, an Adafruit LED-matrix for displaying the
state distribution, a PCF8575 IO expander for general-purpose input/output (GPIO) ex-
tension, and an MFRC522 RFID-module with its tag, which serves as a gate within the
circuit.

4.2.1 Hardware Building Blocks

ESP32 At the core of the setup is the ESP32 Development Board (DevKitC V4) [47],
which integrates a CP2102 USB-to-UART bridge and is fully compatible with the Arduino
development environment, supporting C++ programming. This makes it well-suited for
lightweight and flexible embedded implementations. The ESP32 features a dual-core
processor, built-in Wi-Fi and Bluetooth connectivity, and a wide range of GPIO pins, as
shown in Fig. 4.3.

Figure 4.3: ESP32 pin-layout [47].

These characteristics make the ESP32 particularly suitable for embedded sensing ap-
plications that require real-time data acquisition, which are important in our use-case
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considering our other components. In addition, its low cost compared to alternatives
such as the Raspberry Pi [48], combined with its processing power and energy efficiency,
makes the ESP32 an excellent choice as the central computation and control unit of the
system.

IO-Expander The PCF8575 I/O expander [49] is used to increase the number of avail-
able GPIO pins on the ESP32, which are otherwise limited. This 16-bit I/O expander
communicates with the ESP32, enabling control over additional output lines required
to assert the CS lines for multiple Serial Peripheral Interface (SPI) slave devices. Each
output pin can be individually configured as input or output, and the device supports
fast switching for real-time control signals. Its Inter-Integrated Circuit (I2C) address is
configurable via address pins, allowing multiple expanders on the same bus depicted
in Fig. 4.4. The PCF8575 is powered at 3.3V allowing to use the same energy supply
and logic levels as the ESP32. This component was chosen because it is inexpensive,
easy to use, and highly flexible, making it ideal for expanding the control capabilities of
the ESP32. Alternatively, a shift register (i.e 74HC595) could have been used to extend
the GPIO pins, but the PCF8575 was preferred, because its interface is used in other
components of the setup (i.e LED-matrix) as well.

Figure 4.4: PCF8575 pin-layout [49].

(a) MFRC522 RFID-module pin-layout [50]. (b) Front and backside of the 3D-printed Gates.

Figure 4.5: RFID-module with its 3D-printed gate to simulate a quantum gate.

RFID-module TheMFRC522 RFID-module [50] functions as a gate within the quantum
circuit demonstrator. Connected to the ESP32 via SPI, it detects the RFID-modules and
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identifies the tags placed on it and defines their position in the quantum circuit. Each
RFID-module contains a small memory chip where information can be stored and read
by the ESP32, enabling the simulation of quantum gates by encoding custom data on the
tags. The MFRC522 operates at 3.3V, uses a standard SPI interface with Master Output
Slave Input (MOSI), Master Input Slave Output (MISO), Serial Clock (SCLK), Chip Select
(CS), and Reset (RST) lines, seen in Fig. 4.5a, and supports high-speed reading for real-
time operation. The MFRC522 also allows, as only the chip is necessary to read data,
to customly design the chips on 3D-printed setup, depicted in Fig. 4.5b, representing a
gate, making it for the audience more approachable and understandable. Its low-cost,
availability and simple interface with fast reading times of the information of the chip,
makes it the perfect candidate for our setup.

LED-Matrix The Adafruit 64x64 RGB LED-matrix [51] serves as a visual interface for
the quantum circuit simulation. Each pixel can be individually addressed, enabling rep-
resentation of probabilities or gate operations in real time. This LED-matrix, depicted in

(a) Front side of the used 64x64 LED-matrix. (b) Backside of the LED-matrix with its power
supply and pin-layout.

Figure 4.6: Front and backside of the LED-matrix.

Fig. 4.6, was chosen because it is particularly suitable for visualizing the distribution of
the quantum circuit with columns, and it is much more cost-effective than other display
options (i.e. OLED-screen), making it an valid choice for an interactive demonstrator.

4.2.2 Communication Protocols between Hardwarecomponents

In embedded systems, data exchange between different Hardware components is achieved
through communication protocols. In the development setup, the ESP32 manages com-
munication with the other peripheral devices using both Serial Peripheral Interface and
Inter-Integrated Circuit protocols.
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I2C Communication The I2C interface is a widely used protocol that enables multiple
devices to communicate over four wires: the data line (SDA) and the clock line (SCL),
common ground potential Ground (GND) and a power line Voltage Common Collector
(VCC), as summarized in Tab. 4.1. Originally developed by NXP Semiconductors, I2C is
designed for short-distance communication between controllers and peripheral devices
[52]. The protocol operates in half-duplex mode, meaning that data can only be trans-
mitted or received at a given time [52], [53]. A single data line is shared for bidirectional
communication, with direction arbitration implemented via an open-drain configuration
and external pull-up resistors, ensuring that no two devices drive the bus simultaneously
[52]. Each slave device is assigned a unique 7-bit address, while the eighth bit of the ad-
dress byte specifies whether the operation is a read or a write. Following each transmit-
ted byte, the receiving device must send an acknowledgment or a non-acknowledgment
signals the end of the communication. Data transfers are synchronized to the clock, with
data remaining stable while SCL is high, except during start and stop conditions [52].

Table 4.1: I2C connection overview between ESP32 and PCF8575 IO-Expander Modules.
I2C Signal ESP32 Pin Function
SDA (Serial Data) Carries data between devices
SCL (Serial Clock) Synchronizes SDA data transfer between devices
GND (Ground) Common electrical reference ground for all connected devices
VCC (Power Line) Supplies operating voltage to the PCF8575 modules

In our setup, I2C is used for communication between the ESP32 and both the LED-matrix
and the IO expanders. Since no data needs to be read back from these devices, I2C is
an ideal choice as commands can be sent efficiently, for example to update the display
or set the appropriate control lines on the IO-expanders. The protocol’s simplicity and
reliability make it particularly suited for these low-speed control tasks, ensuring stable
operation without unnecessary complexity.

SPI Communication The SPI protocol is a high-speed, full-duplex communication stan-
dard that enables efficient data transfer between a master device and one or more slave
devices [54], [55]. In our system, the ESP32 acts as the master, communicating with the
RFID-modules via SPI. The connection employs the following signal lines:

Table 4.2: SPI connection overview between ESP32 and MFRC522 RFID-modules.
SPI Signal ESP32 Pin Function
MISO Data from slave to ESP32
MOSI Data from ESP32 to slave
SCK SPI clock signal
CS Controlled via I/O Expander
RST Reset signal
VCC Power line
GND Ground line

In SPI systems with multiple slaves, each slave must have its own CS line. The master
determines which slave it is communicating with by asserting the corresponding CS
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line. Slaves that are not currently selected must ignore any data on the MOSI line and
refrain from driving the MISO line to prevent data collisions. The SCLK is provided by
the master, and slave devices should never manipulate this line [54], [55].

SPI is a full-duplex protocol, meaning that data can be transmitted and received simulta-
neously. Typically, one edge of the clock signal is used to transmit data from the master
to the slave, while the opposite edge is used for the master to receive data from the
slave. This allows every byte sent by the master to correspond to a byte received from
the slave, enabling data rates of up to 80 Mbps in full-duplex mode [55]. Therefore, SPI
is particularly well-suited for the quantum circuit simulator application due to its high
data transfer rates and low latency , which are essential for rapid RFID-module and
tag detection and response [55]. With clock speeds in the megahertz range, SPI allows
the RFID-module to operate in real time without significant communication overhead.
Additionally, its simple implementation makes SPI an ideal choice for communication
between the ESP32 as the master and the RFID-modules as slave devices.

This concludes the overview of the hardware demonstrator setup, highlighting the key
components and communication protocols that enable its operation. The next section
will focus on the conception, implementation, and integration of the hardware demon-
strators, starting with the VQ-DQL use-case and followed by the quantum circuit simu-
lator.
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5 Development of Accessible
Quantum Computing
Demonstrators

5.1 Implementation of the Quantum Reinforcement
Learning Demonstrator

This section details the implementation of the QRL demonstrator. We begin by introduc-
ing the Anki Overdrive environment used as the test-bed for our experiments. We then
describe the methodology and reproduction details of our VQ-DQL agent, including the
VQC architecture, training pipeline, and hyperparameter settings. Finally, we outline
the classical NN baseline used for comparison.

5.1.1 The Anki Overdrive Environment

The Anki Overdrive environment serves as an excellent test-bed for reinforcement learn-
ing research, as it combines real physical dynamics with continuous sensor feedback. Its
continuous state space, together with a discrete action space, makes the task non-trivial
and allows for a meaningful evaluation of RL algorithms.

The objective of the environment is to achieve the fastest possible lap time on a given
track by passing each track segment in the minimum amount of time. Since the vehicle
operates on a physical track with real sensor measurements, the agent must anticipate
upcoming situations rather than reacting only to instantaneous observations. The com-
plete state representation, depicted in Tab. 5.1, therefore captures both the current
driving context and the local track structure.

Table 5.1: State definition and boundaries of the observation space.
State Variable Min Max Description
Transitiontime 0 3 Positive Time since last track transition (s)
Offset -70 70 Lateral offset from track center
Current Piece 17 40 ID of the current track piece
Next Piece 17 40 ID of the upcoming track piece
Piecetype 0 1 Type of the track piece (e.g., straight/curve)
Actiont-1 0 6 First action component (e.g., accelerate)
Actiont-2 0 6 Second action component
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As discussed in Sec. 4.1.1, we were unable to use the vehicle’s velocity as a state variable
due to hardware limitations. Instead, we use the time since the last track transition as a
proxy for speed. This value simultaneously serves as the reward of the environment due
to its high update rate and its strong correlation with lap time. Fast reward feedback is
crucial, as the agent must learn an optimal policy within the limited training horizon.

We include the current piece and next piece to encode the identity of the track segments
that the car is currently on and about to enter. Different segments correspond to differ-
ent curvature properties, which strongly influence both the feasible speed range and the
optimal lateral offset. Without this information, the agent would struggle to accelerate
efficiently on straight segments, perform optimal lane changes before entering curves,
and maintain stable control of the vehicle. The piece type variable further abstracts this
information by indicating whether a segment is a curve or a straight, enabling the policy
to generalize across different track layouts.

Due to sensor noise and delayed physical responses, the immediate effect of an action At

is not always reflected in the subsequent observation. Therefore, we additionally include
the variables previous action At−1 and action history At−2. These variables help stabilize
the control behavior by informing the agent about its recent decisions and allowing it to
anticipate delayed effects of its actions.

The action space is discrete and consists of seven possible actions that combine accel-
eration, deceleration, and lateral control. To preserve a discrete representation, the
track width is divided into five offset levels, as illustrated in Fig. 4.2a, to ensure that the
car remains within the track boundaries during lane changes and does not crash. The
complete action space is summarized in Tab. 5.2.

Table 5.2: Discrete action space used in the Anki Overdrive environment. The first two actions
control the vehicle’s velocity, while the remaining five actions manage lane switching.

Action Effect Description
Action0 Velocity = +100 Accelerate
Action1 Velocity = -100 Decelerate
Action2 Offset = -50 Switch to outer right lane
Action3 Offset = -25 Switch to inner right lane
Action4 Offset = 0 Switch to the middle of the lane
Action5 Offset = +25 Switch to inner left lane
Action6 Offset = +50 Switch to outer left lane

An episode begins with the car positioned at the starting line of the track and immedi-
ately transitioning to the next track piece by crossing the finish line depicted in Fig. 5.1a.
The agent then receives its initial observation, which depends on the car’s starting po-
sition and the information of the newly entered track segment.

An episode terminates when the car leaves the track, disconnects, completes a full lap,
or reaches a predefined maximum number of training steps. At each step, the agent
receives a reward defined as the negative transition time between consecutive track
pieces, thereby incentivizing the minimization of lap time. Consequently, the cumulative
episode reward is directly correlated with the achieved lap time, with lower cumulative
values indicating better performance.
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(a) Crossing of the start line signals the beginning
of the training pipeline, as this track piece is di-
vided into two sections separated by the finish
line.

(b) Track layout used for the training of the agents,
which can be divided into 9 pieces.

Figure 5.1: Track layout and starting position of the Anki Overdrive environment used for train-
ing the agent.

Several constraints had to be introduced to ensure stable operation of the environment.
First, we capped the maximum speed of the vehicle at 800 to prevent the car from los-
ing traction, sliding off the track, or abruptly changing direction at excessively high
speeds. Moreover, beyond a certain speed the car moved too quickly for the embedded
firmware to capture sensor signals reliably, due to its limited sampling rate. For our
experiments, we chose a circular track layout, shown in Fig. 5.1b, as it represents the
simplest and most verifiable track configuration. The track is composed of nine pieces,
consisting of five straight and four curved segments. This minimal layout was neces-
sary due to the limited battery capacity of the Anki Overdrive vehicle, which restricts
each online-learning episode to approximately 1200 steps. More complex or bigger track
configurations would require substantially longer training episodes and were therefore
not feasible to learn an optimal policy within the available time frame. Furthermore, a
low battery level did not affect the vehicle’s speed or sensing quality, meaning that the
learning process remained stable until the battery was fully depleted.

5.1.2 Methodology

To ensure a stable and reproducible learning process consistent with classical RL, the
implementation utilizes a single-file implementation in PyTorch [56]. The VQCs within
the VQ-DQL framework are implemented using Pennylane [57], as its integration with
PyTorch is supported and provides more efficient parameter updates compared to alter-
natives like Qiskit [58]. This efficiency is crucial because the system has only a small
window to update its VQC due to the sparse transition times of the environment. The
algorithm used in the training process is outlined in Alg. 1.

To describe our methodology in detail, let us first define employed convention: By train-
ing steps we refer to the number of iteration by gradient descent the model has under-
gone. By sampling steps we refer to the number of interaction the agent has with the
environment. For our VQ-DQL we initialize a Replay Memory Buffer D to store experi-
ence tuples ⟨S,A,R, St+1⟩ up to 7000 transitions (see Alg. 1, line 1), which is sufficient
for the limited number of sampling steps gathered during training. The Q-Network is

31



initialized as a VQC with random parameters θ⃗ (see Alg. 1, line 6). The architecture of
the VQC is discussed in the next section in detail. The Target Network is updated every
32 steps (see Alg. 1, line 3, 18-20). The output undergoes post-processing with a ReLU
activation function to ensure non-negative Q-Values estimates and promote faster learn-
ing times [59], [60]. The Adam optimizer is used for parameter updates (see Alg. 1, line
17), employing a learning rate of 0.01.

Algorithm 1 Variational Quantum Deep Q-Network
1: Initialize replay memory buffer D
2: Initialize training start Mtrain = 250
3: Initialize target network update parameter C
4: Initialize global step counter M = 0
5: Initialize ϵ = 1.0
6: Initialize Quantum Circuit for action-value function with random parameters θ⃗
7: Initialize the Anki environment, get S1 and encode it into a quantum state
8: for M < 1100 or Done do
9: With probability ϵ select random action At

10: Otherwise select At = argmaxa q(St, a; θ⃗) from the output of the VQC
11: Execute action At on the car, observe reward Rt and next state St+1

12: Store transition (St, At, Rt, St+1) in D
13: if M modMtrain = 0 then
14: Sample random minibatch of transitions from D

15: Yi =

{
Rt if episode terminates at St+1

Rt+1 + γmaxa′ q(St+1, a
′; θ⃗) otherwise

16: Compute loss: L =
(
Yi − q(St, a

′; θ⃗)
)2

17: Update θ⃗ using Adam optimizer on L
18: if M mod C = 0 then
19: Update the target network θ⃗− with θ⃗
20: end if
21: end if
22: Decay ϵ linearly
23: end for

We start the training loop with 250 sampling steps (see Alg. 1, line 2) by initializing ϵ to
1.0 to ensure full exploration of the environment (see Alg. 1, line 5). At each sampling
step, the agent selects an action At using an ϵ-greedy policy based on the Q-values esti-
mated by the VQC (see Alg. 1, line 9). With probability ϵ, a random action is selected to
encourage exploration. We decay ϵ linearly to 0.00 over the next 200 sampling steps to
gradually shift towards exploitation (see Alg. 1, line 22). The selected action (see Alg. 1,
line 9-10) is therefore with a probability of 1 − ϵ the action with the highest estimated
Q-value:

At = argmax
a
q(St, a; θ⃗). (5.1)

After executing the action At in the environment, the agent observes the reward Rt and
the next state St+1 (see Alg. 1, line 11). The transition ⟨St, At, Rt, St+1⟩ is stored in the
replay bufferD (see Alg. 1, line 12). Once enough experience is gathered and the training
starts (see Alg. 1, line 13), the agent samples a random mini-batch of transitions from
D to perform a training step (see Alg. 1, line 14). For each transition in the mini-batch,
we compute the target Q-value Yi (see Alg. 1, line 15) using Eq. 3.13:

Yi =

{
Rt if episode terminates at St+1

Rt+1 + γmaxa′ q(St+1, a
′; θ⃗) otherwise

(5.2)
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The loss (see Alg. 1, line 16) is then computed as the mean squared error using Eq. 3.9:

L =
1

N

∑
i

[(
Yi − q(St, At; θ⃗i)

)2]
, (5.3)

where N is the mini-batch size. The Loss is minimized by updating the parameters
θ of the VQC. We update the target network parameters θ⃗− with the current network
parameters θ⃗ every 32 sampling steps (see Alg. 1, line 18-20) to ensure stable Q-value
estimates. This process is repeated for a total of 1100 sampling steps or until the early
stopping criterion is met. The additional classical hyperparameter used to tune the
algorithm are depicted in Tab. 5.3. As an automated hyperparameter search is infeasible
due to hardware constrains, we manually tested different combinations and selected
the best performing ones for both agents. If the average lap time over five consecutive
evaluation episodes drops to its best lap time, we consider the training successful and
terminate early to prevent catastrophic forgetting [61] (see Alg. 1, line 8). This early
stopping criterion is crucial given the short training time in the training setup.

Table 5.3: Comparison of the hyperparameters used for training the classical DQN agent and the
quantum-enhanced agent in the Anki Overdrive environment. The hyperparameter
were optimized through a manual grid search process.

Hyperparameter Classic DQN Quantum Agent Description
num_steps M 1100 1100 #sampling steps
train_after Mtrain 250 250 #sampling steps before first training step
learning_rate 0.001 0.01 optimizer learning rate
buffer_size 8000 7000 size of the replay buffer
gamma γ 0.9999 0.9999 discount factor γ
optimiser Adam[42] Adam[42] lossfunction optimiser
loss L2 L2 lossfunction
target_network_frequency C 32 32 frequency of sampling steps between target network updates
batch_size 128 128 batch size for gradient descent
ϵstart 1.0 1.0 initial exploration rate ϵ
ϵend 0.00 0.00 final exploration rate ϵ
ϵfraction 0.15 0.11 fraction of training steps for epsilon decay

Variational Quantum Circuit Architecture

The VQC architecture used for Q-value estimation consists of 7 qubits, representing
the observation space. For the input encoding, we initially employed a continuous angle
encoding scheme in which all features were prepared by applying a Hadamard gate fol-
lowed by a σy rotation as described in Sec. 2.4. The Hadamard gate provides an unbiased
initial state, and the subsequent rotation implements the state preparation. Empirically,
scaling the inputs with arctan(xi)

2 stabilized training and improved convergence toward
a sufficient policy. Prior work suggests input or output scaling with trainable weights
to mitigate barren plateaus [11], [29], [62]. In our setting, however, these methods did
not improve performance and sometimes prevented the agent from converging to a suf-
ficient policy. Each variational layer consists of one parameterized single-qubit rotation
around the z-axis σz. For l layers and n qubits, this results in 1nl trainable parameters.
The entanglement pattern follows a circular topology introduced by [31] and is defined
as CNOT [i, (i + l) mod n] where l is the index of the layer and n the number of qubits.
Similar to the classical hyperparameters, an exhaustive grid search of the architectures
was not feasible. Therefore, the presented architechture was selected as it yielded the
best results.
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Figure 5.2: VQC architecture used in our experiments using data-reuploading and circular en-
tanglement with 7 qubits and l layers.

To ensure sufficient expressivity, we employ data re-uploading [30], which is described
in Sec. 2.4. We tested architectures with 3 to 10 repeated layers, using the 4-layer con-
figuration as the baseline, since it achieved the best performance in the Anki Overdrive
environment.

The results are shown in Fig. 5.3. Besides the baseline model, only two additional archi-
tectures reached the sufficient policy within the available training time, although both
required longer training periods. All architectures exhibited phases where the train-
ing became stuck in local minima. Nevertheless, even the architectures that ultimately
failed to reach the sufficient policy discovered promising intermediate solutions at some
point during training. It is therefore plausible that, given longer training durations, all
models would eventually converge. This behaviour is consistent with the findings of
Mnih et al. [39], who showed that Q-learning can become unstable when combined with
non-linear function approximators such as VQCs.

Although the 4-layer architecture discovered the optimal policy in the shortest time,
deeper architectures exhibited more stable learning dynamics, which is in agreement
with the literature on the relationship between layer depth and expressivity [63]. Ar-
chitectures with too few or too many layers likely suffered either from insufficient ex-
pressivity or from barren plateaus, which limited their performance within the short
training horizon imposed by the hardware. Since all architectures eventually produced
reasonable intermediate policies, it is reasonable to assume that extended training, be-
yond what the limited battery capacity of the Anki Overdrive car allowed, would lead to
convergence across all tested configurations.

Demonstration of the Quantum Reinforcement Learning Agent

To highlight the educational value of our demonstrator, we trained the best performing
agent using the four-layer VQC architecture. The training was conducted directly on the
physical Anki Overdrive environment and filmed to track the entire training progress.

Fig. 5.4 illustrates the learning progression of the quantum agent. In Fig. 5.4a, the
agent’s initial behavior after five episodes is shown, reflecting early exploration and
learning attempts. Fig. 5.4b depicts the agent after the training has converged, demon-
strating its ability to find the sufficient policy to find the best route to reach the fastest
laptime. To further illustrate the agent’s decision-making, the trajectories of the car over
the last three episodes are visualized using a pink line, showing how the agent refines its
actions over time and gradually improves its performance. This intuitive demonstration
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Figure 5.3: Training performance of VQ-DQL agents with different VQC layers depths in the
Anki Overdrive environment. The x-axis shows the number of episodes, while the y-
axis represents the episode value (negative lap time). The nearer the episode value
is to zero, the better the lap time achieved by the agent. Layer depths 4, 9 and
10 reached the training stopping criteria within the available training time, while
the other architecture found reasonable, but not optimal, policies. The layer depth
4 architecture converged the fastest among all tested configurations. Still, deeper
architectures exhibited more stable learning dynamics, in comparison to shallower
ones.

(a) The quantum agent after 5 episodes of train-
ing.

(b) The quantum agent after convergence of the
training process.

Figure 5.4: Demonstration of the Quantum Reinforcement Learning Agent in the Anki Over-
drive environment.Fig. 5.4a shows the agent’s behavior after the first five training
episodes, while Fig. 5.4b illustrates the agent after convergence. To highlight the
action selection process, the trajectories over the last three episodes are visualized
with a pink line.

not only highlights the agent’s learning dynamics but also makes the concepts of QRL
more accessible and engaging to a broader audience.

Comparison to Classical Neural Network

Franz et. al[6] suggests that quantum-enhanced agents can outperform classical base-
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lines, particularly in low-data regimes. To provide a meaningful comparison, we used
the same single file framework and for the Q-Network we used a fully connected NN as
the function approximator. The architecture is shown in Fig. 5.5 and consists of three
hidden layers with 128, 32, and 16 neurons. All layers use ReLU activation to produce
Q-values for each action.
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Figure 5.5: Neural Network Architecture where the input layer x has 7 neurons corresponding
to the observation space and the output layer ŷ has 7 neurons corresponding to
the action space. We used in our Neural Network three hidden layers h(i),with i ∈
[1, 2, 3] denoting the hidden layer and ain denotes the number of neurons in the i-th
hidden layer.

The relatively compact architecture was chosen to match the limited complexity of the
environment and the resource constraints of the embedded hardware. With only seven
input features and a moderate state–action structure, larger networks would introduce
computational overhead without improving performance. Smaller networks are also
known to generalize more reliably in low-dimensional environments [64], which helps
avoid over-parameterization and instability during training. The hyperparameters used
for the classical agent correspond to the best-performing configuration listed in Tab. 5.3.
In this setting, the classical NN contains a total of 5859 trainable parameters. In con-
trast, the quantum agent employs 28 trainable parameters in its variational circuit.

Both agents are able to learn a reasonable driving policy within the available train-
ing time. The classical agent converges approximately ten episodes earlier, which can
be attributed to its substantially higher number of trainable parameters, allowing it
to approximate the Q-function more accurately given the limited data. The quantum
agent, however, exhibits a notably more stable learning curve with reduced variance
across episodes. The comparison of both agents during training is presented in Fig. 5.6.
This supports the findings reported in [6], indicating that quantum models may pro-
vide smoother and more stable function approximations in reinforcement learning tasks.
These results should be interpreted with caution, since we were unable to exhaustively
tune hyperparameters for both agents due to hardware constraints. Furthermore, the
difference in the number of trainable parameters is substantial. Wewere not able to iden-
tify a classical NN with a similar parameter count comparable to the VQC that could still
learn a reasonable policy within the same training time. This indicates that the quantum

36



−12.5

−10.0

−7.5

−5.0

0 10 20 30 40 50
Episode

N
eg

at
iv

e 
R

ou
nd

tim
e[

s]

Classical NN

Quantum (4 Layers)

Figure 5.6: Training progress of the classical and quantum agents. The yellow line represents
the VQ-DQL agent, while the gray line corresponds to the classical NN agent. The
classical agent converges slightly faster, but the quantum agent exhibits a more
stable learning curve. The first few episodes are almost identical as both agent are
seeded the same way for reproducibility.

model achieves competitive performance with significantly fewer parameters, which is
particularly promising for resource-constrained reinforcement learning applications.

5.2 Development of the Quantum Simulator

To address, similar to the QRL demonstrator, the abstract nature of QC for newcomers,
the goal is to create a physical demonstrator of a quantum circuit. This section details
the design and implementation of a lightweight quantum simulator tailored for embed-
ded hardware platforms. The simulator is built to efficiently execute a small quantum
circuit and visualize the resulting quantum state in a performative manner on resource-
constrained devices for a broad audience.

5.2.1 Simulation Library Design

The quantum library is designed to simulate a 5-qubit system on embedded hardware.
The state of each qubit is represented as a complex two-dimensional vector, and the
full 5-qubit system is stored as a 32-dimensional complex vector corresponding to the
computational basis states. The initial state of the system is the ground state |00000⟩,
where only the first element of the state vector is one and all others are zero. We used
the statevector simulation method, as it is particular suitable for simulating pure state,
as mixed state simulation is significantly more computationally expensive (see Sec. 2.2)
The library implements the matrix representation of the universal gateset defined in
Sec. 2.3.2 using {H,X, Y, Z, T, CNOT} as our gates.

Single-qubit gates are implemented using their standard 2 × 2 unitary matrices, while
two-qubit gates such as the CNOT use their usual 4×4 form. To apply any of these gates
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to the full five-qubit system, the corresponding operator is lifted to the entire state space
by inserting identity matrices on all qubits that are not affected by the operation. This
expansion yields a 25× 25 matrix for each gate application. Consequently, every layer of
the circuit acts as a 32×32 unitary on the global statevector, and the simulation proceeds
by performing matrix–vector multiplications. This approach allows the simulation to be
performed in real time on embedded systems with limited computational resources. As
we don’t have to deal with higher qubit counts, it is computational feasible to use this
method, as only higher qubit counts of magnitude 20 or above, makes the system more
computational intensive.

Measurements of all five qubits are simulated using probabilistic sampling. The stat-
evector is first normalized to ensure total probability equals one, satisfying Eq. 2.29.
For each shot, a random number in [0, 1) is generated to select an outcome according to
the cumulative probabilities. On the ESP32, this number is produced by the hardware
random generator and is therefore pseudorandom. Repeating many shots approximates
the ideal quantum probability distribution, as pseudorandom numbers are also used for
simulationmethods [65]. To enable a non-deterministic measurement outcome, we could
further integrate the temperature sensor of the ESP32 as a source of entropy for random
number generation to ensure greater randomness in the measurement process.

5.2.2 Hardware Setup and Gate Execution

As mentioned in Sec. 4.2, the complete hardware system is built around an ESP32 mi-
crocontroller, which handles all control and computation tasks. To overcome the limited
number of GPIO pins on the ESP32, I/O expanders (PCF8575) are employed. The I/O ex-
panders are connected to two GPIO pins, which are depicted in Fig. 4.3, on the ESP32,
ensuring the data transfer and receivement of the slaves information. To connect to mul-
tiple I/0 expandersWAGO terminal blocks were used for the bus connections, simplifying
assembly and reducing the complexity of soldering individual wires. This minimizes the
amount of GPIO pins used, as the pin count of the ESP32 was limited and needed good
structure. We tested the alternative of soldering all wires directly to each other, but
this didn’t result in better performance, so we decided to settle with the WAGO terminal
blocks for better maintainability.

This configuration allows the system to manage up to 40 RFID-modules simultaneously.
Each I/O expander represents a logical qubit and provides addressable channels, each
connected to one RFID-module. For the five qubit system, for each qubit an expander
is used. Each CS pin of the RFID-module is connected to one of the addresses of the
expanders, depcited in Fig. 4.4. The SPI bus is shared among all readers, while the
3.3V power lines are isolated to avoid crosstalk. The CS lines are routed through the
expanders, ensuring that only one reader is active at any given moment.

To reduce the number of GPIO pins required on the ESP32, the SPI communication
lines MISO, MOSI, SCLK, and RST, seen in Fig. 4.5a, are not wired individually to each
RFID-module. Instead, they are implemented as a shared bus system arranged in a
tree-like topology. The ESP32 sends a request signal on the MOSI line, requesting in-
formation from the currently selected reader. Only the RFID-module whose CS line is
active responds by sending its unique identifier back to the ESP32 via the MISO line.
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This identifier encodes which quantum gate is present on the tag. All other readers keep
their MISO outputs in a high-impedance state, ensuring that the ESP32 receives only
the data of the active reader. The shared clock line synchronizes all data transfers, and
all readers see the clock signal, but only the selected reader participates in communi-
cation. The shared RST line allows the ESP32 to reset all readers after gathering the
entire loop, ensuring that tags are detected reliably during continuous operation. All
bus lines are common-grounded and routed in parallel. Power distribution and ground-
ing were designed carefully to avoid signal degradation across the bus network. During
each scan cycle, the ESP32 iterates over all qubits and their associated gate positions by
toggling the CS lines of the respective expanders. Whenever a tag is present, the corre-
sponding RFID-module transmits its unique identifier, indicating the assigned quantum
gate. All detected gates are stored in a buffer in the order qubit and gate position.
Certain multi-qubit operations, such as CNOT, cannot be executed immediately and are
temporarily stored until the complete scan is finished, ensuring correct control–target
assignment and consistent logical qubit mapping. After the full scan, the ESP32 con-
structs the corresponding quantum circuit and simulates it using the custom library,
defined in Sec. 5.2.1. The resulting quantum state is sampled 1000 times to obtain a
stable probability distribution.
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Figure 5.7: Loop time to calculate and visualize the result for our simulator. Placing more gates
increases the loop time linearly, as each gate requires a fixed amount of time to read
and process. Placing no gates results in a baseline overhead of 2338 ms to check
and read all RFID-modules.

To maximize performance, the SPI clock was set to 2 MHz, the highest frequency that
still guarantees reliable tag detection. The I2C bus for the expanders runs at 1.52 MHz;
higher frequencies resulted in missed tags and therefore were unsuitable for stable
operation. This is caused by reduced signal integrity, higher noise sensitivity, and timing
limitations of the I/O expanders at higher frequencies [66].

Placing a gate on the board increases the total loop time until the full quantum state is
visualized. The total loop time tlooptime is composed of several measurable components
consisting of the transmission time ttransmit, which is dominated by the physical reading
and communication of all RFID-modules, the quantum gate computation time tcircsim,
representing the time required to apply all placed quantum gates to the simulated state
vector, the measurement time tmeasurement, which describes the time required to compute
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the probability distribution for 1000 shots, and the drawing time tdraw, denoting the
visualization time needed to display the final state on the LED-matrix. The total loop
time is therefore expressed as:

tylooptime = tytransmit + tycircsim + tymeasurement + tdraw, (5.4)
where tx describes the time of its respective component in the entire loop for x ∈
[looptime, transmit, circsim, measurment, draw] and the exponent y the gates placed
in the loop for y ∈ [0, 1, 2, ..., 40]. When no gates were placed, the transmission time was
measured to be t0transmit = 2337.80ms. Using the full configuration of 40 gates, ttransmit,each,
which is the approximate time for the information of each RFID-module to be read trans-
mitted to the ESP32, can be estimated as:

ttransmit,each ≈
t40transmit − t0transmit

40
= 426.55 ms/gate. (5.5)

Thus, ttransmit can be written as

tytransmit ≈ t0transmit + ttransmit,each ·Ngate

= 2337.80 ms+ 426.55 ms ·Ngate,
(5.6)

where Ngate is the number of placed gates on the board. The drawing time remained
constant as tdraw = 0.78ms, which is to be expected as the visualization process does not
depened on the number of gates placed and stays for each loop the same.

Analogously, the same approach can be used for tymeasurement, but we need to consider that
if no gates are placed, the computation process is skipped, resulting in t0measurement = 0ms.
Therefore, we derive for each measurement tmeasurement,each ≈ 0.407 ms per gate, so that
the total measurement time is

tymeasurement ≈ t0measurement + tmeasurement,each ·Ngate

= 0 + tmeasurement,each ·Ngate

= 0.407 ms ·Ngate

(5.7)

Similarly, the state-vector simulation time per gate can be formulated as tgate,each ≈
0.113 ms/gate, and the total gate computation time is:

tycircsim ≈ t0circsim + tgate,each ·Ngate

= 0 + 0.113 ms ·Ngate

= 0.113 ms ·Ngate.

(5.8)

Combining all components, Eq. 5.4 can be written as

tylooptime ≈ tytransmit + tycircsim + tymeasurement + tdraw

= 2337.80 ms+ 426.55 ms ·Ngate + 0.113 ms ·Ngate + 0.407 ms ·Ngate + 0.78 ms
= 2338.58 ms+ 427.07 ms ·Ngate.

(5.9)
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Fig. 5.7 shows the measured loop time as a function of the number of placed gates.
The clearly linear trend confirms the previously derived relationship: as more gates are
added to the circuit, the total loop time increases proportionally. The baseline offset
is primarily caused by the constant time required for gathering the informations of the
RFID-modules and handling the communication with the I2C expanders. As discussed
earlier, the SPI clock frequency could not be increased further, since higher communi-
cation speeds led to unreliable tag detection. This limitation results in longer loop times
for circuits with many gates. However, this does not pose a significant issue, as the
system primarily serves educational purposes.

To position each RFID-module at its intended location, a CAD sketch of the complete
layout was first created and used to mill the outer contour of the system into a wooden
board, as wood is not conductive material, which meet the requirements of the demon-
strator. All RFID-modules were then mounted according to this template, and the entire
bus system was carefully wired on the back side of the board.

5.2.3 Visualization of Quantum States

To provide an intuitive understanding of the quantum state after circuit execution, the
5-qubit state vector is visualized on a 64×64 LED-matrix display connected to the ESP32
via the I2C bus. After calculating the entire distribution each of the 32 possible basis
states is represented by a vertical bar whose height corresponds to the probability am-
plitude, scaled to 64 pixels. The visualisation updates after each measurement loop, al-
lowing users to observe the evolution of the quantum state as different gates are applied
through the RFID-tags. The LED-matrix, which requires 16 GPIO pins to be connected,
met the entire GPIO resources given by the ESP32.

To improve visual clarity, each bar changes its color above 50% probability, helping
users easily identify dominant states. This real-time visualisation thus bridges the gap
between quantum computation and human perception, providing both a functional and
educational tool for exploring quantum state dynamics on embedded hardware.

5.2.4 Edge-Cases on the Simulator

To correctly handle two-qubit gates such as the CNOT, several edge cases had to be
addressed to prevent incorrect or ambiguous operations.

The first challenge is to reliably match each CNOT control with its corresponding target.
To achieve this, every RFID-tag encoding a CNOT gate contains an additional attribute,
which is a unique integer that identifies the pair. For users and testers, this pairing is also
visually indicated through color-coded CNOT pairs on the hardware, seen in Fig. 5.9a.

A second edge case occurs when only one part of the CNOT pair is detected during a
scan, that is when the user forgets to place the second half of the pair, or when the
reading loop has already passed the corresponding gate position. In such a scenario,
the system does not apply the CNOT gate. Instead, it temporarily skips its execution
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and waits until both the control and target RFID-tags have been detected in a complete
scan cycle. This behaviour is illustrated in Fig. 5.8.

The final edge case concerns invalid placements where both the control and the target
of the CNOT gate are placed in the same row (i.e., the same qubit line). Many software-
based quantum simulators classify this as an error and terminate the execution. In con-
trast, our system instead resolves this conflict by collapsing the circuit into the ground
state, resulting in a probability distribution of 100% in |00000⟩.

(a) Entanglement edge-case, where the second
gate was not placed. In this scenario only the
hadamard gate was executed till the second
part of the cnot is placed.

(b) Visualization of the edge-case.

Figure 5.8: Comparison between the edgecase circuit (left) and its resulting measurement dis-
tribution (right).

(a) Correct placement of the CNOT gate. (b) Probability distribution of the correct cnot
placement state.

Figure 5.9: Comparison between the correct edgecase circuit (left) and its resulting measure-
ment distribution (right).
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5.2.5 Hands-On Tests on the Simulator

To show the functionality of the quantum simulator, several test circuits were imple-
mented and executed on the hardware prototype.

(a) Hadamard circuit with 5 qubits. (b) Probability distribution of the hadamard state.

Figure 5.10: Comparison between the Hadamard circuit (left) and its resulting measurement
distribution (right).

To test the correct implementation of single-qubit gates, a simple circuit was designed
which implemented on each qubit a Hadamard gate. After applying the Hadamard gate
to each qubit initialized in the |0⟩ state, the expected output state is a uniform superpo-
sition of all basis states:

|ψ⟩ = 1√
2n

2n−1∑
i=0

|i⟩ (5.10)

where n is the number of qubits. For a 5-qubit system, this results in a superposition of
all 32 basis states with equal probability amplitudes of 1√

32
≈ 0.1768. After executing the

circuit on the hardware prototype and performing 1000 measurement shots, the result-
ing probability distribution, seen in Fig. 5.10b, closely matched the expected uniform
distribution, confirming the correct implementation of single qubit gates.

Additionally, we tested the implementation of entangling gates by creating a Bell state,
explained in Sec. 2.3, between five qubits. This circuit is also known as a GHZ circuit,
which generates a maximally entangled state across all qubits [67]. The circuit con-
sisted of applying a Hadamard gate to the first qubit followed by a series of CNOT gates
entangling all qubits. The expected output state for five qubits isolated in a Bell state
is:

|ψ⟩ = 1√
2
(|00000⟩+ |11111⟩) (5.11)

After executing this circuit on the hardware prototype, Fig. 5.11 showed approximately
50% probability for both |00000⟩ and |11111⟩ states, confirming the correct implemen-
tation of the CNOT gate and the ability of the simulator to create entangled states and
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(a) GHZ circuit with 5 qubits. (b) Probability distribution of the GHZ state.

Figure 5.11: Comparison between the GHZ circuit (left) and its resulting measurement distri-
bution (right).

therefore enabling use it with the entire power of all states. These hands-on tests demon-
strate the functionality and correctness of the quantum simulator implemented on the
embedded hardware prototype. The successful execution of both single qubit and multi
qubit circuits validated the design and implementation choices made for the simulator
library and hardware integration.
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6 Discussion and Outlook

In the previous chapters, we systematically studied the performance of VQ-DQL on
an Anki Overdrive car demonstrator and present a custom microcontroller-based em-
bedded quantum simulator. Our findings revealed the technical feasibility of deploying
quantum-inspired concepts on resource-constrained hardware provided crucial insights
into their performance characteristics and limitations in real-world and embedded en-
vironments.

The empirical study demonstrated that the VQ-DQL agent successfully learned to con-
trol the physical Anki Overdrive vehicle under realistic constraints. Although the quan-
tum agent achieved a performance comparable to the classical DQN baseline, no clear
improvements could be identified, due to hardware constrained training duration (see
Fig. 5.6). Interestingly, while the classical agent converged slightly faster due to its sub-
stantially higher number of trainable parameters, the quantum agent exhibited a notably
more stable learning curve with reduced variance across episodes. This supports the
finding that quantum models may provide smoother and more stable function approxi-
mations in reinforcement learning tasks. This can be seen in the results of Sec. 5.1.2.

However, the optimization of the quantum agent was strongly affected by the barren
plateau problem, leading to vanishing gradients and reduced learning efficiency. This
behavior is consistent with known challenges in variational quantum algorithms. Since
the VQCs in our experiments were initialized systematically and were neither very wide
nor deep, the observed instabilities are likely due to the high sensitivity of VQ-DQL
to classical hyperparameters [14]. Furthermore, our evaluation of different VQC layer
depths showed that the deeper data re-uploading strategy did not always better conver-
gence. Still, while the 4-layer architecture converged the fastest, deeper architectures
showed more stable learning dynamics (see Fig. 5.3). This suggests that future improve-
ments depend on enhanced circuit architectures or alternative optimization techniques
that balance expressivity with trainability. Further research could be done by gathering
training data and performing offline training on more powerful hardware to overcome
the limitations of the embedded platform. Nonetheless, the successful operation of the
quantum agent on embedded hardware demonstrates that quantum-enhanced learning
methods can be integrated into small autonomous systems and presenting QRL to a
broader audience.

The second demonstrator, the portable microcontroller-based QC platform built on an
ESP32, further highlights the possibilities for physical demonstrators for educational
purposes. Using a custom state-vector simulator and RFID-encoded quantum gates, the
system allows users to construct and evaluate simple quantum circuits in a tangible and
intuitive manner. Functional tests confirmed the correct execution of fundamental op-
erations, including the creation of fully entangled Bell states (see Eq. 2.10), validating
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the underlying design (see Fig. 5.11a, Fig. 5.11b). The primary limitation of this pro-
totype concerns its restricted qubit count and gate set, which limit the complexity of
circuits that can be explored. The required loop time for calculating and visualizing the
quantum state increases linearly with the number of gates, resulting in long loop times
for higher gate counts, which are depicted in Fig. 5.7. This suggests that future demon-
strators need faster protocols, better datastructures or more powerful microcontroller
to enhance scalability. Beyond their technical contributions, both demonstrators offer
substantial educational value by translating abstract quantum concepts into concrete,
interactive experiences accessible even for non-experts. Further extensions could be
done by integrating rotational gates into the demonstrator, hence allowing to construct
parameterized circuits for variational algorithms by manually adjusting the rotational
parameters.

Overall, this work shows that embedded quantum demonstrators, despite their current
limitations in the NISQ-Era, already provide meaningful opportunities for experimenta-
tion, learning, and prototyping. Continued research into improved optimization strate-
gies, scalable hardware designs, and hybrid algorithmic approaches will be essential for
unlocking their full potential in both scientific and educational contexts.
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7 Conclusion

This thesis demonstrated that quantum-inspired algorithms and QC concepts can be in-
tegrated into compact embedded systems. The RL experiments showed that a VQ-DQL
agent can operate under strict hardware constraints and achieve performance compa-
rable to a classical DQN, although no clear improvements could be identified. These
results underline both the potential and current limitations of quantum-enhanced learn-
ing on NISQ hardware.

The second contribution of this work was a lightweight QC demonstrator based on an
ESP32 microcontroller. It enabled the execution of basic quantum circuits, including
superposition and entanglement, and highlighted how low-cost platforms can support
accessible, hands-on quantum education despite scalability limits.

Together, both demonstrators show that embedded hardware can serve as an effective
entry point into QC and QML. They provide a foundation for future research, particularly
in improving optimization methods and developing educational tools that make quantum
concepts more tangible.
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